JPH0688828B2 - Refractory - Google Patents

Refractory

Info

Publication number
JPH0688828B2
JPH0688828B2 JP2034913A JP3491390A JPH0688828B2 JP H0688828 B2 JPH0688828 B2 JP H0688828B2 JP 2034913 A JP2034913 A JP 2034913A JP 3491390 A JP3491390 A JP 3491390A JP H0688828 B2 JPH0688828 B2 JP H0688828B2
Authority
JP
Japan
Prior art keywords
graphite
refractory
boron
materials
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2034913A
Other languages
Japanese (ja)
Other versions
JPH03237053A (en
Inventor
喜久雄 有賀
武夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2034913A priority Critical patent/JPH0688828B2/en
Publication of JPH03237053A publication Critical patent/JPH03237053A/en
Publication of JPH0688828B2 publication Critical patent/JPH0688828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明品は黒鉛およびまたは炭素材を含有する耐火物に
モル比1:1〜1:2(CrB〜CrB2)のクロム−ボロン系合金
粉末を配合することにより焼結能を高め、且つ黒鉛や炭
素の酸化を少なくし、品質の脆弱化を防止した製鉄用
(製鋼用)の黒鉛、炭素質耐火物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The product of the present invention is a chromium-boron alloy with a refractory material containing graphite and / or a carbon material in a molar ratio of 1: 1 to 1: 2 (CrB to CrB 2 ). TECHNICAL FIELD The present invention relates to graphite and carbonaceous refractory for iron making (for steel making) in which sintering ability is improved by mixing powder, and oxidation of graphite and carbon is reduced to prevent deterioration of quality.

(従来の技術) 最近の鉄鋼業は新しい製鋼方法の開発、操業の合理化、
効能率化が進められ且つ製品の品質向上が急速に押し進
められているため、ここに用いられる耐火物も使用条件
が益々過酷の度が増している。その使用条件は、高温
化、処理の多様化、長時間化等により、操業時温度
の高温化、急激な変化により溶融物と耐火物との反応性
も大きくなり、しかも長時間滞溜されることなど使用条
件は、厳しくなって来ている。
(Prior art) The recent steel industry is developing new steelmaking methods, streamlining operations,
Due to the progress of efficiency and the rapid improvement of the quality of products, the refractory materials used here are under severer usage conditions. The operating conditions are high temperature, diversification of treatment, long time, etc., the operating temperature is high, and the reactivity between the melt and the refractory becomes large due to a sudden change, and it is retained for a long time. The usage conditions are becoming severe.

この厳しい使用条件に対応するためには 耐熱スポーリング性、 スラグ系異物の浸透による構造的耐スポーリング
性、 耐科学的浸食性、 等々に対する抵抗性が高く安定な操業が出来、しかも長
寿命化が強く望まれている。
In order to cope with these severe operating conditions, heat resistant spalling resistance, structural spalling resistance due to the penetration of slag-based foreign matter, scientific erosion resistance, etc. are highly resistant to stable operation, and the service life is extended. Is strongly desired.

(発明が解決しようとする問題点) 現在このような要求に対して使われる原料は高純度の高
級材料化の方向に進んできている。そしてこれらの選ば
れた材料の特性を充分生かし耐火物を得るためには材料
に適した粒度調整を行い、混練、高圧成形を行うことに
より高い充填密度を持たせて高温で長時間焼成をほどこ
しているからこれのみでは不充分であり更に黒鉛および
または炭素材料を加え、これに有機およびまたは無機質
の適宜なバインダーを用い混練、成形後、低温処理を行
い製出している。しかしこれら黒鉛質耐火物は使用に際
して施工後、乾燥、予熱を行い実使用となるが実際の使
用に至る迄の工程において実使用中においても表層より
酸化して組織が多孔体となり、脆弱化して炭素,黒鉛の
秀ぐれた材質特性を充分生かすことが出来ず充分な耐用
を得る迄に至っていない。このため種々の耐化防止材の
添加が行なわれているが、これらも充分の効果を修めて
おらず、時には耐溶損性もそこなうことすら表われてい
る。
(Problems to be Solved by the Invention) At present, raw materials used to meet such requirements are moving toward high-purity, high-grade materials. And in order to fully utilize the characteristics of these selected materials and obtain a refractory material, adjust the particle size suitable for the material, perform kneading and high pressure molding to give a high packing density, and perform long-time firing at high temperature. Therefore, this alone is not sufficient, and graphite and / or carbon materials are further added, and the mixture is kneaded and molded with a suitable organic and / or inorganic binder, followed by low-temperature treatment to produce the product. However, when these graphite refractories are used, they are dried and preheated before they are actually used, but in the process up to the actual use, even during actual use, the surface layer oxidizes from the surface layer to become a porous structure and weakens. The excellent material properties of carbon and graphite cannot be fully utilized, and sufficient durability has not yet been achieved. For this reason, various anti-corrosion agents have been added, but they have not been sufficiently effective, and even their melt resistance is sometimes impaired.

