JPS6411592B2 - - Google Patents

Info

Publication number
JPS6411592B2
JPS6411592B2 JP57131421A JP13142182A JPS6411592B2 JP S6411592 B2 JPS6411592 B2 JP S6411592B2 JP 57131421 A JP57131421 A JP 57131421A JP 13142182 A JP13142182 A JP 13142182A JP S6411592 B2 JPS6411592 B2 JP S6411592B2
Authority
JP
Japan
Prior art keywords
refractory
continuous casting
boron nitride
resistance
refractories
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57131421A
Other languages
Japanese (ja)
Other versions
JPS5921575A (en
Inventor
Kiichi Narita
Takashi Mori
Toshio Onoe
Jun Myazaki
Manabu Myamoto
Akira Oote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57131421A priority Critical patent/JPS5921575A/en
Publication of JPS5921575A publication Critical patent/JPS5921575A/en
Publication of JPS6411592B2 publication Critical patent/JPS6411592B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は、連続鋳造設備におけるタンデイツシ
ユと鋳型を接続する耐火物、所謂ジヨイントリン
グと称される耐火物に関し、特にステンレス鋼の
連続鋳造においても優れた耐溶損性を発揮する連
続鋳造用耐火物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractory that connects a tundish and a mold in continuous casting equipment, a so-called joint ring, which has excellent corrosion resistance especially in continuous casting of stainless steel. This article relates to continuous casting refractories that exhibit excellent performance.

横型連続鋳造設備のタンデイツシユと鋳型を接
続する耐火物としては、従来窒化珪素質又は窒化
ほう素質の耐火物が汎用されてきているが、最気
では窒化珪素質耐火物の耐熱衝撃性を向上させる
ことが強く望まれる様になり、これに窒化ほう素
を混合して焼結したものが提供される様になつて
きた。この様な焼結体は、一般炭素鋼の鋳造にお
いて十分な耐熱衝撃性を発揮しているが、たまさ
かステンレス鋼、特に高いCr鋼が鋳造対象とな
る様な場合には、窒化珪素質の溶損が顕著に進行
し、長時間操業の実施が極めて困難になるという
問題があつた。一方窒化ほう素質のものを主体と
してこれを改善するという研究もないではない
が、元々ホツトプレス法で製造するものである為
製造コスト上の問題がある上に、耐摩耗性が低い
という本質的な欠陥があり、これらを十分に克服
するところには至つていない。従つて耐熱衝撃性
の向上については、窒化珪素と窒化ほう素の併用
によつてある程合の改善を得ているというのが現
状であるが、ステンレス鋼、殊に高Cr鋼の連続
鋳造においては耐火物の溶損が避け難く、耐火物
の損傷による表面性状の悪化を招くと共に、時に
は局部的な溶損によつて耐火物が破損しブレーク
アウトを生じる原因ともなつており、安定操業に
資することができない。
Conventionally, silicon nitride or boron nitride refractories have been widely used as refractories that connect the tandem plate and mold in horizontal continuous casting equipment, but in the past, silicon nitride refractories have been developed to improve their thermal shock resistance. This has become strongly desired, and products made by mixing boron nitride and sintering it have come to be provided. Such a sintered body exhibits sufficient thermal shock resistance when casting general carbon steel, but if stainless steel, especially high Cr steel, is to be cast, it may be necessary to use silicon nitride. There was a problem in that the erosion progressed significantly, making it extremely difficult to carry out long-term operation. On the other hand, there is some research into improving this by using boron nitride as the main material, but since it is originally manufactured using a hot press method, there is a problem with manufacturing costs, and the inherent problem of low wear resistance. There are deficiencies, and we have yet to fully overcome them. Therefore, the current situation is that some degree of improvement in thermal shock resistance has been achieved through the combined use of silicon nitride and boron nitride, but this is not the case in continuous casting of stainless steel, especially high Cr steel. It is difficult to avoid melting of the refractories, which leads to deterioration of the surface quality due to damage to the refractories, and in some cases, localized melting damage can damage the refractories and cause breakouts, making stable operation difficult. unable to contribute.

本発明はこの様な状況に着目してなされたもの
であつて、連続鋳造用鋳型の接続用耐火物として
の基本的特性を満足しつつ、耐溶損性、特に溶鋼
中のCr成分による溶損に対して強固に抵抗する
ことのできる耐火物の提供を目的とするものであ
る。
The present invention has been made in view of this situation, and while satisfying the basic characteristics as a refractory for connecting molds for continuous casting, it also has excellent corrosion resistance, especially corrosion damage caused by the Cr component in molten steel. The purpose of this invention is to provide a refractory material that can strongly resist.

