JPS5921575A - Refractories for continuous casting - Google Patents

Refractories for continuous casting

Info

Publication number
JPS5921575A
JPS5921575A JP57131421A JP13142182A JPS5921575A JP S5921575 A JPS5921575 A JP S5921575A JP 57131421 A JP57131421 A JP 57131421A JP 13142182 A JP13142182 A JP 13142182A JP S5921575 A JPS5921575 A JP S5921575A
Authority
JP
Japan
Prior art keywords
continuous casting
refractories
refractory
boron nitride
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57131421A
Other languages
Japanese (ja)
Other versions
JPS6411592B2 (en
Inventor
成田 貴一
森 隆資
尾上 俊雄
純 宮崎
学 宮本
彰 大手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57131421A priority Critical patent/JPS5921575A/en
Publication of JPS5921575A publication Critical patent/JPS5921575A/en
Publication of JPS6411592B2 publication Critical patent/JPS6411592B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、連続鋳造設備におけるタンディッシュと鋳型
を接続する耐火物、所謂ジョイントリングと称される耐
火物に関し、特にステンレス鋼の連続鋳造においても優
れた耐溶損性を発揮する連続鋳造用耐火物に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refractory that connects a tundish and a mold in continuous casting equipment, a so-called joint ring, which has excellent corrosion resistance especially in continuous casting of stainless steel. This article relates to continuous casting refractories that exhibit excellent performance.

横型連続鋳造設備のタンディッシュと鋳型を接続する耐
火物としては、従来窒化珪素質又は窒化ほう素質の耐火
物が汎用されてきているが、最近では窒化珪素質耐火物
の耐熱衝撃性を向上させることが強く望まれる様になり
、これに窒化ほう素を混合して焼結したものが提供され
る様になってきた。この様な焼結体は、一般炭素鋼の鋳
造において十分な耐熱衝撃性を発揮しているが、たまさ
かステンレス鋼、特に高Cr鋼が鋳造対象となる様な場
合には、窒化珪素質の溶損が顕著に進行し、長時間操業
の実施が極めて困難になるという問題があった。一方窒
化ほう素質のものを主体としてこれを改善するという研
究もないではないが、元々ホットプレス法で製造するも
のである為鋳造コスト上の問題がある上に、耐磨耗性が
低いという本質的な欠陥があり、これらを十分に克服す
るところには至っていない。従って耐熱衝撃性の向上に
ついては、窒化珪素と窒化ほう素の併用によってある程
度の改善を得ているというのが現状であるが、ステンレ
ス鋼、殊に高Cr鋼の連続鋳造においては耐火物の溶損
が避け難く、耐火物の損傷による表面性状の悪化を招く
と共に、時には局部的な溶損によって耐火物が破損しブ
レークアウトを生じる原因ともなっており、安定操業に
資することができない。
Conventionally, silicon nitride or boron nitride refractories have been widely used as refractories that connect the tundish and mold in horizontal continuous casting equipment, but recently silicon nitride refractories have been developed to improve their thermal shock resistance. This has become strongly desired, and products made by mixing boron nitride and sintering it have come to be provided. Such a sintered body exhibits sufficient thermal shock resistance when casting general carbon steel, but if stainless steel, especially high Cr steel, is to be cast, it may be necessary to use silicon nitride. There was a problem in that the melting loss progressed significantly, making it extremely difficult to carry out long-term operation. On the other hand, there is some research into improving this by using boron nitride as the main material, but since it is originally manufactured using a hot press method, there is a problem with casting costs, and the fact is that it has low wear resistance. There are several flaws, and we have yet to fully overcome them. Therefore, the current situation is that thermal shock resistance has been improved to some extent by using silicon nitride and boron nitride in combination, but in continuous casting of stainless steel, especially high Cr steel, it is difficult to melt refractories. Damage is unavoidable, leading to deterioration of surface quality due to damage to the refractory, and sometimes localized melting damage to the refractory, causing breakout, making it impossible to contribute to stable operation.

本発明はこの様な状況に着目してなされたものであって
、耐溶損1生、特に溶鋼中のCr成分による溶損に対し
て強固に抵抗することのできる耐火物の提供を目的とす
るものである。
The present invention has been made in view of this situation, and aims to provide a refractory that can strongly resist corrosion damage, particularly corrosion damage caused by the Cr component in molten steel. It is something.