(問題点を解決するための手段) 本発明者等はこのような現状に鑑み品質特性を向上させ
るために添加した炭素材や、黒鉛材が有効に働いてくれ
るためには実使に至る迄、そして使用中にも酸化されな
いことが第一条件である。このため酸化防止について種
々の方法について研究を重ねた結果、耐火物の総合的な
品質特性(性能)を高める手法としてクロムーボロン系
合金金属粉末を用いることを見い出したものである。
(Means for Solving Problems) In view of the above situation, the present inventors have found that the carbon material added to improve the quality characteristics and the graphite material work effectively until the carbon material is added. The first condition is that it is not oxidized during use. Therefore, as a result of repeated research on various methods for preventing oxidation, it was found that chrome-boron alloy metal powder was used as a method for improving the overall quality characteristics (performance) of refractory materials.

本発明品はクロム(Cr)と硼素(B)をモル比で1:1〜
1:2の範囲内であるクロムーボロン系合金を0.15mm以下
の微粉末状として添加することにより厳選された耐火材
料及び黒鉛、炭素素の材料の特性を充分生かしかつ150
〜1000℃での低温硬化処理をすることにより母材の特性
を生かし、かつ黒鉛、炭素もクロムボロン系材の表層で
の分解、酸化により生成する硼酸(B2O3),酸化クロム
(Cr2O3)の働きにより耐酸化性が向上し、耐熱性,耐
食性,耐スポーリング性に秀ぐれた耐火物を得ることが
出来た。
The product of the present invention contains chromium (Cr) and boron (B) in a molar ratio of 1: 1 to
By adding chromium-boron alloy within the range of 1: 2 in the form of fine powder of 0.15 mm or less, the characteristics of carefully selected refractory materials, graphite and carbon materials can be fully utilized and 150
Boron acid (B 2 O 3 ), chromium oxide (Cr 2 ) that takes advantage of the characteristics of the base material by low-temperature curing treatment at ~ 1000 ° C and also produces graphite and carbon by decomposition and oxidation at the surface layer of chromium boron-based material O 3 ) improved the oxidation resistance, and it was possible to obtain a refractory having excellent heat resistance, corrosion resistance, and spalling resistance.

(黒鉛およびまたは炭素材の添加効果) 耐火物中に黒鉛や、炭素を含有させるとこれらの材料が
組織構成上結合部に混存することとなる。耐火物の組織
上最も弱い所は結合部に有るこの結合部は微粒子の集合
部であることから粗粒子に比べ非常に粗い組織状態とな
っており容易に異物の侵入を許すこととなり大きな変質
層を形成すると共に化学的な反応度も高い。このため溶
損も大きく、かつ異物の侵入により変質層を生成するこ
とより使用中、この部分が異質となるがために亀裂が発
生し、延いては剥落することとなり損傷する。これらの
現象を改善してくれるものである。即ちスラグ系とのヌ
レ性が非常に小さい黒鉛や炭素材が混存することにより
耐熱スポーリング性、スラグの浸透やこれに起因する亀
裂の発生、延いては剥落等の現象を改善してくれると同
時に耐化学的浸食性を高める大きな効果がある。
(Additional Effect of Graphite and / or Carbon Material) When graphite or carbon is contained in the refractory material, these materials will coexist in the joint portion due to the structure of the structure. The weakest point in the structure of the refractory is the joint part.Since this joint part is an aggregate part of fine particles, it has a much coarser texture state than coarse particles, and it easily allows foreign substances to enter, and thus a large alteration layer. It also has a high chemical reactivity. For this reason, the melting loss is large, and since an altered layer is generated due to the intrusion of foreign matter, this portion becomes heterogeneous during use, so that a crack is generated and eventually peels off, resulting in damage. It improves these phenomena. That is, by mixing graphite and carbon materials, which have very small wettability with the slag system, heat spalling resistance, the occurrence of cracks due to the penetration of slag and the occurrence of cracks, and eventually the phenomena such as flaking can be improved. At the same time, it has a great effect of increasing the chemical erosion resistance.

