JPH03257055A - Refractory - Google Patents

Refractory

Info

Publication number
JPH03257055A
JPH03257055A JP2053058A JP5305890A JPH03257055A JP H03257055 A JPH03257055 A JP H03257055A JP 2053058 A JP2053058 A JP 2053058A JP 5305890 A JP5305890 A JP 5305890A JP H03257055 A JPH03257055 A JP H03257055A
Authority
JP
Japan
Prior art keywords
alloy
refractory
chromium
boron
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2053058A
Other languages
Japanese (ja)
Other versions
JPH0688829B2 (en
Inventor
Kikuo Ariga
喜久雄 有賀
Takeo Kato
武夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2053058A priority Critical patent/JPH0688829B2/en
Publication of JPH03257055A publication Critical patent/JPH03257055A/en
Publication of JPH0688829B2 publication Critical patent/JPH0688829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To render a dense structure and residual expandability, to reduce wettability with slag and to improve thermal spalling resistance by adding a Cr-B alloy and Al and/or an Al alloy to a refractory material in the form of fine powders. CONSTITUTION:One or more kinds of refractory materials are prepd. and 0.5-10% Cr-B alloy having (1:1)-(1:2) molar ratio of Cr:B and contg. <=10% impuri ties, and 0.5-5.0% Al and/or Al alloy contg. <=10% impurities are added to the refractory materials in the form of fine powders of <=150mum particle size. They are kneaded with a proper org. and/or inorg. binder and the kneaded material is molded and hardened at 150-1,000 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高焼結性能を有し、かつ残存膨張性を有する
製鉄用耐火煉瓦に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a refractory brick for iron manufacturing that has high sintering performance and residual expansion.

(従来の技術) 最近の鉄鋼業界は製品の高品質化9合理化、高能率化が
進められ新しい製法が開発されて来ているなかその操業
条件は、■高温化、■処理の多様化、■長時間操業化等
々により使用時の条件としては、■高温化と温度変化が
大きくなり、■長時間化、■スラグ組成変化域が広くな
る。等々の事により耐火物に対する使用条件は益々厳し
くなって来ている。
(Conventional technology) In recent years, the steel industry has been promoting higher quality products9, streamlining and increasing efficiency, and new manufacturing methods have been developed. Due to long-term operation, etc., the operating conditions include: (1) high temperatures and large temperature changes, (2) longer operating times, and (2) wider range of slag composition changes. Due to these reasons, the usage conditions for refractories are becoming increasingly strict.

この諸条件に対応するために ■耐熱スポーリング性 ■スラグ等の異物浸透による構造的耐スポーリング性 ■化学的耐浸食性 等に対する抵抗性が高く安定した操業ができしかも長寿
命化の計れる耐火物が強く望まれている。
In order to meet these conditions, ■ Heat-resistant spalling characteristics ■ Structural spalling resistance due to the penetration of foreign substances such as slag ■ Fire-resistant properties that are highly resistant to chemical erosion, enable stable operation, and have a long service life. Something is strongly desired.

(発明が解決しようとする問題点) 現在この要求に対処するため、 ■使用原料の高純度化、高級化を進めている。(Problem that the invention attempts to solve) To address this request currently, ■We are working on increasing the purity and quality of the raw materials we use.