しかして上記目的に適う性状を発揮するに至った本発明
の耐火物とは、必要によシ20重量%(以下単に係とい
う)以下の窒化ほう素を含有することのある安定化ジル
コニア焼結体を主体とするものである点に要旨が存在す
るものである。
The refractory of the present invention that has achieved properties suitable for the above purpose is a stabilized zirconia sintered material that may contain up to 20% by weight (hereinafter simply referred to as "related") of boron nitride. The gist lies in the fact that the body is the subject.

本発明者等は窒化珪素焼結体がステンレス鋼溶湯によっ
て比較的簡単に溶損される原因について種々研究し、1
500℃を越える様な高熱条件下にあっては、ステンレ
ス鋼中のCrと窒化珪素が反応することによって窒化珪
素が化学的な変成を受け、低ぬ点物質に変わって溶損さ
れていくといりことを見出した。従って窒化珪素をブー
スに置く限りCrによる化学的父成を完全に防ぐことは
□困轢であると考えられたのでこれに代υ得る焼結、梼
としては全く別の発想から考えを進めていくととが必要
ではないかと考え種々の組成からなる焼結耐火物を試作
してステンレス鋼溶湯中での耐溶損性をテストした。そ
の結果、Al2O3、MgO、ZrO2等を窒化珪素中
へ均一に分散させて得られる焼結体は、ステンレス鋼溶
湯に対して極めて良好な耐溶損性を示すことが見出され
たφ5、中でもZrO2には極めて有望なものであるこ
とが分かった。しかるにZrO2自体には、変態膨張と
いう欠点があり、特にタンディッシュと鋳型の間という
様な高精度の要求される部位に用いられる前記ジョイン
トリングの製造原料として見れば極めて多くの問題があ
ることが分かった。従ってせっかくAl2O3やMgO
に勝るほどの耐溶損性(特にステンレス鋼溶湯に対する
耐溶損性)を有し、且つ高温強度及び靭性がすぐれてい
るという特性を有しながら、又低熱伝導率の故に断熱効
果が大きく、更には耐火物内部での凝固殻の形成が抑制
されるので鋳片の表面品質が向上するであろうと期待が
持たれたにもかかわらず、本発明の対象とする分野への
適用は必ずしも容易ではないという面があった。
The present inventors have conducted various studies on the reasons why silicon nitride sintered bodies are relatively easily eroded and damaged by molten stainless steel.
Under high heat conditions exceeding 500℃, silicon nitride undergoes chemical transformation due to the reaction between Cr in stainless steel and silicon nitride, turning into a low point substance and being eroded away. I found something useful. Therefore, as long as silicon nitride was placed in the booth, it was thought that it would be difficult to completely prevent the chemical formation caused by Cr, so we started thinking about sintering as an alternative to this and using a completely different idea. Thinking that this may be necessary, we fabricated prototype sintered refractories of various compositions and tested their corrosion resistance in molten stainless steel. As a result, it was found that the sintered body obtained by uniformly dispersing Al2O3, MgO, ZrO2, etc. in silicon nitride exhibits extremely good corrosion resistance against molten stainless steel. was found to be extremely promising. However, ZrO2 itself has the disadvantage of transformation expansion, and there are many problems when viewed as a raw material for manufacturing joint rings, which are used in areas that require high precision, such as between the tundish and the mold. Do you get it. Therefore, Al2O3 and MgO
It has superior corrosion resistance (particularly corrosion resistance against molten stainless steel) and excellent high-temperature strength and toughness, and has a high heat insulation effect due to its low thermal conductivity. Although it was expected that the surface quality of slabs would be improved by suppressing the formation of solidified shells inside refractories, it is not necessarily easy to apply the present invention to the target field. There was that aspect.

そこで前述の如き変態膨張を起こさない様なものを求め
、安定化ジルコニア耐火質に到達した。
Therefore, we searched for something that would not cause the above-mentioned transformation expansion, and arrived at stabilized zirconia refractory material.

