JPS641194B2 - - Google Patents

Info

Publication number
JPS641194B2
JPS641194B2 JP12647980A JP12647980A JPS641194B2 JP S641194 B2 JPS641194 B2 JP S641194B2 JP 12647980 A JP12647980 A JP 12647980A JP 12647980 A JP12647980 A JP 12647980A JP S641194 B2 JPS641194 B2 JP S641194B2
Authority
JP
Japan
Prior art keywords
line feeder
parts
feeder
speed line
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12647980A
Other languages
Japanese (ja)
Other versions
JPS5750582A (en
Inventor
Masaaki Nakajima
Shigeo Masaki
Akinori Ito
Tomoaki Yamazaki
Sadao Masuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12647980A priority Critical patent/JPS5750582A/en
Publication of JPS5750582A publication Critical patent/JPS5750582A/en
Publication of JPS641194B2 publication Critical patent/JPS641194B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorting Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は磁気ヘツドなどの磁器チツプのように
方向性をもつた微小部品の検査などの工程におい
てその方向を一定に整列させ、次工程における検
査などの作業を能率よく行うと共に割れ欠けなど
の不良品を取り除くための準備工程における微小
部品の方向選別装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aligns the direction of directional microcomponents such as magnetic heads and other porcelain chips in a constant manner in the process of inspecting them, thereby making inspection and other tasks in the next process more efficient. This invention relates to an apparatus for sorting the direction of minute parts in a preparation process for removing defective products such as cracks and chips.

従来、方向性をもつた微小部品の方向選別に
は、微小部品内の穴などをフオトセンサで検出す
る方式が採られていたが、穴の大きさが小さい場
合、しばしば誤判定を生じ、また移動中の判定は
困難でありきわめて能率の悪い選別方法を採用し
ていた。
Conventionally, the method of directional sorting of directional microcomponents has been to use a photo sensor to detect holes in the microcomponents, but if the holes are small, misjudgments often occur, and movement may occur. It was difficult to determine what was inside, and an extremely inefficient sorting method was used.

本発明はラインフイーダ上を移動中の微小部品
の拡大像をイメージセンサ上に投影し、その形状
を認識して方向の正逆を判定すると同時に、割
れ・欠けなどの不良品も取り除くことができる微
小部品の選別装置を提供しようとするものであ
る。
The present invention projects an enlarged image of a micro component moving on a line feeder onto an image sensor, recognizes its shape and determines whether the direction is normal or reverse, and at the same time removes defective products such as cracks and chips. The present invention aims to provide a parts sorting device.

本発明の構成を第2図に示すような両側に切欠
き1,2、中間に変形方形孔3、下辺に切欠き4
を有する形状の方向性を有する微小部品5の方向
選別を例にとつて説明する。
The structure of the present invention is as shown in FIG.
An example of directional sorting of a microcomponent 5 having a shape having the directionality will be described.