■これらの厳選された高純度原料の特性を生かすため高
圧力による成形と、高温で長時間を要しての焼成を行い
粒子間の結合度を高め組織を緻密化することが品質上か
らは製造の絶対条件となって来ている。特に現在焼成工
程においてはマグネシア・クロム系の塩基性耐火物にお
いては窯詰から窯詰迄に約200時間(10日間)と云
う長い時間を要し、しかも1800℃以上の高温度を必
要とする。このため煉瓦1トンを焼成するのに600Q
〜80012と云う膨大な燃料(重油)を使う等製造コ
ストが非常に高くかかる。この傾向は益々大きくなるの
が現状である。また最近これらの耐火材料にクロムボロ
ン系合金粉末を用い低温処理(150℃〜1000℃)
により製出する方法も提案されて来てこれらの問題点を
も解決して来ているがこの方法の欠点として使用時の高
温下では収縮現象を起し主に煉瓦の接合部(目地部)が
開き、この接合部からの溶損が進み、クボミを造り、い
わゆるカマボコ状となるため、このクボミにより寿命が
決ってしまうとか、多面よりの受熱、溶損が進み、亀裂
の発生、剥落現象が生じ素材の特性を充分生かすことが
出来得す総合的には長時間焼成品に比べ若干の改善はさ
れて来ているが充分な耐用を修める迄に至っていないの
が現状である。
■In order to take advantage of the characteristics of these carefully selected high-purity raw materials, from a quality perspective, it is necessary to mold them under high pressure and sinter them at high temperatures for a long time to increase the degree of bonding between particles and make the structure denser. It has become an absolute requirement for manufacturing. In particular, in the current firing process, magnesia-chromium-based basic refractories require a long time of about 200 hours (10 days) from filling to kiln filling, and require high temperatures of over 1800°C. . Therefore, it takes 600Q to fire 1 ton of bricks.
The manufacturing cost is extremely high, as it uses a huge amount of fuel (heavy oil) of ~80,012 kg. The current situation is that this trend is getting bigger and bigger. Recently, chromium-boron alloy powder has been used for low-temperature treatment (150°C to 1000°C) for these refractory materials.
A manufacturing method has been proposed to solve these problems, but the disadvantage of this method is that it shrinks under high temperatures during use, mainly at the joints of bricks (joints). The joint opens, and the melting loss from this joint progresses, creating a hollow, which becomes a so-called semicylindrical shape.This hollowing determines the lifespan, and heat is received from multiple sides, melting loss progresses, cracks occur, and flaking occurs. In general, there have been some improvements compared to long-fired products, but the current situation is that they have not yet achieved sufficient durability.

(問題点を解決するための手段) この様な現状に鑑み本発明者等は種々研究を重ねた結果
150ミクロン以下のクロムボロン系合金とA9および
またはAl合金の粉末を添加することにより ■緻密な組織を形成させること ■残存膨脹性を保持させること ■スラグ等の異物の浸潤性を小さくすること■耐熱スポ
ーリング性を高めること 等々の結果を引き出すことに成功し従来のこの種の耐火
物の欠点を大きく改善し使用時−枚板状の耐火壁を構成
させる耐火物を得ることが出来た。
(Means for solving the problem) In view of the current situation, the present inventors have conducted various studies and found that by adding powder of chromium boron alloy of 150 microns or less and powder of A9 and/or Al alloy, We succeeded in bringing out results such as forming a structure, maintaining residual expansibility, reducing infiltration of foreign substances such as slag, and increasing heat spalling resistance. It was possible to obtain a refractory material which greatly improves the drawbacks and which can be used to form a plate-like fireproof wall.

本発明品はクロム(Cr)と硼素(B)をモル比で1=
1〜1:2の範囲にあるクロムボロン系合金とAlおよ
びまたはAl合金を0.15mm以下の微粉末状として
添加することにより厳選された耐火材料の特性を充分生
かしかつ150℃〜1000℃での低温域での硬化処理
を行うことにより製出し得るものである。
The product of the present invention has a molar ratio of chromium (Cr) and boron (B) of 1=
By adding chromium boron alloy and Al and/or Al alloy in the form of fine powder of 0.15 mm or less in a ratio of 1 to 1:2, the characteristics of the carefully selected refractory material can be fully utilized and the It can be produced by performing a curing treatment in a low temperature range.

即ちクロムボロン系合金粉末は使用時において稼動層よ
り徐々に分解酸化しては耐火物の特性を高めることと同
時に焼結能力を高め緻密な組織を形成するに非常に有効
である。そしてAtやAl合金は使用時に徐々に酸化し
て母材中のMgOやSiO2との間でスピネル(MgO
−At203)やムライト(3Ai203・2SiO□
)を形成して耐火物に残存膨張性を付与させるものであ
る。次に詳しくこれらの作用を記述する。
That is, the chromium boron alloy powder gradually decomposes and oxidizes from the active layer during use, which is very effective in improving the properties of the refractory and at the same time increasing the sintering ability and forming a dense structure. During use, At and Al alloys gradually oxidize and form spinel (MgO) between them and MgO and SiO2 in the base metal.
-At203) and mullite (3Ai203・2SiO□
) to impart residual expandability to the refractory. Next, these effects will be described in detail.

