JPS6411885B2 - - Google Patents

Info

Publication number
JPS6411885B2
JPS6411885B2 JP52129188A JP12918877A JPS6411885B2 JP S6411885 B2 JPS6411885 B2 JP S6411885B2 JP 52129188 A JP52129188 A JP 52129188A JP 12918877 A JP12918877 A JP 12918877A JP S6411885 B2 JPS6411885 B2 JP S6411885B2
Authority
JP
Japan
Prior art keywords
measuring tube
receiver
measuring
wall coating
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52129188A
Other languages
Japanese (ja)
Other versions
JPS5355154A (en
Inventor
Roruku Zeeren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of JPS5355154A publication Critical patent/JPS5355154A/en
Publication of JPS6411885B2 publication Critical patent/JPS6411885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】 本発明は媒体の流速を測定するための超音波作
動式装置に関し、該装置は測定管の軸に沿つて走
る伝搬路を規定する超音波−送信機及び−受信機
を具備する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonically actuated device for measuring the flow velocity of a medium, which device comprises an ultrasonic transmitter and receiver defining a propagation path running along the axis of a measuring tube. Equipped with.

かかる種類の公知の装置では測定管は二つの曲
管の間にわたされており、その際送信機及び受信
機はそれぞれ曲管の外壁中に配置される。しかし
ながら送信機及び受信機が軸方向にずらされ、測
定管壁の相互に向い合う側に配置される装置も多
い。更に測定管がプラスチツクから構成されかつ
送信機及び受信機が、超音波が測定管壁で何度も
反射されるジグザグ形の伝搬路が得られる様にし
て測定管に設けられている装置が公知である。
In known devices of this kind, the measuring tube is passed between two bent tubes, with the transmitter and the receiver being arranged in each case in the outer wall of the bent tube. However, there are also many devices in which the transmitter and receiver are offset in the axial direction and are arranged on mutually opposite sides of the measuring tube wall. Furthermore, a device is known in which the measuring tube is made of plastic and the transmitter and receiver are installed in the measuring tube in such a way that a zigzag-shaped propagation path is obtained in which the ultrasonic waves are reflected many times on the measuring tube wall. It is.

作動中送信機はインパルスにより励起されるの
で送信機は短時間で超音波信号を発する。この超
音波信号の受信機に達するまでの伝搬時間を測定
する。流動媒体において流動方向での伝搬時間並
びに流動方向とは逆方向での伝搬時間が測定され
れば、例えば媒体の流速又はその密度を算定する
ことができる。この場合超音波信号の伝搬時間の
精確な測定が重要である。これは波面が受信機に
達する時点を精確に確定し得ることを前提とす
る。
During operation, the transmitter is excited by an impulse, so that the transmitter emits an ultrasonic signal in a short time. The propagation time of this ultrasonic signal until it reaches the receiver is measured. If the propagation time in the flow direction as well as the propagation time in the direction opposite to the flow direction is measured in a flowing medium, it is possible, for example, to determine the flow velocity of the medium or its density. In this case, accurate measurement of the propagation time of the ultrasonic signal is important. This presupposes that it is possible to precisely determine the point in time when the wavefront reaches the receiver.

測定管の大きさ、従つて円形横断面の場合には
直径が小さくなるに従がい、伝搬時間測定が不精
確になることが証明された。しかし例えば比較的
大きな流速を持つ比較的少量の媒体を導通すべき
場合には小断面を有する測定管が強く望まれる。
It has been shown that as the size of the measuring tube and thus the diameter decreases in the case of a circular cross section, the propagation time measurement becomes less accurate. However, measuring tubes with small cross sections are highly desirable, for example if relatively small volumes of medium with relatively high flow rates are to be conducted.

従つて本発明の目的は極めて小さな管断面積を
有しており、それにもかかわらず精確な伝搬時間
測定が可能である、冒頭に記載した機種の装置で
ある。
The object of the invention is therefore a device of the type mentioned at the outset, which has a very small tube cross-section and which nevertheless allows accurate propagation time measurements.