第1図において、ボールフイーダ6からは第3
図のように、微小部品5が正方向、または逆方向
どちらかの状態で、低速ラインフイーダ7に供給
される。この低速ラインフイーダ7上を移動中の
微小部品5はほとんどの場合、数個が隣どうし連
なつた状態で送給される。したがつてイメージセ
ンサによる微小部品一単位の認識が不可能にな
る。そこで、低速ラインフイーダ7に運搬速度の
大きい高速ラインフイーダ8を連接させ、速度差
をもたせることによつて、微小部品5間に一定の
間隔が生じるようにし、微小部品5の一単位の認
識を可能にしている。高速ラインフイーダ8に
は、投光用スリツト9を設け、光源10から光が
スリツト9を透過し微小部品5に当たり、拡大レ
ンズ16によるその拡大像が一次元イメージセン
サ11に投影される。第4図に示す一次元イメー
ジセンサ11の監視位置における明暗のパターン
は、微小部品5の通過によつて変化する。そこで
この信号の変化を良否判定回路12で信号処理を
行い、不良の場合には電磁弁13を開放し、エア
吹出口14よりエアを吹出すことによつて微小部
品5を戻しラインフイーダ15に落下させ正しい
方向の微小部品5のみが通過する。戻しラインフ
イーダ15上の微小部品5はボールフイーダ6上
に帰され再度方向選別を受けることになる。
In FIG. 1, from the ball feeder 6, the third
As shown in the figure, the microcomponents 5 are fed to the low-speed line feeder 7 in either the forward direction or the reverse direction. In most cases, the microcomponents 5 moving on the low-speed line feeder 7 are fed in a series of several microcomponents 5 next to each other. Therefore, it becomes impossible for the image sensor to recognize each minute component. Therefore, by connecting a high-speed line feeder 8 with a high transport speed to a low-speed line feeder 7 and creating a speed difference, a constant interval is created between the micro-components 5, and it is possible to recognize one unit of the micro-components 5. ing. The high-speed line feeder 8 is provided with a slit 9 for projecting light, and light from a light source 10 passes through the slit 9 and hits the microcomponent 5, and its magnified image is projected onto the one-dimensional image sensor 11 by the magnifying lens 16. The pattern of brightness and darkness at the monitoring position of the one-dimensional image sensor 11 shown in FIG. 4 changes as the microcomponent 5 passes. Therefore, the change in this signal is processed by the pass/fail judgment circuit 12, and if it is defective, the solenoid valve 13 is opened and air is blown out from the air outlet 14 to return the minute part 5 and drop it into the line feeder 15. Only the microcomponents 5 in the correct direction pass through. The micro parts 5 on the return line feeder 15 are returned onto the ball feeder 6 and subjected to direction selection again.

そこで、次に第2図ような微小部品5の形状の
認識法について説明する。
Next, a method for recognizing the shape of the microcomponent 5 as shown in FIG. 2 will be explained.

一次元イメージセンサ11からは、第6図に示
すような一定の走査周期をもつた信号が出力され
る。この信号の読出期間のHレベルは明、Lレベ
ルは暗を表わす。第5図は各走査位置における読
出期間の波形を表わしている。形状の認識はこの
波形内の第1の明レベル、第1の暗レベルの幅を
検出することによつて可能である。
The one-dimensional image sensor 11 outputs a signal having a constant scanning period as shown in FIG. The H level of this signal during the readout period represents brightness, and the L level represents darkness. FIG. 5 shows waveforms during the readout period at each scanning position. Recognition of the shape is possible by detecting the width of the first bright level and the first dark level within this waveform.

まず、第1の明レベルの幅をXとすると、第7
図においてX≧bの場合、微小部品5は監視位置
にはないと判断できる。X≦aの場合は微小部品
5の高さは良であり、a<X<bの場合微小部品
5は監視位置にあるが高さは不良である。すなわ
ち、微小部品5は方向が逆、あるいは何らかの欠
けがあるものと判断できる。微小部品5の監視位
置での有無から、その走査数を計数することによ
つて微小部品5の長さに対応するLを見出せる。
First, if the width of the first bright level is
In the figure, if X≧b, it can be determined that the microcomponent 5 is not at the monitoring position. If X≦a, the height of the microcomponent 5 is good, and if a<X<b, the microcomponent 5 is at the monitoring position but the height is poor. In other words, it can be determined that the microcomponent 5 is in the opposite direction or has some kind of chipping. Based on the presence or absence of the microcomponent 5 at the monitoring position, L corresponding to the length of the microcomponent 5 can be found by counting the number of scans.

次に、第1の暗レベルの幅をYとすると、第7
図においてc≦Y≦dとなる走査数を計数するこ
とによつて変形方形孔3の幅に対応するNが見出
せ、これの有無で上下判別ができる。ところが第
8図ように半分に割れた微小部品5であるかどう
かが判別できない。また、ラインフイーダ8の運
搬速度は一定でないのでLおよびNの値もばらつ
く。従つて、この両者の比L/N、すなわち全体
の長さに対する変形方形孔3の幅の比ももつて速
度のばらつきに対応し微小部品5の良否、上下方
向の選別を行つている。
Next, if the width of the first dark level is Y, then the seventh
In the figure, by counting the number of scans where c≦Y≦d, N corresponding to the width of the deformed rectangular hole 3 can be found, and the presence or absence of this can be used to determine the top and bottom. However, as shown in FIG. 8, it is not possible to determine whether it is a microcomponent 5 that has been broken in half. Furthermore, since the conveying speed of the line feeder 8 is not constant, the values of L and N also vary. Therefore, the ratio L/N between the two, that is, the ratio of the width of the deformed rectangular hole 3 to the overall length, is also used to determine the quality of the microcomponents 5 in the vertical direction in response to variations in speed.