しかしこの黒鉛、炭素材は共に酸化をする大きな欠点を
有している。
However, both graphite and carbon materials have a great drawback that they are oxidized.

◎(タロムーボロン系合金の添加効果について) 耐火煉瓦の物理的特性を高めるためには、使用素材の粒
子間結合力を高め緻密な組織を造らなければならない。
高純度化された素材や、黒鉛およびまたは炭素材は難焼
結性であるため焼結助剤の添加が行なわれている。ここ
で用いられる焼結助材は硼酸およびその化合物、Na2O,K
2O,CaO,MgO,LiO2等を含んだ材料が用いられるがこの内
でも耐火材料の品質により悪い影響が少ない焼結助材は
硼酸及びその化合物であるが、これらは水に対して可溶
性であることと、また高温下では高温部への移動を行な
う等の特性を有している。
◎ (Regarding the effect of addition of Taromuvolone alloy) In order to enhance the physical properties of refractory bricks, it is necessary to increase the interparticle bonding force of the materials used and form a dense structure.
Since highly purified materials, graphite and / or carbon materials are difficult to sinter, a sintering aid is added. The sintering aids used here are boric acid and its compounds, Na 2 O, K
Materials containing 2 O, CaO, MgO, LiO 2 etc. are used. Among these, boric acid and its compounds are the sintering aids that have less adverse effect on the quality of refractory materials, but these are soluble in water. In addition, it has characteristics such that it moves to a high temperature portion under high temperature.

このため成形体の乾燥時にはバインダーと共に焼成中、
加熱されるにしたがい表層部へと移動して来る。このた
め煉瓦表層部にB2O3過多層を形成して耐熱性、耐溶損性
を大きくそこないまた煉瓦の内層部は焼結(結合)不足
となり、均一な焼結性の高い煉瓦を得ることが出来ず硼
酸系材料の持つ特性を生かすことが出来ず品質的に悪影
響をおよぼし他の焼結助材を用いることが多い。このよ
うな硼酸系の材料の欠点を改善しより効果の高い状態を
造るために種々の研究の結果クロム−ボロン系の合金微
粉末を用いることにより改善し得たものである。クロム
−ボロン系合金微粉末は耐火物の使用中に稼動面より徐
々にCrとBに分離し更に酸化することによりCr2O3とB2O
3とを生成する。
Therefore, when the molded body is dried, it is baked with the binder,
As it is heated, it moves to the surface layer. For this reason, a B 2 O 3 over- multilayer is formed on the brick surface layer, heat resistance and erosion resistance are not greatly impaired, and the inner layer portion of the brick is insufficiently sintered (bonded), and a uniform brick with high sinterability is obtained. In many cases, other sintering aids are used because the properties of boric acid materials cannot be utilized and the quality is adversely affected. As a result of various studies, in order to improve such defects of the boric acid-based material and to make a more effective state, it can be improved by using a chromium-boron-based alloy fine powder. The chrome-boron alloy fine powder gradually separates into Cr and B from the operating surface during use of the refractory and is further oxidized to produce Cr 2 O 3 and B 2 O.
Generates 3 and.