該目的は本発明により測定管1が金属からな
り、かつ金属よりも小さな音響インピーダンスを
有するプラスチツクからなる内壁コーテイング2
を有し、かつこの内壁コーテイング2が超音波信
号の波長の約15倍よりも小さな内径diを有するこ
とにより達せられる。
According to the invention, the measuring tube 1 is made of metal and the inner wall coating 2 is made of plastic, which has a smaller acoustic impedance than metal.
, and this inner wall coating 2 has an inner diameter di smaller than about 15 times the wavelength of the ultrasound signal.

この構造は小さな断面積を有する測定管では精
確な伝搬時間測定が基本波により形成される波面
が到着する前に先行波によつて少なからぬエネル
ギーが受信機に当てられることで精確な伝搬時間
測定が失敗するという驚くべき認識に基づく。こ
の先行波は送信機の結晶さら発せられる第一及び
第二種の波であり、波動方程式によれば平面基本
波よりも大きな速度で媒体中を伝わることが認め
られた。この第一種及び第二種の波が基本波の伝
搬方向と角度を形成する伝搬方向を持つという事
実を本発明は利用する。即ち基本波が測定管軸方
向に放射される場合、基本波は減衰せずに受信機
に達するが、第一種及び第二種の波は管壁に当
り、そこで反射される、しかしその際内壁の小さ
な音響インピーダンスのため減衰する。従つて先
行波は非常に弱いので、受信機はこれにより励起
されないことが保証される。
This structure allows accurate propagation time measurement in measurement tubes with small cross-sectional areas because a considerable amount of energy is applied to the receiver by the preceding waves before the wavefront formed by the fundamental wave arrives. It is based on the startling realization that this will fail. These leading waves are waves of the first and second types emitted by the crystal of the transmitter, and according to the wave equation, it was recognized that they propagate through the medium at a higher speed than the plane fundamental wave. The present invention takes advantage of the fact that the first type and second type waves have propagation directions that form an angle with the propagation direction of the fundamental wave. In other words, when the fundamental wave is radiated in the axial direction of the measuring tube, the fundamental wave reaches the receiver without attenuation, but the first and second type waves hit the tube wall and are reflected there. It is attenuated due to the small acoustic impedance of the inner walls. The leading wave is therefore so weak that it is ensured that the receiver is not excited by it.

大抵の液体では音速は1500〜1800m/sであ
る。水に関しては1500m/sである。超可聴周波
数はできるかぎり高く選択すべきである、それに
より良好な分解能が得られる。しかしながら高す
ぎる周波数は大きな伝送損をもたらす。超可聴周
波数の良好な値は1MHzである。この周波数では
水を測定する測定管の内径は20〜25mmである。測
定により直径25mm以上の金属製測定管では先行波
に関して何ら問題はないが、直径が20mmを下回る
と問題が生じることが認められた。他の液体及び
他の超可聴周波数に関しても同じことが該当す
る。
The speed of sound in most liquids is between 1500 and 1800 m/s. For water it is 1500m/s. The superaudible frequency should be chosen as high as possible, so that good resolution is obtained. However, too high a frequency results in large transmission losses. A good value for superaudible frequency is 1MHz. At this frequency, the inner diameter of the measuring tube used to measure water is 20-25 mm. Measurements have shown that there is no problem with the leading wave in metal measuring tubes with a diameter of 25 mm or more, but problems occur when the diameter is less than 20 mm. The same applies for other liquids and other superaudible frequencies.

