JPS642100B2 - - Google Patents

Info

Publication number
JPS642100B2
JPS642100B2 JP56037239A JP3723981A JPS642100B2 JP S642100 B2 JPS642100 B2 JP S642100B2 JP 56037239 A JP56037239 A JP 56037239A JP 3723981 A JP3723981 A JP 3723981A JP S642100 B2 JPS642100 B2 JP S642100B2
Authority
JP
Japan
Prior art keywords
reaction
acrylonitrile
dichloropropionitrile
pyridine
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56037239A
Other languages
Japanese (ja)
Other versions
JPS57154156A (en
Inventor
Shoichiro Myahara
Kazumoto Kuroda
Isamu Yokomachi
Yoshitsugu Jinno
Kazunari Nitsuta
Yasuhiko Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56037239A priority Critical patent/JPS57154156A/en
Publication of JPS57154156A publication Critical patent/JPS57154156A/en
Publication of JPS642100B2 publication Critical patent/JPS642100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は2,3―ジクロルプロピオニトリルの
工業的に有利な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrially advantageous method for producing 2,3-dichloropropionitrile.

2,3―ジクロルプロピオニトリルは工業的に
有用な化合物であり例えば高分子化合物の原料と
して、またアミノ酸、農医薬などの原料として使
用されている。
2,3-dichloropropionitrile is an industrially useful compound, and is used, for example, as a raw material for polymeric compounds and as a raw material for amino acids, agricultural medicines, and the like.

2,3―ジクロルプロピオニトリルの製造方法
としては、通常、アクリルニトリル液相中で、触
媒の存在下、塩素ガスを吹込み得られた反応液を
蒸留精製して得られている。触媒としては、重
曹、リン酸水素ナトリウムなどの無機系触媒や、
ピリジン、キノリン、ジメチルホルムアミドなど
の有機系触媒が知られているが、工業的には、有
機系触媒、特にピリジンは有利な触媒として知ら
れている。
2,3-dichloropropionitrile is usually produced by blowing chlorine gas into an acrylonitrile liquid phase in the presence of a catalyst and distilling and purifying the resulting reaction solution. As a catalyst, inorganic catalysts such as baking soda and sodium hydrogen phosphate,
Organic catalysts such as pyridine, quinoline, and dimethylformamide are known, and industrially, organic catalysts, especially pyridine, are known as advantageous catalysts.

ピリジン類を触媒として液相でアクリルニトリ
ルの塩素化反応による2,3―ジクロルプロピオ
ニトリルの製造方法は、アンゲヴアンテ、ヘミ―
(Angew,chem,)A60巻、311頁(1948)、ジユ
ルナール、オブシチエイ、ヒミ―(Zhur,
Obshch,Khim)28巻、139頁(1958)ジヤーナ
ル、オブ、オルガニツク、ケミストリー(J,
orgChem,)26巻、2324頁(1961)、などの記載
がある。
A method for producing 2,3-dichloropropionitrile by a chlorination reaction of acrylonitrile in a liquid phase using pyridines as a catalyst is described by Angewante, Hemi-
(Angew, chem,) Vol. A60, p. 311 (1948), Zhur,
Obshch, Khim) vol. 28, p. 139 (1958) Journal of Organism, Chemistry (J,
orgChem, ) vol. 26, p. 2324 (1961).

しかしながら、従来知られているこれらの方法
においては、アクリルニトリルに対し15〜30重量
%程度と、高価なピリジンを多量に使用しなけれ
ば急激な発熱現象などが生じ、2,3―ジクロル
プロピオニトリルは得られないので、工業的見地
からは種々問題が多かつた。即ち、既知方法では
反応後、反応液中に高濃度にピリジンが存在して
いるため、反応液をこのまま蒸留のため加熱すれ
ば2,3―ジクロルプロピオニトリルの脱塩酸反
応がおこる。そのため、通常反応液を蒸留前に水
洗してピリジンを除去する必要があり、水洗の際
未反応アクリルニトリルとともに生成した2,3
―ジクロルプロピオニトリルも一部水層に溶解
し、2,3―ジクロルプロピオニトリルの収率低
下となり、さらに大きな問題として、ピリジンの
含有された悪臭の廃水処理に困難をきたす。
However, in these conventionally known methods, unless a large amount of expensive pyridine is used, which is about 15 to 30% by weight based on acrylonitrile, rapid exothermic phenomena occur, and 2,3-dichloropropylene is not used. Since pionitrile could not be obtained, there were many problems from an industrial standpoint. That is, in the known method, since pyridine is present at a high concentration in the reaction solution after the reaction, if the reaction solution is heated as it is for distillation, the dehydrochlorination reaction of 2,3-dichloropropionitrile will occur. Therefore, it is usually necessary to remove pyridine by washing the reaction solution with water before distillation, and during washing, 2,3
- Dichloropropionitrile is also partially dissolved in the aqueous layer, resulting in a decrease in the yield of 2,3-dichloropropionitrile, and as a further problem, it becomes difficult to treat wastewater containing bad odor containing pyridine.