(■クロムボロン系合金の添加効果について)クロムボ
ロン系合金粉末を配合することにより使用中に稼動層よ
り徐々に分解しCrとBと更にそれぞれ酸化することに
よりCr2O3とB20.とを生成する。
(■ Regarding the effect of adding chromium-boron alloy) By blending chromium-boron alloy powder, it gradually decomposes from the working layer during use, and further oxidizes Cr and B, thereby creating Cr2O3 and B20. and generate.

rB2 ここに生成したB20.とCr2O3は後述の如くそれ
ぞれ有効に働く。
rB2 B20 generated here. and Cr2O3 each work effectively as described below.

■B2O3は耐火物の代表的成分でありしかも難焼結性
であるMgOやAl□03等との間に於いていづれも焼
結効果が高く品質特性への影響も小さいので素材特性を
害することなく耐火物の稼動層に緻密な層を形成する。
■ B2O3 is a typical component of refractories, and is difficult to sinter between MgO and Al□03, which have a high sintering effect and have little effect on quality properties, so they do not harm material properties. Forms a dense layer in the active layer of refractory material.

この緻密な層は高温下での粘性が高く秀れた物理的な特
性を保持する。
This dense layer has high viscosity and excellent physical properties at high temperatures.

■Cr2O3は、MgO,Al2O,,5in2との各
成分間ではスピネル(ピクロクロマイトMgO。
■Cr2O3 is spinel (picrochromite MgO) among each component with MgO, Al2O, and 5in2.

Cr、 Oa )を生成させることが耐熱性を大きく向
上させる効果を有すると共に製鉄時のスラグ中に溶出し
た場合はスラグの耐熱性を向上させるため融点が高めら
れることとなリスラグの粘性が高まり化学反応性が著し
く小さくなるので耐火物の溶損を小さくする等耐食性を
高めると共にスラグ等異物のレンガ組織内えの浸透を抑
え浸透に起因する変質層の生成が小さくなるので構造的
スポーリングをも改善される。
The generation of Cr, Oa) has the effect of greatly improving heat resistance, and if it is eluted into slag during steel manufacturing, the melting point will be raised to improve the heat resistance of the slag, and the viscosity of the slag will increase. The reactivity is significantly reduced, which improves corrosion resistance such as reducing the erosion of refractories, and also prevents structural spalling by suppressing the penetration of foreign substances such as slag into the brick structure and reducing the formation of altered layers caused by penetration. Improved.

(■Al又はAl合金の使用効果) Al又はAl合金は使用中酸化して活性度高い耐火物と
成り耐火物中のMgO1又は5in2との間で反応とし
てスピネル又はムライトを形成する。
(■Effects of using Al or Al alloy) Al or Al alloy oxidizes during use to become a highly active refractory, and forms spinel or mullite as a reaction with MgO1 or 5in2 in the refractory.

A皇→Ai、O,+MgO−+MgO,Al2O,−ス
ピネルの生成→(酸化反応) Al−+AI、03+Si○2 →3 A 1203.
2SiO2−ムライトの生成→(酸化反応) 分解酸化し母材との間でスピネルやムライトを生成する
ことにより残存膨張性となり一枚板の耐火壁を形成する
と共に耐異物浸透性や■耐熱性■耐スポーリング特性を
も向上させる等の効果がありしかも難焼結性耐火材料で
も従来の同系材料の欠点を改善し使用材料の特性を充分
生かし得た耐火物を得ることが出来たものである。
Emperor A → Ai, O, +MgO-+MgO, Al2O, -generation of spinel → (oxidation reaction) Al-+AI, 03+Si○2 →3 A 1203.
Formation of 2SiO2-mullite → (oxidation reaction) It decomposes and oxidizes to produce spinel and mullite with the base material, resulting in residual expansion and forming a fireproof wall of a single plate, as well as foreign matter penetration resistance and heat resistance. It has the effect of improving spalling resistance, and even though it is a difficult-to-sinter refractory material, it has improved the drawbacks of conventional similar materials and has made it possible to obtain a refractory that fully takes advantage of the characteristics of the material used. .

尚これら添加された金属粉末は表層より徐々に分解、酸
化反応が進むので常に均一なる焼結層を保つことが出来
て安定した状態を持続することが出来るものである。
Since the added metal powder gradually decomposes and undergoes an oxidation reaction from the surface layer, a uniform sintered layer can always be maintained and a stable state can be maintained.