伝搬路の長さはここで考察している装置におい
ては一定の最小値を下回つてはならない、それと
いうのも変成器間の距離が小さすぎる場合時間差
が音波測定には小さすぎ、精確な測定結果が得ら
れないからである。この下限値は純粋な経験値で
あり、装置及び測定技術的側面に依存する。通常
少なくとも超音波信号の波長の40〜50倍である。
しかしながら超音波送信機の結晶が測定管断面積
よりも小さな断面積を有し、この管断面を平均値
を得るために音波で完全に充満されなければなら
ない場合には、例えば波長の150〜200倍の長い伝
搬路を屡々使用する。しかし波長の300〜500倍の
伝搬路も用いられなくもない。いずれの場合にも
本発明により目的とされる、第一種及び第二種の
波の減衰を伴なう反射が得られる。屡々反射は相
応する強い減衰を惹起する。
The length of the propagation path must not fall below a certain minimum value in the device considered here, since if the distance between the transformers is too small, the time difference will be too small for acoustic measurements and the This is because measurement results cannot be obtained. This lower limit is purely empirical and depends on the equipment and measurement technical aspects. Usually at least 40-50 times the wavelength of the ultrasound signal.
However, if the ultrasonic transmitter crystal has a smaller cross-sectional area than the measuring tube cross-section and this tube cross-section has to be completely filled with sound waves in order to obtain the average value, then for example 150-200 of the wavelength A propagation path twice as long is often used. However, propagation paths that are 300 to 500 times the wavelength may also be used. In both cases, the reflection with attenuation of waves of the first and second types, which is the object of the invention, is obtained. Reflections often cause correspondingly strong attenuation.

特に測定管内壁はプラスチツク、有利にポリア
ミドから成つていて良い。プラスチツクは本来的
に金属よりも著しく小さな音響インピーダンスを
有するか又は難なくかかるインピーダンスを持つ
ように仕上げることができる。
In particular, the inner wall of the measuring tube can consist of plastic, preferably polyamide. Plastics inherently have a significantly lower acoustic impedance than metals, or can be easily finished to have such an impedance.

単に内壁コーテイングがプラスチツクから成つ
ているだけでも十分である。従つて測定管自体は
金属から造られていて良い。これは屡々測定管の
強度又は温度安定法が高く要求される場合に推奨
される。
It is sufficient simply that the inner wall coating consists of plastic. The measuring tube itself may therefore be made of metal. This is often recommended when high requirements are placed on the strength or temperature stability of the measuring tube.

所望の結果を得るためには壁コーテイングの厚
さが小さくても十分であると証明された。厚さは
0.5〜1.5mm、有利には約1mmである必要がある。
It has been found that a small wall coating thickness is sufficient to achieve the desired results. The thickness is
It should be between 0.5 and 1.5 mm, advantageously about 1 mm.

次に本発明を添付図面に示した実施例につき詳
説する。図は本発明による装置を略図で、部分的
には断面図で表わしたものである。
The present invention will now be described in detail with reference to embodiments shown in the accompanying drawings. The figure represents a device according to the invention in a diagrammatic and partly sectional view.

測定管1はポリアミドから成る内壁コーテイン
グ2を具備する。測定管はその一端部に頭部3を
有し、該頭部は供給管4、及び測定管1の軸の延
長部に超音波変成器5を収容する。他の端部には
頭部6が設けられ、該頭部は排出管7、及び測定
管1の軸の延長部に第二超音波変成器8を収容す
る。
The measuring tube 1 is provided with an inner wall coating 2 made of polyamide. The measuring tube has at one end a head 3 which houses the supply tube 4 and, in an axial extension of the measuring tube 1, an ultrasonic transformer 5. The other end is provided with a head 6 which houses the discharge tube 7 and, in an axial extension of the measuring tube 1, a second ultrasonic transformer 8.