本発明者らは、ピリジン系触媒を使用しても、
反応液中に混入せず分離が容易で従つて反応液の
蒸留前の水洗の必要のない工業的に有利な2,3
―ジクロルプロピオニトリルの製造法を鋭意検討
した結果、同量程度のピリジン化合物の単独使用
した場合と同等の、もしくかそれ以上の活性を有
するピリジン基またはその四級塩を含有する固体
状の高分子化合物を触媒に使用することにより、
前記の問題を解決した。
The present inventors found that even if a pyridine-based catalyst was used,
2, 3 which are industrially advantageous because they do not mix in the reaction solution and are easy to separate, so there is no need to wash the reaction solution with water before distillation.
-As a result of intensive research into the production method of dichloropropionitrile, we found that a solid containing a pyridine group or its quaternary salt has an activity equivalent to or greater than that obtained when the same amount of pyridine compound is used alone. By using a polymer compound like this as a catalyst,
The above problem was solved.

即ち、本発明はアクリルニトリルの塩素化反応
による2,3―ジクロルプロピオニトリルの製造
方法において固体状ポリビニルピリジン類の存在
下でアクリルニトリルを塩素化することを特徴と
する2,3―ジクロルプロピオニトリルの製造方
法である。
That is, the present invention provides a method for producing 2,3-dichloropropionitrile by a chlorination reaction of acrylonitrile, which is characterized in that acrylonitrile is chlorinated in the presence of solid polyvinylpyridines. This is a method for producing chlorpropionitrile.

本方法に使用するポリビニルピリジン類とは、
ピリジン基または、その四級塩を含有する高分子
化合物であり4―ビニルピリジン,2―ビニルピ
リジンなどのビニルピリジン類,2―ビニル―6
―メチルピリジン,2―ビニル―5―エチルピリ
ジンなどのアルキルビニールピリジン類の単独重
合により得られたホモポリマーもしくは、スチレ
ン、アクリルニトリル、ジビニールベンゼンとの
共重合により得られたコポリマー,架橋ポリマー
であり、これらの重合体のピリジン残基にアルキ
ル化剤を反応させて4級化アンモニウム塩にした
ものも含まれる。
The polyvinylpyridines used in this method are:
A polymer compound containing a pyridine group or a quaternary salt thereof, such as vinylpyridines such as 4-vinylpyridine and 2-vinylpyridine, 2-vinyl-6
- Homopolymers obtained by homopolymerization of alkylvinylpyridines such as methylpyridine and 2-vinyl-5-ethylpyridine, or copolymers and crosslinked polymers obtained by copolymerization with styrene, acrylonitrile, and divinylbenzene. It also includes those made by reacting the pyridine residues of these polymers with an alkylating agent to form quaternized ammonium salts.