しかして上記目的に適う性状を発揮するに至つ
た本発明の耐火物とは、20重量%(以下単に%と
いう)以下の窒化ほう素を含有する安定化ジルコ
ニア焼結体を主体とするものである点に要旨が存
在するものである。
The refractory of the present invention that has achieved properties suitable for the above purpose is mainly composed of a stabilized zirconia sintered body containing 20% by weight (hereinafter simply referred to as %) or less of boron nitride. The gist lies in a certain point.

本発明者等は窒化珪素焼結体がステンレス鋼溶
湯によつて比較的簡単に溶損される原因について
種々研究し、1500℃を越える様な高熱条件下にあ
つては、ステンレス鋼中のCrと窒化珪素が反応
することによつて窒化珪素が化学的な変成を受
け、低融点物質に変わつて溶損されていくという
ことを見出した。従つて窒化珪素をベースに置く
限りCrによる化学的変成を完全に防ぐことは困
難であると考えられたのでこれに代り得る焼結体
としては全く別の発想から考えを進めていくこと
が必要ではないかと考え種々の組成からなる焼結
耐火物を試作してステンレス鋼溶湯中での耐溶損
性をテストした。その結果、Al2O3、MgO、
ZrO2等を窒化珪素中へ均一に分散させて得られ
る焼結体は、ステンレス鋼溶湯に対して極めて良
好な耐溶損性を示すことが見出されたが、中でも
ZrO2には極めて有望なものであることが分かつ
た。しかるにZrO2自体には、変態膨張という欠
点があり、特にタンデイツシユと鋳型の間という
様な高精度の要求される部位に用いられる前記ジ
ヨイントリングの製造原料として見れば極めて多
くの問題があることが分かつた。従つてせつかく
Al2O3やMgOに勝るほどの耐溶損性(特にステン
レス鋼溶湯に対する耐溶損性)を有し、且つ高温
強度及び靭性がすぐれているという特性を有しな
がら、又低熱伝導率の故に断熱効果が大きく、更
には耐火物内部での凝固穀の形成が抑制されるの
で鋳片の表面品質が向上するであろうと期待が持
たれたにもかかわらず、本発明の対象とする分野
への適用は必ずしも容易ではないという面があつ
た。
The present inventors conducted various studies on the reasons why silicon nitride sintered bodies are relatively easily eroded by molten stainless steel, and found that under high-temperature conditions exceeding 1500°C, Cr in stainless steel It was discovered that by the reaction between silicon nitride and silicon nitride, silicon nitride undergoes a chemical transformation, changes to a low melting point substance, and is eroded away. Therefore, it was thought that it would be difficult to completely prevent chemical transformation by Cr as long as silicon nitride was used as the base, so it was necessary to develop an alternative sintered body from a completely different perspective. Thinking that this might be the case, we fabricated prototype sintered refractories with various compositions and tested their corrosion resistance in molten stainless steel. As a result, Al 2 O 3 , MgO,
It has been found that a sintered body obtained by uniformly dispersing ZrO 2 etc. in silicon nitride exhibits extremely good erosion resistance against molten stainless steel.
ZrO 2 was found to be extremely promising. However, ZrO 2 itself has the disadvantage of transformation expansion, and there are many problems especially when viewed as a raw material for manufacturing the joint rings used in areas where high precision is required, such as between the tundish and the mold. I understand. obey and urge
It has corrosion resistance superior to Al 2 O 3 and MgO (particularly corrosion resistance against molten stainless steel), and has excellent high-temperature strength and toughness. Although it was expected that the effect would be large and that the formation of solidified grains inside the refractory would be suppressed and the surface quality of the slab would be improved, the field targeted by the present invention has not yet been addressed. There was an aspect that application was not necessarily easy.