限定理由 ■ ボロン−クロム系合金の化学成分値を金属クロムと
硼素のモル比を1=1〜1:2としCr+Bを90%以
上とする理由 @ B(硼素)の含有量がモル比で1:1以下の場合 焼結効果が低く物理的品質の向上が小さい。
Reason for limitation■ Reason for setting the chemical composition value of the boron-chromium alloy to a molar ratio of metallic chromium and boron of 1 = 1 to 1:2, and Cr + B of 90% or more @ The content of B (boron) is 1 in molar ratio : If it is less than 1, the sintering effect is low and the improvement in physical quality is small.

■ B(硼素)の含有量がモル比で1:2以上の場合 硼素の含有量がモル比で1=2以上となると合金素材が
CrB2+Bとなり遊離のB。
■ When the content of B (boron) is 1:2 or more in molar ratio When the content of boron is 1 = 2 or more in molar ratio, the alloy material becomes CrB2+B and free B.

(硼素)を含有することとなり、耐火物材に添加した場
合遊離の硼素が組織中で容易に移動が生ずることとなり
目積品質および安定した均一なる品質が保持出来なく成
る また合金製造時に材料の収率が低下すると共に成分的に
もバラツキが大きくなる。
When added to refractory materials, free boron easily moves within the structure, making it impossible to maintain bulk quality and stable and uniform quality. As the yield decreases, the variation in components also increases.

OCr+Bで90%以上とした理由 添加量を0.5%〜10.0%としており不純成分が増
すと母材に対して低融物生成と云う欠点が出るため ■ 0.15閣以下の粉末とする理由 クロムボロン合金の添加する目的が焼結性と耐食性の向
上にある。
The reason why OCr+B was set at 90% or more is that the amount added is 0.5% to 10.0%, and if the impurity components increase, there will be a disadvantage of forming low melting substances against the base material. The purpose of adding chromium boron alloy is to improve sinterability and corrosion resistance.

この効果により耐食性、耐スラグ浸透性を高めることに
より溶損及び熱的、構造的スポーリング性を高めること
にある。このためには合金の分解及び酸化してそれぞれ
の働きをするものである。
This effect improves corrosion resistance and slag penetration resistance, thereby increasing erosion loss and thermal and structural spalling properties. For this purpose, the alloy is decomposed and oxidized to perform its respective functions.

At又はAl.Mg合金、は酸化して活性度の高いAl
203他これがスピネル(MgO−At20.)。
At or Al. Mg alloy oxidizes to highly active Al
203 and others This is spinel (MgO-At20.).

ムライト(3Al20..2SiO,)を形成シテ残存
膨脹化とスラグ浸透性を小さくするものであるため粒子
度が大きいと反応性が乏しくなり効果が小さくなる。こ
のため0.15閣以下の粒子系とすることが効果的であ
る。
Since mullite (3Al20..2SiO,) is formed to reduce residual expansion and slag permeability, if the particle size is large, the reactivity becomes poor and the effect becomes small. For this reason, it is effective to use a particle system with a particle size of 0.15 or less.

実施例 次に本発明の実施例について詳記する。Example Next, examples of the present invention will be described in detail.

1 実施例に用いる原料の化学成分値を表−1に示す。1 The chemical composition values of the raw materials used in the examples are shown in Table-1.

上記の原料を用いて ■ 表−2金属粉末の添加量(Cr−B合金材、 Al
材) ■ 表−3金属粉末の粒度(Cr−B合金材。
Table 2 Addition amount of metal powder (Cr-B alloy material, Al
(Material) ■Table-3 Particle size of metal powder (Cr-B alloy material.

A塞材) ■ 表−4金属材の化学成差(Cr−B合金材、A塞材
) (以上基礎試験 = 結果) ■ 表−5実施例(Cr−B合金材、At材の複合添加
量) の各項目についての各試験結果を示す。
A plugging material) ■ Table 4 Chemical differences in metal materials (Cr-B alloy material, A plugging material) (Basic tests = results) ■ Table 5 Examples (Combined addition of Cr-B alloy material and At material) The test results for each item are shown below.

尚温試体の製作条件は、 成形圧力は1000kg/afで、硬化温度350℃を
基準とする詳細は実施例の各表中に記載する。
The manufacturing conditions for the still-temperature sample were as follows: molding pressure was 1000 kg/af, and curing temperature was 350° C. Details are described in each table of Examples.