これらの本発明方法に使用するビニールピリジ
ン類の高分子状化合物は市販されており容易に入
手可能であり、2,3―ジクロルプロピオニトリ
ルの製造法に使用した場合、触媒として活性が大
きく、反応液には不溶性であるので反応液から容
易に分離することができる。本方法は、上記のポ
リビニルピリジン類の固体触媒をアクリルニトリ
ルに対し、ピリジン基換算で0.5〜20%モル比の
割合で使用するのが好ましい。0.5%以下では反
応速度が小さく実用的でないが20%モル比以上の
多量のポリビニルピリジン類を使用する必要もな
い。ポリビニールピリジン類は単独ポリマーを使
用してもよく、夫々のポリビニールピリジン類か
ら選択して混合触媒として使用してもよい。また
ポリビニールピリジン類の外に反応液に溶解しな
い固体状アルカリ土類金属塩をアクリルニトリル
に対し0.5〜10%モル比の範囲内で併用すること
も出来る。炭酸カルシウムは特に好ましい助触媒
であり収率アツプに寄与する。
These polymeric compounds such as vinyl pyridines used in the method of the present invention are commercially available and easily obtained, and when used in the method for producing 2,3-dichloropropionitrile, they have a high activity as a catalyst. Since it is insoluble in the reaction solution, it can be easily separated from the reaction solution. In this method, it is preferable to use the polyvinylpyridine solid catalyst described above in a molar ratio of 0.5 to 20% based on pyridine groups based on acrylonitrile. If it is less than 0.5%, the reaction rate is too low to be practical, but there is no need to use a large amount of polyvinylpyridine at a molar ratio of 20% or more. A single polymer of polyvinyl pyridines may be used, or a mixed catalyst selected from each polyvinyl pyridine may be used. In addition to polyvinyl pyridines, solid alkaline earth metal salts that do not dissolve in the reaction solution can also be used in a molar ratio of 0.5 to 10% based on acrylonitrile. Calcium carbonate is a particularly preferred cocatalyst and contributes to increased yield.

本方法に使用するポリビニールピリジン類は固
体触媒であるので、触媒を充填層に固体し、これ
に別の反応器に仕込んだアクリルニトリルに塩素
を吹き込みながらその反応液を連続的に通液循環
させ固定層で反応を完結させることができる。
Since the polyvinyl pyridine used in this method is a solid catalyst, the catalyst is solidified in a packed bed, and the reaction solution is continuously passed through and circulated while blowing chlorine into acrylonitrile charged in a separate reactor. The reaction can be completed in the fixed bed.

この方法では塩素化反応をマイルドにして反応
コントロールも容易にできる。またアクリルニト
リルとポリビニールピリジン類を仕込んだ反応器
へ塩素を吹き込み、懸濁状の流動層で反応を完結
させることもまた可能であり、反応完結後触媒は
反応液から別して再使用する。
In this method, the chlorination reaction can be made mild and the reaction can be easily controlled. It is also possible to complete the reaction in a suspended fluidized bed by blowing chlorine into a reactor containing acrylonitrile and polyvinylpyridine, and after the reaction is completed, the catalyst is separated from the reaction solution and reused.

本発明方法に使用するアクリルニトリルに塩素
を吹き込む塩素化反応装置としては、撹拌機、温
度計、塩素吹き込み管、還流冷却器および冷却用
ジヤケツトもしくは冷却用コイルを備えた耐酸性
反応装置が望ましい。
The chlorination reaction apparatus for blowing chlorine into acrylonitrile used in the method of the present invention is preferably an acid-resistant reaction apparatus equipped with a stirrer, a thermometer, a chlorine injection pipe, a reflux condenser, and a cooling jacket or cooling coil.

塩素化反応温度は10℃ないし60℃、特に20℃な
いし50℃が好ましい。反応温度が10℃より低いと
反応速度が小さくなり、塩素を導入しても未反応
のまま系外に逃散する比率が大になる。また、反
応温度が60℃より高くなるとタール状物質の副生
量が多くなる等の好ましくない現象が起き易い。
The chlorination reaction temperature is preferably 10°C to 60°C, particularly 20°C to 50°C. If the reaction temperature is lower than 10°C, the reaction rate will be low, and even if chlorine is introduced, a large proportion will escape from the system without reacting. Furthermore, if the reaction temperature is higher than 60° C., undesirable phenomena such as an increase in the amount of by-products of tar-like substances tend to occur.