ここに生成したB2O3とCr2O3はそれぞれ有効に働く B2O3は耐火物の代表的成分であるAl2O3,MgO等との
間においていづれも焼結効果が高く耐火物の稼動面に緻
密な層を形成する。この緻密な層は高温下で粘性の高い
半溶層を形成し秀ぐれた物理的特性を持たせると同時に
極表層は高粘性の酸化防止効果の有るガラス層を形成す
ることにより黒鉛や炭素の酸化現象を防止することとな
る。またCr2O3はSiO2,Al2O3,MgO等々の各成分との間に
おいてはいずれも耐熱性を向上させること、また製鉄用
の耐火物として用いた場合稼動層よりの小量の溶損を生
じた場合、スラグ中にCr2O3が溶出する。この溶出したC
r2O3がスラグの融点を高める働きがあるため、融点を高
めることによりスラグの粘性が高められるので化学反応
能力を著しく向上させてくれるもので耐火物の溶損が小
さくなる等耐食性を高めると共にスラグの耐火物組織内
への浸透をも少なくすることにより浸透層(変質層)の
生成による構造的剥落をも改善される。このような使用
中の受熱によりクローム−ボロン合金の働きにより緻密
層を形成すると共に黒鉛や炭素の酸化防止効果に非常に
有効な働きをするものである。なお本材は低温での硬化
処理にて製出するものであり急熱急冷に対する耐熱スポ
ーリング性も高めることが出来る。
Refractory Izure have high sintering effect between the Al 2 O 3, MgO or the like is a representative component of the herein generated B 2 O 3 and Cr 2 O 3 works effectively each B 2 O 3 is refractory Form a dense layer on the working surface of an object. This dense layer forms a semi-molten layer with high viscosity at high temperature and has excellent physical properties, and at the same time, the outer surface layer forms a glass layer with a highly viscous anti-oxidation effect, thereby forming graphite or carbon. This will prevent the oxidation phenomenon. Also, Cr 2 O 3 improves the heat resistance of each of the components such as SiO 2 , Al 2 O 3 , MgO, etc., and when used as a refractory material for ironmaking, a smaller amount than the operating layer When dissolution occurs, Cr 2 O 3 elutes in the slag. This eluted C
Since r 2 O 3 has the function of increasing the melting point of slag, the viscosity of slag can be increased by increasing the melting point, which significantly improves the chemical reaction capacity and improves corrosion resistance such as reducing melting loss of refractory materials. At the same time, by reducing the penetration of the slag into the refractory structure, the structural peeling due to the formation of the penetration layer (altered layer) is also improved. Due to the heat received during such use, a chromium-boron alloy acts to form a dense layer, and at the same time, it acts very effectively in preventing the oxidation of graphite and carbon. This material is produced by a hardening treatment at a low temperature, and thus the heat resistance spalling resistance against rapid heating and quenching can be improved.

尚このクローム−ボロン系合金は前述の如く分解、酸化
反応は表面(稼動面)より徐々に進むので耐火物として
は高融点のクロムボロンの特性で保ち稼動面は常に均一
なる焼結層が生成されることおよび極表層に高粘性のガ
ラス層を形成し黒鉛や炭素を酸化から保護し安定した品
質を保つことが出来る。このため黒鉛や炭素および高純
度の難焼結性材料の複合耐火物でも従来の同系材料の欠
点を改善し使用材料の特性を充分生かした耐火物を製造
し得たものである。
As described above, this chrome-boron alloy decomposes and the oxidation reaction gradually progresses from the surface (operating surface), so that a refractory material having the characteristics of high melting point chrome boron is maintained and a sintered layer with a uniform operating surface is always formed. In addition, a highly viscous glass layer is formed on the outermost surface layer to protect graphite and carbon from oxidation and maintain stable quality. Therefore, even with a composite refractory made of graphite or carbon and a high-purity hardly-sinterable material, it is possible to manufacture a refractory in which the defects of the conventional similar materials are improved and the characteristics of the materials used are fully utilized.

[限定理由] クローム−ボロン系合金の化学成分値を合金クロム
と硼素のモル比1:1〜1:2としCr+Bを90%以上とする理
由。
[Reason for limitation] The reason why the chemical composition value of the chrome-boron alloy is 1: 1 to 1: 2 in the molar ratio of chromium to boron and Cr + B is 90% or more.

B(硼素)の含有量がモル比で1:1以下の場合 焼結効果が低く物理的品質の向上が小さい。 When the content of B (boron) is 1: 1 or less in terms of molar ratio, the sintering effect is low and the improvement in physical quality is small.

B(硼素)の含有量がモル比で1:2以上の場合 硼素の含有量がモル比で1:2以上となると合金組成がCrB
2+Bとなり遊離のB(硼素)を含有することと成り、
耐火物材に添加した場合遊離の硼素が組織中で容易に移
動が生ずることとなり目標品質および安定した均一なる
品質が保持出来なく成る。また合金製造時に材料の収率
が低下すると共に成分的にもバラツキが大きくなる。
When the content of B (boron) is 1: 2 or more in molar ratio When the content of boron is 1: 2 or more in molar ratio, the alloy composition is CrB.
It becomes 2 + B and contains free B (boron),
When added to the refractory material, free boron easily migrates in the structure and the target quality and stable and uniform quality cannot be maintained. In addition, the yield of materials decreases during alloy production, and the variations in composition also increase.

Cr+Bで90%以上とした理由 添加量を0.5%〜10.0%としており不純成分が増すと母
材に対して低融物生成と云う欠点が出るためである。
The reason why Cr + B is 90% or more The reason is that the addition amount is set to 0.5% to 10.0% and the increase in the amount of the impure component causes a defect that a low melt is formed in the base material.

0.15mm以下の粉末とする理由 添加する目的が焼結性と耐食性の向上である。 Reason for using powder of 0.15 mm or less The purpose of addition is to improve sinterability and corrosion resistance.