二つの変成器5及び8は制御−及び測定回路9
と接続する。該回路は最初の工程で励起インパル
スを変成器5に送り、次いで変成器が送信機とし
て超音波信号を発生する。受信機としての変成器
8により受信された超音波信号は回路9に伝えら
れるので回路は超音波信号の伝搬時間を確定する
ことができる。媒体は矢印Pの方向で供給される
のでこの伝搬時間測定は流動方向で実施する。第
二の工程で制御−及び測定回路9は励起インパル
スを変成器8に送る、変成器8は次の超音波信号
の送信機として働く。今度は受信機として作動す
る変成器5によつて受信される超音波信号は回路
9に伝えられ、この場合には流動方向に対して逆
方向の伝搬時間が測定される。これらの測定結果
から回路9に接続される演算回路10は流速、及
び管断面積が予め与えられているので流量も確定
しかつ指示することができる。測定値から媒体中
の音速も、従つて媒体の密度を測定することがで
きる。
The two transformers 5 and 8 form a control and measuring circuit 9
Connect with. The circuit first sends an excitation impulse to the transformer 5, which then acts as a transmitter to generate an ultrasound signal. The ultrasound signal received by the transformer 8 as a receiver is transmitted to the circuit 9 so that the circuit can determine the propagation time of the ultrasound signal. Since the medium is fed in the direction of arrow P, this propagation time measurement is carried out in the flow direction. In a second step, the control and measuring circuit 9 sends the excitation impulses to the transformer 8, which acts as a transmitter for the next ultrasonic signal. The ultrasonic signal received by the transformer 5, which now acts as a receiver, is transmitted to a circuit 9, in which case the propagation time in the opposite direction to the flow direction is measured. Based on these measurement results, the arithmetic circuit 10 connected to the circuit 9 can determine and indicate the flow rate since the flow velocity and pipe cross-sectional area are given in advance. From the measurements, the speed of sound in the medium and thus also the density of the medium can be determined.

前記の実施例においては媒体は音速が約
1500m/sである水である。超音波変成器は基本
周波数1MHzで操作される。超音波振動の波長は
1.5mmである。測定管は外径Da20mm、壁の厚さ1
mmを有し、従つて中間直径Dz18mmが得られる。
In the embodiments described above, the medium has a sound velocity of approximately
It is water with a velocity of 1500 m/s. The ultrasonic transformer operates at a fundamental frequency of 1MHz. The wavelength of ultrasonic vibration is
It is 1.5mm. The measuring tube has an outer diameter of Da20mm and a wall thickness of 1
mm, thus obtaining an intermediate diameter Dz18 mm.

プラスチツクコーテイング2は同様に膜厚さ1
mmを持つので、内径Di16mmが得られる。これは
波長の約11倍に相応する。伝搬路の長さLは約50
cmであり、これは波長の333−倍に相当する。こ
の構造では本来の波面に先行する波が無視し得る
程小さい。それとは異なりスチール製の同一の内
径の測定管を使用する場合には極めて著して先行
波が得られる。
Similarly, plastic coating 2 has a film thickness of 1
mm, the inner diameter Di16mm can be obtained. This corresponds to approximately 11 times the wavelength. The length L of the propagation path is approximately 50
cm, which corresponds to 333 times the wavelength. In this structure, the waves preceding the original wave front are so small that they can be ignored. In contrast, when using measuring tubes made of steel with the same internal diameter, a very significant leading wave is obtained.

同様の良好な結果はプラスチツクコーテイング
0.5及び2.0mmを用いても達成された。同じことは
小さな内径、例えば10又は14mm、並びに大きな内
径、例えば20mm及び他の異なる長さL、例えば20
cm又は75cmに関しても該当する。
Similar good results have been achieved with plastic coatings.
It was also achieved using 0.5 and 2.0 mm. The same goes for small internal diameters, e.g. 10 or 14mm, as well as large internal diameters, e.g. 20mm and other different lengths L, e.g. 20
This also applies to cm or 75cm.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明による装置の実施形を略図
で、部分的には断面図で示したものである。 1……測定管、2……内壁コーテイング、5…
…超音波変成器、8……超音波変成器、9……制
御−及び測定回路。
The accompanying drawings show schematically and partly in section an embodiment of the device according to the invention. 1... Measuring tube, 2... Inner wall coating, 5...
. . . ultrasonic transformer, 8 . . . ultrasonic transformer, 9 . . . control and measurement circuit.