本反応は発熱反応であるため、固定層触媒への
塩素化反応液の循環通液により反応を完結させる
場合には、固定層への反応液の循環量により割合
制御が容易であるが懸濁状の流動層で反応を完結
させる場合には、塩素の導入速度と反応装置の除
熱能力などにより適宜選定して制御する。反応の
完結に要する時間は、反応の温度にもよるが、通
常数時間ないし数十時間の範囲が好ましくアクリ
ルニトリルに対し1ないし1.5倍モル程度の塩素
を導入する。反応完結による塩素導入の終点は排
ガス(過剰塩素)の発生、ガスクロマトグラフの
ラツプ分析などにより容易に判定できる。
Since this reaction is an exothermic reaction, when the reaction is completed by circulating the chlorination reaction liquid through the fixed bed catalyst, it is easy to control the ratio by changing the amount of reaction liquid circulated through the fixed bed. When the reaction is completed in a fluidized bed, the rate is appropriately selected and controlled depending on the rate of chlorine introduction and the heat removal capacity of the reactor. The time required to complete the reaction depends on the reaction temperature, but is usually in the range of several hours to several tens of hours, and chlorine is introduced in an amount of about 1 to 1.5 times the mole of acrylonitrile. The end point of chlorine introduction due to completion of the reaction can be easily determined by the generation of exhaust gas (excess chlorine), lap analysis on a gas chromatograph, etc.

塩素化反応終了後は反応液中に窒素、空気など
を通じて微量残存している未反応塩素を除去し、
ポリビニールピリジン類を反応液から別し蒸留
すれば高純度の2,3―ジクロルプロピオニトリ
ルが高収率で得られる。
After the chlorination reaction is complete, remove trace amounts of unreacted chlorine by passing nitrogen, air, etc. into the reaction solution.
If polyvinylpyridine is separated from the reaction solution and distilled, highly pure 2,3-dichloropropionitrile can be obtained in high yield.

以上の如く、本方法のポリビニールピリジン類
の使用は、アクリルニトリルの液相塩素化反応に
より得られた粗2,3―ジクロルプロピオニトリ
ル反応液より容易に固液分離することが可能であ
り、従来のように多量のピリジンを使用して得ら
れた粗2,3―ジクロルプロピオニトリルのよう
に水洗により触媒除去の必要もなく、また同量の
ピリジンを使用して得られる以上の目的生成物が
得られ本発明方法による、その効果は大きい。
As described above, the use of polyvinylpyridines in the present method allows easier solid-liquid separation than the crude 2,3-dichloropropionitrile reaction solution obtained by liquid-phase chlorination reaction of acrylonitrile. There is no need to remove the catalyst by washing with water, unlike crude 2,3-dichloropropionitrile obtained using a large amount of pyridine as in the past, and there is no need to remove the catalyst using the same amount of pyridine. The desired product was obtained, and the effect of the method of the present invention is significant.

以下に実施例を示す。 Examples are shown below.

実施例 1 還流冷却器および撹拌機を備えた冷却用ジヤケ
ツト付の反応器にアクリルニトリル531g,炭酸
カルシウム20gを装入し、撹拌しつつ塩素を
98g/Hrの速度で吹き込んだ反応液を別に設けた
充填塔にポリ―4―ビニールピリジン(広栄化学
社製品,No,KOEI―6500)200gを充填した塔
上部に連続的に導入し、塔下部より流出する循環
通液の形式で8時間かけて反応を完結させた。吹
き込み塩素の全量は11モルで反応器内の液温は30
℃前後に外部より冷却し維持した。塩素吹き込み
終了後、充填塔への反応液の循環をやめ反応液を
反応器に集めた。窒素を反応器に吹き込み脱塩素
を2時間行なつた。炭酸カルシウムを去して反
応マス1150gを得た。反応マスを分析した結果、
2,3―ジクロルプロピオニトリル純度98.1%で
あつた。(収率98.0%対アクリルニトリル) 実施例 2 実施例1の塩素化反応器にアクリルニトリル
531g、ジビニールベンゼンで架橋した4―ビニ
ルピリジンポリマー54g(ピリジン基換算0.5モル、
KOEI―6523,DVB/4VP=2%)を仕込み撹拌
しつつ塩素ガスを98g/Hrの速度で8時間かけて
吹き込んだ。吹き込み塩素の全量は11モルで反応
中は外部より冷却し内温が20℃になるように保つ
た。反応終了後窒素により未反応塩素を2時間で
パージした。触媒を去して1230gの反応液を得
た。反応液の組成分析の結果2,3ジクロルプロ
ピオニトリル97.3%、アクリルニトリル2.8%で
あつた。また反応液を63℃/12mmHgの減圧下で
蒸留して純度100%の2,3―ジクロルプロピオ
ニトリル1156g(収率93.2%対アクリルニトリル)
が得られた。
Example 1 531 g of acrylonitrile and 20 g of calcium carbonate were placed in a reactor equipped with a cooling jacket and equipped with a reflux condenser and a stirrer, and chlorine was added while stirring.
The reaction solution blown at a rate of 98 g/Hr was continuously introduced into the upper part of the column packed with 200 g of poly-4-vinyl pyridine (Koei Kagaku Co., Ltd. product, No. KOEI-6500) into a separately provided packed tower. The reaction was completed over a period of 8 hours by circulating the liquid through the solution. The total amount of blown chlorine is 11 moles, and the liquid temperature in the reactor is 30
It was kept externally cooled to around ℃. After the chlorine injection was completed, the circulation of the reaction liquid to the packed column was stopped and the reaction liquid was collected in the reactor. Dechlorination was carried out for 2 hours by blowing nitrogen into the reactor. Calcium carbonate was removed to obtain 1150 g of reaction mass. As a result of analyzing the reaction mass,
The purity of 2,3-dichloropropionitrile was 98.1%. (Yield 98.0% vs. acrylonitrile) Example 2 Acrylonitrile was added to the chlorination reactor of Example 1.
531g, 54g of 4-vinylpyridine polymer crosslinked with divinylbenzene (0.5 mol in terms of pyridine group,
KOEI-6523, DVB/4VP=2%) was charged and chlorine gas was blown in at a rate of 98 g/Hr over 8 hours while stirring. The total amount of blown chlorine was 11 mol, and during the reaction, cooling was provided from the outside to maintain the internal temperature at 20°C. After the reaction was completed, unreacted chlorine was purged with nitrogen for 2 hours. The catalyst was removed to obtain 1230 g of reaction solution. Compositional analysis of the reaction solution revealed that it was 97.3% 2,3 dichloropropionitrile and 2.8% acrylonitrile. In addition, the reaction solution was distilled under reduced pressure at 63℃/12mmHg to obtain 1156g of 100% pure 2,3-dichloropropionitrile (yield 93.2% vs. acrylonitrile).
was gotten.