そこで前述の如き変態膨張を起こさない様なも
のを求め、安定化ジルコニア耐火質に到達した。
安定化ジルコニア耐火質自体は公知であり、一般
には熱衝撃性の悪いCaOやMgOをZrO2に添加す
ることによつて製造されるものであるが、工業的
な面から見ればこれまでにも色々製造法が提案さ
れており、例えば泥しよう鋳込法、押出法あるい
は常温プレス法等によつて得られたものを焼結す
ることによつて製造されたものが用いられ、緻密
質及び多孔質の如何を問わずに利用できる。又溶
融安定化したジルコニアを用い、これを粉砕及び
粒度調整した後、望むらくはこれらを密充填組織
になる様に配合した上で少量の有機結合剤を加
え、混合及び成形し、乾燥後焼結したものも本発
明に適用できる。
Therefore, we searched for something that would not cause the above-mentioned transformation expansion, and arrived at stabilized zirconia refractory material.
Stabilized zirconia refractory material itself is well known and is generally manufactured by adding CaO or MgO, which have poor thermal shock resistance, to ZrO 2 , but from an industrial perspective, it has never been used. Various manufacturing methods have been proposed; for example, products manufactured by sintering products obtained by slurry casting, extrusion, or cold pressing are used, and dense and porous materials are used. It can be used regardless of quality. Also, using fused and stabilized zirconia, after crushing and adjusting the particle size, preferably blending them into a densely packed structure, adding a small amount of organic binder, mixing and shaping, drying and baking. The present invention can also be applied to the present invention.

この様な安定化ジルコニアを使用すれば耐熱衝
撃性及び耐溶損性の優れた耐火物が得られ、且つ
凝固殻生成の抑制といつたジルコニアの長所を享
受できるが、耐熱衝撃性については未だ改善の余
地がある。そこで本発明では安定化ジルコニアを
主体として、これに熱伝導率が大きく且つ熱膨張
率の小さい窒化ほう素を配合して、耐熱衝撃性や
耐スポーリング性を一層向上させている。窒化ほ
う素によるこれらの効果は、窒化ほう素の微量配
合によつても達成されるので、敢えて下限を設定
することは技術的に見ても特に有意義なことでは
ないが、5〜10%配合することによつて上記の効
果が顕著に現わてくる。他方上限については、20
%を越えると耐火物としての強度が低下してくる
と共に凝固殻も形成され易くなるので20%以下に
抑えるべきである。
If such stabilized zirconia is used, a refractory with excellent thermal shock resistance and erosion resistance can be obtained, and the advantages of zirconia such as suppressing the formation of solidified shells can be obtained, but the thermal shock resistance has yet to be improved. There is room for Therefore, in the present invention, stabilized zirconia is used as the main ingredient, and boron nitride, which has a high thermal conductivity and a low coefficient of thermal expansion, is blended with the stabilized zirconia to further improve thermal shock resistance and spalling resistance. These effects of boron nitride can also be achieved by adding a small amount of boron nitride, so setting a lower limit is not particularly meaningful from a technical point of view, but it is possible to achieve this by adding 5 to 10% of boron nitride. By doing so, the above effects will become noticeable. On the other hand, for the upper limit, 20
If it exceeds 20%, the strength of the refractory will decrease and solidified shells will be more likely to form, so it should be kept below 20%.

本発明は以上の様に構成されているので、ステ
ンレス鋼、特に10%以上のCrを含む様な鋼を対
象とする様な連続鋳造であつても、耐火物として
の耐熱衝撃性、耐溶損性、耐スポーリング性等が
高度に発揮され、ブレークアウト等の事故を起こ
すことなく安全に連続鋳造を完遂することが可能
になつた。
Since the present invention is configured as described above, even when continuous casting is performed for stainless steel, especially steel containing 10% or more of Cr, the present invention has good thermal shock resistance and melting resistance as a refractory. It has a high degree of durability and spalling resistance, and it has become possible to safely complete continuous casting without causing accidents such as breakouts.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

窒化ほう素10%及びCaO70%を含有する安定化
ジルコニアからなる165φ×150φ×20t(mm)のリ
ング状焼結体をタンデイツシユノズルと鋳型の間
に配置した。ステンレス鋼(SUS304)4.5トンを
1570℃で鋳込み、1.3m/minの引抜速度で連続
鋳造したところ、約30mを完鋳することができ
た。この間焼結体の割れは全く認められず、又溶
損も起こらなかつたので、鋳片表面性状は極めて
良好であつた。尚比較の為に窒化珪素質焼結体の
リング及び窒化ほう素質焼結体のリングを用いて
夫々同様の連続鋳造を行なつたところ、前者の場
合は10mでブレークアウトが起こり、後者の場合
は20mで引抜抵抗の増大により操業中止に追い込
まれた。引抜抵抗増大の理由を調査したところ、
窒化ほう素質耐火物が凝固穀によつて局部的に摩
耗し、耐火物(ジヨイントリング)と鋳型の間に
溶鋼が差し込んでいた。
A ring-shaped sintered body of 165φ×150φ×20t (mm) made of stabilized zirconia containing 10% boron nitride and 70% CaO was placed between the tundish nozzle and the mold. Stainless steel (SUS304) 4.5 tons
When it was poured at 1570℃ and continuously cast at a drawing speed of 1.3m/min, approximately 30m of it was able to be completely cast. During this period, no cracks were observed in the sintered body, and no melting damage occurred, so the surface quality of the slab was extremely good. For comparison, similar continuous casting was performed using a ring made of silicon nitride sintered body and a ring made of boron nitride sintered body, and breakout occurred at 10 m in the case of the former, while breakout occurred in the case of the latter. At 20m, the operation was forced to stop due to increased pulling resistance. When we investigated the reason for the increase in pulling resistance, we found that
The boron nitride refractory was locally worn away by solidified grain, and molten steel was inserted between the refractory (joint ring) and the mold.