安定化ジルコニア耐火質自体は公知であり、一般には熱
衝撃性の悪いCaOやMgOをZrO2に添加すること
によって製造されるものであるが、工業的な面から見れ
ばこれまでにも色々製造法が提案されており、例えば泥
しよう鋳込法、押出法あるいは常温プレス法等によって
得られたものを焼結することによって鋳造されたものが
用いられ、緻密質及び多孔質の如何を問わずに利用でき
る。又溶融安定化したジルコニアを用い、これを粉砕及
び粒度調整した後、望むらくはこれらを密充填組織にな
る様に配合した上で少量の有機結合剤を加え、混合及び
成形し、乾燥後焼結したものも本発明に適用できる。
Stabilized zirconia refractory material itself is well known and is generally manufactured by adding CaO or MgO, which have poor thermal shock resistance, to ZrO2, but from an industrial perspective, there have been various manufacturing methods. has been proposed, and for example, a cast material is used by sintering a material obtained by a slurry casting method, an extrusion method, or a cold press method, etc., regardless of whether it is dense or porous. Available. Also, using fused and stabilized zirconia, after crushing and adjusting the particle size, preferably blending them into a densely packed structure, adding a small amount of organic binder, mixing and shaping, drying and baking. The present invention can also be applied to the present invention.

この用な安定化ジルコニアを使用すれば耐熱衝撃性及び
耐溶損性の優れた耐火物が得られるが、さらに熱伝導率
が大きく且つ熱膨張率の小さい窒化ほう素を配合すれば
、耐熱衝撃性や耐スポーリング性が一層内上する。窒化
ほう素によるこれらの効果は、窒化ほう素の微量配合に
よっても達成されるので、敢えて下限を設定することは
技術的に見ても特に有意義なことではないが、5〜10
%配合することによって上記の効果が顕著に現わてくる
。他方上限については、20%を越えると耐火物として
の強度が低下してくるので20%以下に抑えるべきであ
る。
If stabilized zirconia is used for this purpose, a refractory with excellent thermal shock resistance and erosion resistance can be obtained, but if boron nitride, which has high thermal conductivity and low coefficient of thermal expansion, is added, thermal shock resistance and spalling resistance are further improved. These effects of boron nitride can also be achieved by adding a small amount of boron nitride, so setting a lower limit is not particularly meaningful from a technical point of view, but 5 to 10
%, the above effects become noticeable. On the other hand, as for the upper limit, if it exceeds 20%, the strength as a refractory will decrease, so it should be kept below 20%.

本発明は以上の様に構成されているので、ステンレス鋼
、特に10%以上のCrを含む様な鋼を対象とする様な
連続鋳造であっても、耐火物としての耐熱衝撃性、耐溶
損性、耐スポーリング性等が高度に発揮され、ブレーク
アウト等の事故を起こすことなく安全に連続鋳造を完遂
することが可能になった。
Since the present invention is configured as described above, even in continuous casting of stainless steel, especially steel containing 10% or more of Cr, the present invention has good thermal shock resistance and melting resistance as a refractory. It has excellent properties such as durability and spalling resistance, making it possible to safely complete continuous casting without causing accidents such as breakouts.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

窒化ほう素10%及びCaO70%を含有する安定化ジ
ルコニアからなる165φ×150φ×20t(mm)
のリング状焼結体をタンディッシュノズルと鋳型の曲に
配置した。ステンレス鋼SUS304)4.5トンを1
570℃で鋳込み、1.3m/minの引抜速度で連続
鋳造したところ、約80mを完鋳することができた。こ
の間焼結体の割れは全く認められす、又溶損も起こらな
かったので、鋳片表面性状は極めて良好であった。尚比
較の為に窒化珪繋質焼結体のリング及び窒化ほう素質焼
結体のリングを用いて夫々同様の連続鋳造を行なったと
ころ、前者の場合は10mでブレークアウトが起こり、
後者の場合は20mで引抜抵抗の増大により操業中止に
追い込まれた。引抜抵抗増大の理由を調査したところ、
窒化ほう素質耐火物が凝固穀によって局部的に摩耗し、
耐火物(ジョイントリング)と鋳型の間に溶鋼が差し込
んでいた。
165φ x 150φ x 20t (mm) made of stabilized zirconia containing 10% boron nitride and 70% CaO
The ring-shaped sintered body was placed in the tundish nozzle and the curve of the mold. 1 stainless steel SUS304) 4.5 tons
When it was poured at 570° C. and continuously cast at a drawing speed of 1.3 m/min, approximately 80 m was able to be completely cast. During this period, no cracks were observed in the sintered body, and no melting damage occurred, so the surface quality of the slab was extremely good. For comparison, similar continuous casting was performed using a ring made of silicon nitride sintered body and a ring made of boron nitride sintered body, and in the case of the former, breakout occurred at 10 m.
In the latter case, the operation was forced to stop due to increased pulling resistance at 20 m. When we investigated the reason for the increase in pulling resistance, we found that
Boron nitride refractories are locally worn away by solidified grains,
Molten steel was inserted between the refractory (joint ring) and the mold.