この添加により耐食性、耐スラグ浸透性を高めることに
より溶損及び熱的、構造的スポーリング性を高めること
にある。このためには合金が分解及び酸化して、それぞ
れの働きをするものであり0.15mm以下の粒度とすること
がより効果的であり粗いとその効力も小さくなるためで
ある。
This addition is intended to improve corrosion resistance and slag penetration resistance, thereby enhancing melting loss and thermal and structural spalling properties. For this purpose, the alloy decomposes and oxidizes to act respectively, and it is more effective to have a grain size of 0.15 mm or less, and if it is coarse, its effect becomes small.

黒鉛およびまたは炭素材料を5%〜30%とした理由 黒鉛や炭素は結合部を改質する重要な材料である。使用
条件等を含め添加効果は5%以上を必要とする。また30
%迄としたのは30%を超えた場合、耐火物自体の強度低
下及び酸化の問題が生ずるためである。
Reasons for setting graphite and / or carbon material to 5% to 30% Graphite and carbon are important materials for modifying the bonding portion. The effect of addition, including usage conditions, needs to be 5% or more. Again 30
The reason why the content is up to 30% is that when the content exceeds 30%, the strength of the refractory material itself is deteriorated and problems of oxidation occur.

実施例 次に本発明の実施例について詳記する 実施例に用いる原料の化学成分値を表−1に示す。Examples Next, the examples of the present invention will be described in detail. Table 1 shows the chemical component values of the raw materials used in the examples.

上記に示す原料を用いて 実施例(1) クロム、ボロン合金の添加量 実施例(2) クロム、ボロン合金の粒度 実施例(3) 黒鉛、炭素材料の配合量 実施例(4) クロム、ボロン合金の化学成分値の差に
ついての実施例を以下に示す。実施例表−1に示す配合
物を混練成形し1000kg/cm2の圧力で成形した後、350℃
で硬化処理を行い試験体を製出する。
Using the above raw materials Example (1) Addition amount of chromium and boron alloy Example (2) Particle size of chromium and boron alloy Example (3) Blending amount of graphite and carbon material Example (4) Chromium and boron Examples of differences in the chemical composition values of alloys are shown below. After kneading and molding the compounds shown in Table 1 at a pressure of 1000 kg / cm 2 , 350 ° C.
Curing treatment is performed to produce a test piece.

(発明の効果) 実施例クロムボロン合金の添加量については対黒鉛炭
素の耐酸化性添加量の増加にともない高くなる。その酸
化量は対無添加品に比べ3%で35%、12%で13.2%と非
常に少なくなり一般の使用条件では充分酸化保護には有
効である。また耐火物の品質特性においても低温,中温
域での変化が小さく緻密が保持できることより耐溶損
性,スラグ浸透性においてもそれぞれ49%〜31%,78%
〜33%にとどまる。しかし添加量が12%となると耐食性
が低くなる欠点が出てくる。実施例クロムボロン合金
の粒径については0.5mm以下0.3mm以下と粗くなると添加
効果が小さく0.15mm以下で効果が認められてくる。
(Effects of the Invention) The added amount of the chromium-boron alloy of the embodiment increases as the added amount of the oxidation resistance of graphite carbon increases. The amount of oxidation is 35% at 3% and 13.2% at 12% compared to the non-added product, which is very small, and is sufficiently effective for oxidation protection under general use conditions. In addition, the quality characteristics of refractories have little change at low and medium temperatures, and can maintain compactness, which results in 49% to 31% and 78% in erosion resistance and slag permeability, respectively.
Stay at ~ 33%. However, if the amount of addition is 12%, there is a drawback that the corrosion resistance becomes low. Regarding the grain size of the chromium-boron alloys of Examples, the effect is small when the grain size becomes 0.5 mm or less and 0.3 mm or less, and the effect is recognized when it is 0.15 mm or less.

実施例の黒鉛炭素材料の配合量については3%では耐
食性,やスラグの浸透性を充分向上させることが出来ず
33%となると使用時の高温下では組織の緻密性,強度の
面で品質劣化を来たしスラグの浸透性,溶損量共に大き
く低下する。
When the blending amount of the graphite carbon material in the example is 3%, the corrosion resistance and the slag permeability cannot be sufficiently improved.
At 33%, the quality of the structure deteriorates at high temperatures during use, and the permeability of the slag and the amount of erosion are greatly reduced.