比較例 1 実施例1の塩素化反応器にアクリロニトリル
531g、ピリジン100g、炭酸カルシウム50gを装入
し撹拌しつつ塩素を98g/Hrの速度で吹き込ん
だ。塩素を8時間かけて吹き込み反応を行なつ
た。吹き込み塩素の全量は、11モルで反応器内の
液温は30℃前後に外部より冷却し維持した。塩素
吹き込み終了後窒素を反応器に吹き込み脱塩素を
2時間行なつた後、炭酸カルシウムを去して、
反応マス1170gを得た。反応マスを分析した結果
2,3―ジクロルプロピオニトリル96.0%、未反
応アクリルニトリル0.6%、副生成物であるα―
クロルアクリルニトリル0.6%であつた。
Comparative Example 1 Acrylonitrile was added to the chlorination reactor of Example 1.
531 g, pyridine 100 g, and calcium carbonate 50 g were charged, and chlorine was blown in at a rate of 98 g/Hr while stirring. The reaction was carried out by blowing chlorine over 8 hours. The total amount of blown chlorine was 11 moles, and the liquid temperature in the reactor was maintained at around 30°C by cooling from the outside. After the chlorine injection was completed, nitrogen was blown into the reactor to perform dechlorination for 2 hours, and then the calcium carbonate was removed.
A reaction mass of 1170 g was obtained. Analysis of the reaction mass revealed 96.0% 2,3-dichloropropionitrile, 0.6% unreacted acrylonitrile, and by-product α-
It contained 0.6% chloracrylonitrile.

得られた反応マスを減圧蒸留した結果40〜60
℃/20〜10mmHgで初留200g、60〜63℃/11mmHg
で主留906gを得た。初留、主留を分析した結果 初留 2,3―ジクロルプロピオニトリル40wt、
%(6.4モル%対アクリルニトリル)α―クロ
ルアクリルニトリル60wt、%(15.0モル%対ア
クリルニトリル) 主留 2,3―ジクロルプロピオニトリル
98.0wt、%(71.6モル%対アクリルニトリル)
であつた。
The result of vacuum distillation of the obtained reaction mass was 40 to 60
First distillation 200g at ℃/20~10mmHg, 60~63℃/11mmHg
906g of main residue was obtained. As a result of analyzing the first distillate and main distillate, the first distillate was 2,3-dichloropropionitrile 40wt,
% (6.4 mol% to acrylonitrile) α-chloroacrylonitrile 60wt, % (15.0 mol% to acrylonitrile) Main distillate 2,3-dichloropropionitrile
98.0wt,% (71.6mol% vs. acrylonitrile)
It was hot.