Claims (1)

【特許請求の範囲】 1 測定管の軸に沿つて走る伝搬路を決定する超
音波送信機及び−受信機を具備し、超音波で作動
する、媒体の流速を測定する装置において、測定
管1が金属からなり、かつ金属よりも小さな音響
インピーダンスを有するプラスチツクからなる内
壁コーテイング2を有し、かつこの内壁コーテイ
ング2が超音波信号の波長の約15倍よりも小さな
内径diを有することを特徴とする装置。 2 内壁コーテイング2の厚さが0.5〜1.5mmであ
る特許請求の範囲第1項記載の装置。 3 プラスチツクがポリアミドである特許請求の
範囲第1項又は第2項記載の装置。
[Claims] 1. A device for measuring the flow velocity of a medium, operating with ultrasound, comprising an ultrasonic transmitter and a receiver for determining a propagation path running along the axis of the measuring tube 1. is made of metal and has an inner wall coating 2 made of plastic having an acoustic impedance smaller than that of metal, and characterized in that the inner wall coating 2 has an inner diameter di smaller than about 15 times the wavelength of the ultrasound signal. device to do. 2. The device according to claim 1, wherein the inner wall coating 2 has a thickness of 0.5 to 1.5 mm. 3. The device according to claim 1 or 2, wherein the plastic is polyamide.
JP12918877A 1976-10-27 1977-10-27 Ultrasonic apparatus for measuring physical values of medium Granted JPS5355154A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2648718A DE2648718C2 (en) 1976-10-27 1976-10-27 Device that works with ultrasound to determine the physical quantities of a medium

Publications (2)

Publication Number Publication Date
JPS5355154A JPS5355154A (en) 1978-05-19
JPS6411885B2 true JPS6411885B2 (en) 1989-02-27

Family

ID=5991580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12918877A Granted JPS5355154A (en) 1976-10-27 1977-10-27 Ultrasonic apparatus for measuring physical values of medium

Country Status (12)