実施例(4)でのクロムボロン合金の化学成分値からは
CrとBのモル比が1:1よりCrが高い場合は焼結性,耐酸
化性の向上が見られず1:2よりBが高くなると高温下で
組織の脆弱化を来たして耐食性,耐熱性をそこなうこと
となる。等の結果に示される如く、本発明品においては
スラグの組織内への浸透に起因する変質層の生成が非常
に少なくすると共に耐化学的浸食性においても大きな効
果を修めることが出来組織が各温度域での強度も安定し
ており表面剥離、亀裂の発生等の改善も出来、構造的な
欠陥も共に改善される等大きく向上させる数多くの効果
をもたらすことが出来た。
From the chemical composition values of the chromium boron alloy in Example (4),
When Cr is higher than 1: 1 and Cr is higher than 1: 1, sinterability and oxidation resistance are not improved, and when B is higher than 1: 2, the structure becomes brittle at high temperatures, resulting in corrosion resistance and heat resistance. You will lose your sexuality. As shown in the results such as the above, in the product of the present invention, the generation of the deteriorated layer due to the penetration of the slag into the structure is extremely reduced and the chemical erosion resistance can be greatly improved and the structure can be improved. The strength in the temperature range was stable, surface peeling, cracking, etc. could be improved, and structural defects were also improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】黒鉛およびまたは炭素材料を5%〜30%と
一者若しくは二者以上より成る耐火材料にクロムと硼素
をモル比で1:1〜1:2で不純成分が10%以内の硼化クロム
合金の150ミクロン以下とした粉末を0.5重量%〜10重量
%添加し、有機およびまたは無機質の適宜のバインダー
を用い混練、成形し150℃〜1000℃にて硬化させたこと
を特徴とする製鉄用黒鉛質耐火物。
1. A refractory material consisting of one or two or more graphite and / or carbon materials in an amount of 5% to 30%, and chromium and boron in a molar ratio of 1: 1 to 1: 2 and an impure component within 10%. Characterized by adding 0.5% to 10% by weight of powder of a chromium boride alloy having a particle size of 150 μm or less, kneading and molding using an appropriate organic and / or inorganic binder, and curing at 150 ° C. to 1000 ° C. Graphite refractories for steelmaking.
JP2034913A 1990-02-15 1990-02-15 Refractory Expired - Lifetime JPH0688828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2034913A JPH0688828B2 (en) 1990-02-15 1990-02-15 Refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2034913A JPH0688828B2 (en) 1990-02-15 1990-02-15 Refractory

Publications (2)

Publication Number Publication Date
JPH03237053A JPH03237053A (en) 1991-10-22
JPH0688828B2 true JPH0688828B2 (en) 1994-11-09

Family

ID=12427451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2034913A Expired - Lifetime JPH0688828B2 (en) 1990-02-15 1990-02-15 Refractory

Country Status (1)

Country Link
JP (1) JPH0688828B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409247B (en) * 2021-12-30 2023-08-22 东海县华科光学有限公司 Quartz glass material with corrosion-resistant and high-temperature-resistant surface and preparation process thereof

Also Published As

Publication number Publication date
JPH03237053A (en) 1991-10-22

Similar Documents

Publication Publication Date Title
US4471059A (en) Carbon-containing refractory
JP3212600B2 (en) Refractory material bound by sialon substrate and method of preparation
JPS6024068B2 (en) Method for producing spalling-resistant dense refractories
JPH0657619B2 (en) Carbon-containing refractory
US4605635A (en) Carbon-containing refractory
JPH0688828B2 (en) Refractory
EP0116194A1 (en) A carbon-containing refractory
JPS6241774A (en) Non-burnt refractory heat insulator
JP3197680B2 (en) Method for producing unburned MgO-C brick
JP3031192B2 (en) Sliding nozzle plate refractories
JPH0688827B2 (en) Refractory
JPS6127350B2 (en)
GB1564927A (en) Bonds for refractory materials
JPS624356B2 (en)
JPH0585805A (en) Carbon-containing fire-resistant material
KR910005026B1 (en) Graphitic refractories and preparation method thereof
JP3703104B2 (en) Magnesia-chromic unfired brick
JPH0510299B2 (en)
JP2000327401A (en) Plate for slide gate
CA1189093A (en) Carbon-containing refractory
JP3795933B2 (en) Magnesia-chromic fired brick
KR100590712B1 (en) Graphite-containing amorphous refractory
JPH03257055A (en) Refractory
JPH03257056A (en) Refractory
JPH03159965A (en) Production of zrb2-graphite refractory having high corrosion resistance and high spalling resistance