以上は、第2図に示すような微小部品5に対す
る形状認識法であるが、認識方法を変更すること
によつて他の形状を有す微小部品5についても選
別可能である。
The above is a shape recognition method for the microcomponents 5 as shown in FIG. 2, but by changing the recognition method, microcomponents 5 having other shapes can also be selected.

このような本発明の微小部品の方向選別装置を
用いることによつて、次工程への準備に要する労
力の削減および選別能力に大幅な向上と信頼性の
向上が計れ、次工程における作業能率の向上も可
能となり、かつ、拡大レンズを有する一次元イメ
ージセンサを用いているため微小な部品の検出が
可能となり、部品形状が変つてもよく、低速と高
速ラインフイーダを連接することで1つ1つ分離
して認識させることが可能であるため精度が高く
なるなどの利点をもち、工業的価値の大なるもで
ある。
By using the micro parts orientation sorting device of the present invention, it is possible to reduce the labor required for preparation for the next process, to greatly improve the sorting ability and to improve reliability, and to improve work efficiency in the next process. Moreover, since it uses a one-dimensional image sensor with a magnifying lens, it is possible to detect minute parts, and the shape of the parts can change, and by connecting low-speed and high-speed line feeders, it is possible to detect minute parts one by one. Since it can be separated and recognized, it has the advantage of higher accuracy and is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の微小部品の方向選別装置の一
実施例における全体構成を示す斜視図、第2図は
同装置により選別される微小部品の形状を示す斜
視図、第3図はラインフイーダ上を流れる微小部
品の状態を表わす説明図、第4図は一次元イメー
ジセンサ監視位置付近の構成図、第5図A,Bは
一次元イメージセンサ走査装置における方向正常
時と方向逆の場合の出力波形図、第6図は一次元
イメージセンサからの出力波形図、第7図A,B
は第5図A,Bの明および暗レベルの良否範囲を
表わす説明図、第8図は第2図の微小部品が半分
に割れた状態の正面図である。 1,2……切欠き、3……変形方形孔、4……
切欠き、5……微小部品、6……ボールフイー
ダ、7……低速ラインフイーダ、8……高速ライ
ンフイーダ、9……投光用スリツト、10……光
源、11……一次元イメージセンサ、12……良
否判定回路、13……電磁弁、14……エア吹出
口、15……ラインフイーダ、16……拡大レン
ズ。
FIG. 1 is a perspective view showing the overall configuration of an embodiment of the micro component orientation sorting device of the present invention, FIG. 2 is a perspective view showing the shape of micro components sorted by the device, and FIG. Fig. 4 is a configuration diagram of the vicinity of the one-dimensional image sensor monitoring position, and Fig. 5 A and B are the outputs of the one-dimensional image sensor scanning device when the direction is normal and when the direction is reversed. Waveform diagram, Figure 6 is the output waveform diagram from the one-dimensional image sensor, Figure 7 A, B
5A and 5B are explanatory views showing the quality ranges of bright and dark levels, and FIG. 8 is a front view of the microcomponent shown in FIG. 2 broken in half. 1, 2... Notch, 3... Deformed square hole, 4...
Notch, 5... Micro parts, 6... Ball feeder, 7... Low speed line feeder, 8... High speed line feeder, 9... Slit for light projection, 10... Light source, 11... One-dimensional image sensor, 12... Good/failure judgment circuit, 13...Solenoid valve, 14...Air outlet, 15...Line feeder, 16...Magnifying lens.