なお、α―クロルアクリルニトリルは2,3―
ジクロルプロピオニトリルの脱塩酸により生じる
物質であるが、生成の原因としては、反応マス中
のピリジンが蒸留時に2,3―ジクロルプロピオ
ニトリルの脱塩酸触媒として働いているものと考
えられる。
In addition, α-chloroacrylonitrile is 2,3-
This substance is produced by dehydrochlorination of dichloropropionitrile, and the reason for its formation is thought to be that pyridine in the reaction mass acts as a catalyst for dehydrochlorination of 2,3-dichloropropionitrile during distillation. .

Claims (1)

【特許請求の範囲】[Claims] 1 アクリルニトリルの塩素化反応による2,3
―ジクロルプロピオニトリルの製造方法におい
て、固体状ポリビニルピリジン類の存在下でアク
リルニトリルを塩素化することを特徴とする2,
3―ジクロルプロピオニトリルの製造方法。
1 2,3 by chlorination reaction of acrylonitrile
- A method for producing dichloropropionitrile, characterized by chlorinating acrylonitrile in the presence of solid polyvinylpyridines2,
Method for producing 3-dichloropropionitrile.
JP56037239A 1981-03-17 1981-03-17 Preparation of 2,3-dichloropropionitrile Granted JPS57154156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56037239A JPS57154156A (en) 1981-03-17 1981-03-17 Preparation of 2,3-dichloropropionitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56037239A JPS57154156A (en) 1981-03-17 1981-03-17 Preparation of 2,3-dichloropropionitrile

Publications (2)

Publication Number Publication Date
JPS57154156A JPS57154156A (en) 1982-09-22
JPS642100B2 true JPS642100B2 (en) 1989-01-13

Family

ID=12492054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56037239A Granted JPS57154156A (en) 1981-03-17 1981-03-17 Preparation of 2,3-dichloropropionitrile

Country Status (1)

Country Link
JP (1) JPS57154156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514197U (en) * 1991-08-05 1993-02-23 大和紡績株式会社 Needle canvas for papermaking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540358A1 (en) * 1995-10-30 1997-05-07 Bayer Ag Improved process for the production of 2-chloroacrylonitrile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514197U (en) * 1991-08-05 1993-02-23 大和紡績株式会社 Needle canvas for papermaking

Also Published As

Publication number Publication date
JPS57154156A (en) 1982-09-22

Similar Documents

Publication Publication Date Title
JPS6134414B2 (en)
JPS6346748B2 (en)
EP0004636B1 (en) Process for preparing benzotrifluoride and its derivatives
JPS6017788B2 (en) Production of 2,3-dichloro-5-trichloromethylpyridine
JPS642100B2 (en)
EP1065198B1 (en) Process for the production of Malononitrile
KR860001889B1 (en) Process for preparation of 2,3-dichloropropionitril
EP0631573A1 (en) A process for the preparation of 2,3,5,6-tetrachloropyridine
SU1131871A1 (en) Process for preparing amides of adamantane carboxylic acids
JPS6251252B2 (en)
JP3412246B2 (en) Method for producing 2-halogeno-1-alkene derivative
JPH0228583B2 (en)
JPH09169673A (en) Production of 3,5-bis(trifluoromethyl)bromobenzene
JPS5835977B2 (en) Production method of pivalic acid chloride and aromatic carboxylic acid chloride
SU551043A1 (en) Catalyst for hydrochlorination of dimethyl ether
HU204785B (en) Process for catalyzed alkylation of halogen pyridinates
JP3446760B2 (en) Method for producing ethylene carbonate
EP0241755A1 (en) Process for the production in continuous of phtalodinitrile
JPS6312467B2 (en)
JP2657642B2 (en) Method for producing chloroalkylamine hydrochlorides
JPS603304B2 (en) Method for producing dichloromaleic anhydride
CA1112396A (en) Continuous polymerization of 2-pyrrolidone
JPS61200933A (en) Production of alkyl chloride
JP3921642B2 (en) Method for producing dichloro compound
JPS6016423B2 (en) Method for producing β-hydroxyethylpyridine bases