Country Link
US (1) US4144752A (en)
JP (1) JPS5355154A (en)
CA (1) CA1099385A (en)
CH (1) CH620301A5 (en)
DE (1) DE2648718C2 (en)
DK (1) DK153810C (en)
FR (1) FR2369566A1 (en)
GB (1) GB1584293A (en)
IT (1) IT1091021B (en)
NL (1) NL7711062A (en)
NO (1) NO144686C (en)
SE (1) SE438915B (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH636701A5 (en) * 1979-06-08 1983-06-15 Landis & Gyr Ag TRANSDUCER FOR DETERMINING THE FLOW OF A pouring liquid with ULTRASOUND.
DE3039710C2 (en) * 1980-09-25 1983-01-13 LGZ Landis & Gyr Zug AG, 6301 Zug Measuring transducer for determining the flow rate of a flowing liquid
US4365518A (en) * 1981-02-23 1982-12-28 Mapco, Inc. Flow straighteners in axial flowmeters
CH655574B (en) * 1982-03-01 1986-04-30
DE3239770C2 (en) * 1982-10-27 1984-11-22 Danfoss A/S, Nordborg Ultrasonic measuring device
US4495822A (en) * 1982-12-23 1985-01-29 Shell Oil Company Fluid flow meter
JPS60115810A (en) * 1983-11-28 1985-06-22 Hitachi Ltd Ultrasonic flowmeter
JPS6184814U (en) * 1984-11-09 1986-06-04
DE3518266A1 (en) * 1985-05-21 1986-11-27 Siemens AG, 1000 Berlin und 8000 München FLOWMETER
US4989446A (en) * 1990-01-23 1991-02-05 Dynatek Laboratories, Inc. Ultrasound calibrator
DE59001263D1 (en) * 1990-04-10 1993-05-27 Landis & Gyr Betriebs Ag TRANSMITTER FOR DETERMINING THE FLOW RATE OF A FLOWING LIQUID.
EP0672238B1 (en) * 1992-02-13 1997-01-15 Siemens Aktiengesellschaft Funnel inlet and outlet for ultrasonic gas meters
DE4224372C2 (en) * 1992-07-23 1995-02-02 Kromschroeder Ag G Ultrasonic gas meter
GB9217180D0 (en) * 1992-08-13 1992-09-23 Aztec Dev Ltd Improvements in or relating to the dispensing of fluids
DE4330363C2 (en) * 1993-09-08 1999-04-01 Krohne Messtechnik Kg Volume flow meter
US5351522A (en) * 1993-11-02 1994-10-04 Aequitron Medical, Inc. Gas sensor
US5463906A (en) * 1994-01-24 1995-11-07 Triton Technology, Inc. Interchangeable disposable acoustic for use with an ultrasonic flowmeter, particularly during extracorporeal measurement of blood flow
FR2724016B1 (en) * 1994-08-23 1996-10-25 Schlumberger Ind Sa DEVICE FOR ULTRASONIC MEASUREMENT OF A VOLUME QUANTITY OF A FLUID WITH IMPROVED ACOUSTIC PROPERTIES
US5969263A (en) * 1995-04-08 1999-10-19 Schlumberger Industries, S.A. Ultrasonic fluid counter for attenuating parasitic ultrasonic waves
GB2313910A (en) * 1996-06-07 1997-12-10 Kromschroeder Ag G Acoustic fluid flowmeter
US6338277B1 (en) 1997-06-06 2002-01-15 G. Kromschroder Aktiengesellschaft Flowmeter for attenuating acoustic propagations
US6840280B1 (en) 2002-07-30 2005-01-11 Sonics & Materials Inc. Flow through ultrasonic processing system
DE10235060B4 (en) * 2002-07-31 2006-11-30 Hydrometer Gmbh Curved ultrasonic measuring section
JP4702668B2 (en) * 2006-03-29 2011-06-15 Smc株式会社 Flow measuring device
DE102007058133A1 (en) * 2007-11-30 2009-06-04 Endress + Hauser Flowtec Ag Measuring system, in particular for flow measurement of a measuring medium flowing in a pipeline
DE102008039464A1 (en) * 2008-08-25 2010-03-04 Endress + Hauser Flowtec Ag Multilayered measuring pipe for use in e.g. clamp-on ultrasonic flowrate measuring system in hygiene application, has material layers including thickness at thin side of each layer not exceeding wavelength of ultrasound signal in each layer
US8245581B2 (en) * 2009-12-08 2012-08-21 Cameron International Corporation Flowmeter and method
US8505391B1 (en) * 2012-03-30 2013-08-13 Joseph Baumoel Flange mounted ultrasonic flowmeter
EP2682719A1 (en) * 2012-07-05 2014-01-08 Kamstrup A/S Flow meter with unbroken liner
US9494454B2 (en) 2013-12-06 2016-11-15 Joseph Baumoel Phase controlled variable angle ultrasonic flow meter
US9310236B2 (en) 2014-09-17 2016-04-12 Joseph Baumoel Ultrasonic flow meter using reflected beams
DE102014113843A1 (en) * 2014-09-24 2016-03-24 Endress+Hauser Flowtec Ag Measuring tube for a flowmeter and a magnetic-inductive flowmeter
US9752907B2 (en) 2015-04-14 2017-09-05 Joseph Baumoel Phase controlled variable angle ultrasonic flow meter
DE102015107750A1 (en) 2015-05-18 2016-11-24 Endress + Hauser Flowtec Ag Measuring system for measuring at least one parameter of a fluid
US10697875B2 (en) * 2017-01-26 2020-06-30 THE CURATORS OF THE UNIVERSITY OF MlSSOURI System and method for in-situ measurement of viscoelastic material properties using continuous-wave ultrasound
TWI642571B (en) * 2017-07-03 2018-12-01 謝志輝 Automobile falling water escape system and its photoelectric component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL105419C (en) * 1900-01-01
GB1302380A (en) * 1969-12-22 1973-01-10
GB1357724A (en) * 1970-05-05 1974-06-26 Sevcon Eng Ltd Apparatus for detecting the evolution of gas from the cell' of a lead-acid battery
US3751979A (en) * 1971-11-17 1973-08-14 Raytheon Co Speed measurement system
US3817098A (en) * 1972-08-09 1974-06-18 Saratoga Systems Axial fluid flow and sound speed
IT1016749B (en) * 1974-08-01 1977-06-20 Fiat Spa ULTRASONIC DEVICE FOR MEASURING THE AIR FLOW IN MAS SA IN A DUCT
IT1016750B (en) * 1974-08-01 1977-06-20 Fiat Spa DEVICE FOR MEASURING THE MASS AIR FLOW IN THE INTAKE DUCT OF INTERNAL COMBUSTION ENGINES USING ULTRASOUND
US4003252A (en) * 1974-08-16 1977-01-18 The Institutes Of Medical Sciences Acoustical wave flowmeter