出願人 株式会社神戸製鋼所 代理人 弁理人 植木久一Applicant: Kobe Steel, Ltd. Agent Patent Attorney Hisaichi Ueki

Claims (2)

【特許請求の範囲】[Claims] (1)横型連続鋳造設備のタンディッシュと鋳型を接続
する耐火物であって、安定化ジルコニア焼結体を主体と
するものであることを特徴とする連続鋳造用耐火物。
(1) A refractory for continuous casting, which is a refractory for connecting a tundish and a mold of horizontal continuous casting equipment, and is mainly composed of a stabilized zirconia sintered body.
(2)横型連続鋳造設備のタンディッシュと鋳型を接続
する耐火物であって、20重量%以下の窒化ほう素を含
有する安定化ジルコニア焼結体を主体とするものである
ことを特徴とする連続鋳造用耐火物。
(2) A refractory that connects the tundish and mold of horizontal continuous casting equipment, characterized by being mainly composed of a stabilized zirconia sintered body containing 20% by weight or less of boron nitride. Refractories for continuous casting.
JP57131421A 1982-07-27 1982-07-27 Refractories for continuous casting Granted JPS5921575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131421A JPS5921575A (en) 1982-07-27 1982-07-27 Refractories for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131421A JPS5921575A (en) 1982-07-27 1982-07-27 Refractories for continuous casting

Publications (2)

Publication Number Publication Date
JPS5921575A true JPS5921575A (en) 1984-02-03
JPS6411592B2 JPS6411592B2 (en) 1989-02-27

Family

ID=15057564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131421A Granted JPS5921575A (en) 1982-07-27 1982-07-27 Refractories for continuous casting

Country Status (1)

Country Link
JP (1) JPS5921575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246896A (en) * 1990-10-18 1993-09-21 Foesco International Limited Ceramic composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112227A (en) * 1973-10-29 1975-09-03
JPS5221455A (en) * 1975-08-11 1977-02-18 Hiroko Miyoshi Knitting machine
JPS52145418A (en) * 1976-05-29 1977-12-03 Toshiba Ceramics Co Refractories for fused metals
JPS5345312A (en) * 1976-10-04 1978-04-24 Denki Kagaku Kogyo Kk Sintered mold articles and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112227A (en) * 1973-10-29 1975-09-03
JPS5221455A (en) * 1975-08-11 1977-02-18 Hiroko Miyoshi Knitting machine
JPS52145418A (en) * 1976-05-29 1977-12-03 Toshiba Ceramics Co Refractories for fused metals
JPS5345312A (en) * 1976-10-04 1978-04-24 Denki Kagaku Kogyo Kk Sintered mold articles and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246896A (en) * 1990-10-18 1993-09-21 Foesco International Limited Ceramic composition

Also Published As

Publication number Publication date
JPS6411592B2 (en) 1989-02-27

Similar Documents

Publication Publication Date Title
JPS6022676B2 (en) Silicon nitride/boron nitride composite sintered body and its manufacturing method
JPS62297264A (en) Carbon-bonded refractories
JP7029299B2 (en) Amorphous refractory
JPH09202667A (en) Castable refractory for slide gate
JPS6348828B2 (en)
JPS5921575A (en) Refractories for continuous casting
JPS604153B2 (en) Refractories for molten metal
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
CA1119768A (en) Continuous casting shroud apparatus and method
JPS6015587B2 (en) Refractories for molten metal
JPH0617268B2 (en) Refractory for continuous casting
JPS62158561A (en) Nozzle for low-temperature casting of molten steel
JPS5921581A (en) Refractories for continuous casting
JPH0243701B2 (en)
JP2698186B2 (en) Manufacturing method of casting nozzle member
KR20040082399A (en) Articles for casting applications comprising ceramic composite and methods for making articles thereof
GB2091592A (en) Refractory heat-insulating material
JPS59469B2 (en) Method for manufacturing graphite-containing refractories
JP2810111B2 (en) Gas injected refractories
JP4020224B2 (en) Molten metal processing parts
JP3093862B2 (en) Refractories for continuous casting
JPH0688828B2 (en) Refractory
GB1564927A (en) Bonds for refractory materials
JPS5911548B2 (en) Immersion nozzle for continuous casting
JPS6152099B2 (en)