Claims (1)

【特許請求の範囲】[Claims] 1 ボールフイーダによつて微小部品が連続して
送給される低速ラインフイーダに高速ラインフイ
ーダを連接させ、部品1つ1つを分離し、この高
速ラインフイーダに投光用スリツトを設け、この
投光用スリツトを微小部品が走行することによつ
て生じる明暗パターンを拡大レンズを有する一次
元イメージセンサ上に拡大投影し、この一次元イ
メージセンサの出力信号を形状、方向性判定回路
に印加し、形状、方向性不良判別時に、微小部品
を高速ラインフイーダから戻しラインフイーダに
落下させ、戻しラインフイーダによりボールフイ
ーダに微小部品を返送し、方向性逆のものは再度
何回でも方向選別を行うように構成したことを特
徴とする微小部品の方向選別装置。
1. Connect a high-speed line feeder to a low-speed line feeder that continuously feeds minute parts by a ball feeder, separate the parts one by one, and provide a light projection slit in this high-speed line feeder. The bright and dark pattern generated by the movement of micro parts is enlarged and projected onto a one-dimensional image sensor with a magnifying lens, and the output signal of this one-dimensional image sensor is applied to a shape and directionality determination circuit, which determines the shape and directionality. When determining defects, the micro parts are dropped from the high-speed line feeder to the return line feeder, and the return line feeder returns the micro parts to the ball feeder, and if the parts are in the opposite direction, the direction is sorted again as many times as necessary. Directional sorting device for micro parts.
JP12647980A 1980-09-10 1980-09-10 Selector for direction of minute part Granted JPS5750582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12647980A JPS5750582A (en) 1980-09-10 1980-09-10 Selector for direction of minute part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12647980A JPS5750582A (en) 1980-09-10 1980-09-10 Selector for direction of minute part

Publications (2)

Publication Number Publication Date
JPS5750582A JPS5750582A (en) 1982-03-25
JPS641194B2 true JPS641194B2 (en) 1989-01-10

Family

ID=14936228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12647980A Granted JPS5750582A (en) 1980-09-10 1980-09-10 Selector for direction of minute part

Country Status (1)

Country Link
JP (1) JPS5750582A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576286A (en) * 1983-06-27 1986-03-18 Cochlea Corporation Parts sorting systems
JPS6094185A (en) * 1983-10-26 1985-05-27 エヌ・テー・エヌ東洋ベアリング株式会社 Surface and back aligner at high speed of part

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541610Y2 (en) * 1975-09-12 1980-09-29
JPS5315276A (en) * 1976-07-28 1978-02-10 Toyo Eazooru Kougiyou Kk Aerosol products
JPS591751Y2 (en) * 1977-06-30 1984-01-18 白柳式撰果機株式会社 Photoelectric size discrimination device for fruits, etc.
JPS55126479A (en) * 1979-03-23 1980-09-30 Fujitsu Ltd Printing method
JPS5746908A (en) * 1980-08-11 1982-03-17 Sunstar Inc Dental cement

Also Published As

Publication number Publication date
JPS5750582A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
JP6154406B2 (en) Conveyed object inspection system and conveying apparatus
KR900010959A (en) Defect detection method for inspection target pattern and its device
EP0413522A2 (en) Detection of opaque foreign articles from among transparent bodies
US4165465A (en) System for checking printed condition of printed sheet matters
JPS641194B2 (en)
JPH08210820A (en) Method and device for recognizing part to be inspected in visual inspection device of parts-mounted board
JPS608707A (en) Method for detecting outward appearance of soldering
JPH05281152A (en) Article inspecting apparatus
JPH08206611A (en) Optical sorting method of bulk material
JPH08254501A (en) Method and apparatus for visual inspection
JPS59192902A (en) Position checking device for parts attached to substrate
JPS6130636B2 (en)
JPH0666528A (en) Visual inspecting method and apparatus
JP7343186B2 (en) Conveyed object detection processing system and conveyance device
JPH04102050A (en) Method for inspecting o-ring
Devasena et al. AI-Based Quality Inspection of Industrial Products
JP3198105B2 (en) Automatic visual inspection device
JP2003337012A (en) Inspection apparatus for flap interval of corrugated fiberboard
JP2003240730A (en) Semiconductor chip examining apparatus
JPS6076134A (en) Inspecting device for appearance of shaft-shaped member
JP4037078B2 (en) Chip sorting means
JP3300264B2 (en) Semiconductor chip recognition method
JPH02171640A (en) Inspection of container
JPS63178373A (en) Method for inspecting cutting state of substrate
JPS6315116B2 (en)