Also Published As

Publication number Publication date
JPS5355154A (en) 1978-05-19
US4144752A (en) 1979-03-20
SE438915B (en) 1985-05-13
NO144686C (en) 1981-10-14
DE2648718B1 (en) 1978-05-03
SE7712056L (en) 1978-04-28
NO773508L (en) 1978-04-28
DK474277A (en) 1978-04-28
DK153810B (en) 1988-09-05
DK153810C (en) 1989-01-09
CA1099385A (en) 1981-04-14
NL7711062A (en) 1978-05-02
CH620301A5 (en) 1980-11-14
FR2369566B1 (en) 1982-08-20
DE2648718C2 (en) 1978-12-21
NO144686B (en) 1981-07-06
GB1584293A (en) 1981-02-11
IT1091021B (en) 1985-06-26
FR2369566A1 (en) 1978-05-26

Similar Documents

Publication Publication Date Title
JPS6411885B2 (en)
US4930358A (en) Method of and apparatus for measuring flow velocity by using ultrasonic waves
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
US4065958A (en) Method of controlling physical characteristics of fluid medium
SE7604537L (en) DEVICE FOR PRECISION MEASUREMENT OF FOREMAL BY ULTRASOUND
EP0120040A1 (en) Ultrasonic measurement.
JPH08261809A (en) Temperature pressure compensation method for clamp-on type ultrasonic wave flowmeter
US6681641B2 (en) Clamp-on gas flowmeter
JP3761399B2 (en) Ultrasonic flow meter
CN103477194A (en) Coupling element of an ultrasonic transducer for an ultrasonic flow meter
US3204457A (en) Ultrasonic flowmeter
GB2167185A (en) Acoustically detecting and/or identifying a liquid
JP3328505B2 (en) Ultrasonic flow meter
US10584991B2 (en) Apparatus for ultrasonically measuring the flow rate of a fluid in a measuring channel, achieving an attenuation of the parasitic signals
JP2005180988A (en) Ultrasonic flowmeter
RU2375682C1 (en) Ultrasonic flowmetre sensor
KR102179231B1 (en) Ultrasonic wave apparatus for measure of distance
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter
JPH09236462A (en) Ultrasonic flowmeter
JPS6042405B2 (en) Pulsed ultrasonic Doppler current meter
JP4296947B2 (en) Ultrasonic transceiver unit of Doppler type ultrasonic flow velocity distribution meter
JP2005351827A (en) Wedge used for doppler ultrasound flowmeter, and wedge unit
JPS61133821A (en) Ultrasonic flowmeter
JPH0921665A (en) Ultrasonic flow meter