Claims (1)

【特許請求の範囲】[Claims] 1 横型連続鋳造設備のタンデイツシユと鋳型を
接続する耐火物であつて、20重量%以下の窒化ほ
う素を含有する安定化ジルコニア焼結体を主体と
するものであることを特徴とする連続鋳造用鋳型
の接続用耐火物。
1. A refractory for connecting the tundish and mold of horizontal continuous casting equipment, which is for continuous casting characterized by being mainly composed of a stabilized zirconia sintered body containing 20% by weight or less of boron nitride. Refractories for mold connections.
JP57131421A 1982-07-27 1982-07-27 Refractories for continuous casting Granted JPS5921575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131421A JPS5921575A (en) 1982-07-27 1982-07-27 Refractories for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131421A JPS5921575A (en) 1982-07-27 1982-07-27 Refractories for continuous casting

Publications (2)

Publication Number Publication Date
JPS5921575A JPS5921575A (en) 1984-02-03
JPS6411592B2 true JPS6411592B2 (en) 1989-02-27

Family

ID=15057564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131421A Granted JPS5921575A (en) 1982-07-27 1982-07-27 Refractories for continuous casting

Country Status (1)

Country Link
JP (1) JPS5921575A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246896A (en) * 1990-10-18 1993-09-21 Foesco International Limited Ceramic composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2451180A1 (en) * 1973-10-29 1975-04-30 Uss Eng & Consult METHOD AND DEVICE FOR POURING METAL FROM ONE CASTING VESSEL INTO ANOTHER
JPS5221455A (en) * 1975-08-11 1977-02-18 Hiroko Miyoshi Knitting machine
JPS604153B2 (en) * 1976-05-29 1985-02-01 東芝セラミツクス株式会社 Refractories for molten metal
JPS5919073B2 (en) * 1976-10-04 1984-05-02 電気化学工業株式会社 Method for manufacturing sintered compacts

Also Published As

Publication number Publication date
JPS5921575A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
JPS59111985A (en) Composite body of ceramic material and metal
JPS6022676B2 (en) Silicon nitride/boron nitride composite sintered body and its manufacturing method
CN102335738A (en) Composite submerged nozzle and manufacturing method thereof
JPS6411592B2 (en)
JPS6348828B2 (en)
CN104926354A (en) Honeycomb ceramic filter used for purifying and filtering molten metal liquid
JPS604153B2 (en) Refractories for molten metal
CN107324790A (en) Forsterite-silicon carbide composite ceramic materials and its synthetic method
JP2547667B2 (en) Immersion nozzle for continuous casting
JPH0617268B2 (en) Refractory for continuous casting
JP2698186B2 (en) Manufacturing method of casting nozzle member
JPS59469B2 (en) Method for manufacturing graphite-containing refractories
JPS6247834B2 (en)
JPH03170367A (en) Refractory for continuous casting and its production
KR950001672B1 (en) Process for the preparation of siliconoxynitride using break ring
JP2598971B2 (en) Unfired alumina carbon-based casting nozzle
JPS624353B2 (en)
JPH0541590B2 (en)
JP6100197B2 (en) Ceramic aggregate for refractory and method for producing the same
JP2001146464A (en) Refractory containing lump graphite
JPH01286967A (en) Ceramic mold for continuous casting use and production thereof
CN112341222A (en) Hot metal ladle castable and preparation method thereof
JP4020224B2 (en) Molten metal processing parts
JPS6127350B2 (en)
JP3093862B2 (en) Refractories for continuous casting