(発明の効果) 以上の実施例に示されるように従来のマグネシアクロム
材および同村クロムボロン合金添加材では1600℃の
処理を行うことにより比較晶相2゜4.5はそれぞれ−
0,62%、−1,33%。
(Effects of the Invention) As shown in the above examples, when the conventional magnesia chromium material and the magnesia chromium boron alloy additive material are treated at 1600°C, the comparative crystal phase of 2° 4.5 is -
0,62%, -1,33%.

−1,79%とそれぞれ残存収縮性を示すが本発明品は
すべて残存膨脹性を示すと共に溶損量およびスラグ等の
異物浸透深さにおいても最高長時間焼成品に比べ本発明
実施例品は94%〜100%。
-1 and 79%, respectively, but all of the products of the present invention show residual expansion properties, and the products of the present invention also show residual expansion properties, as well as the amount of erosion and the penetration depth of foreign substances such as slag, compared to the products fired for the longest time. 94%~100%.

と55%〜86%と従来のマグネシア−クロム材に比べ
ては54%〜58%と33%〜52%と品質的に大きな
向上を修めることが出来る。この様にスラグ等の異物の
浸透による変質層の生成、これに伴う構造的剥落等も防
止することが出来ることと最も特筆すべきことは前述の
如く残存膨脹性を保有させることが出来たことにより従
来品が残存収縮性であったがために主に目地部(煉瓦接
合部)の開きによりカマボコ状と成り極部的に溝状の凹
み溶損を来たしこのため多面よりの受熱、浸食を受ける
ことにより溶損を早めかつ稼動層の剥落現象をも助長し
素材の特質を充分生かしきれず寿命を来たしていたもの
が使用時には平滑な一枚岩状の稼動面を形成し素材の特
性を充分生かしきることの出来たことにより安定した操
業が出来、かつ長寿命化が計れるものでありその効果は
絶大なるものがある。
and 55% to 86%, which are 54% to 58% and 33% to 52%, which are great improvements in quality compared to conventional magnesia-chromium materials. In this way, it is possible to prevent the formation of altered layers due to the penetration of foreign substances such as slag, and the accompanying structural peeling, and the most noteworthy thing is that, as mentioned above, it is possible to maintain residual expandability. Because of the residual shrinkage of the conventional product, the joints (brick joints) were mainly opened, resulting in a hollow shape and extremely localized groove-like depressions and erosion. This accelerates erosion and promotes the peeling of the working layer, and the properties of the material cannot be fully utilized and the product has reached the end of its lifespan. When used, it forms a smooth, monolithic working surface, making full use of the properties of the material. By being able to do this, stable operations can be achieved and the lifespan can be extended, and the effects are tremendous.

Claims (1)

【特許請求の範囲】[Claims] 一者若しくは二者以上より成る耐火材料に150ミクロ
ン以下のクロムと硼素のモル比1:1〜1:2で不純成
分10%以内のクロムボロン合金0.5%〜10%とA
lおよびまたはAl合金で不純成分10%以内の金属粉
末を0.5%〜5.0%添加し有機及びまたは無機質の
適宜のバインダーを用い混練、成形し150℃〜100
0℃で硬化させたことを特徴とする製鉄用耐火物。
A refractory material consisting of one or more materials with 0.5% to 10% chromium-boron alloy of 150 microns or less and a molar ratio of chromium and boron of 1:1 to 1:2 and an impurity content of 10% or less.
Add 0.5% to 5.0% of metal powder containing 10% or less of impurities to L and/or Al alloys, knead and mold using an appropriate organic and/or inorganic binder, and heat to 150°C to 100°C.
A refractory for iron manufacturing characterized by being cured at 0°C.
JP2053058A 1990-03-05 1990-03-05 Refractory Expired - Lifetime JPH0688829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053058A JPH0688829B2 (en) 1990-03-05 1990-03-05 Refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053058A JPH0688829B2 (en) 1990-03-05 1990-03-05 Refractory

Publications (2)

Publication Number Publication Date
JPH03257055A true JPH03257055A (en) 1991-11-15
JPH0688829B2 JPH0688829B2 (en) 1994-11-09

Family

ID=12932250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053058A Expired - Lifetime JPH0688829B2 (en) 1990-03-05 1990-03-05 Refractory

Country Status (1)

Country Link
JP (1) JPH0688829B2 (en)

Also Published As

Publication number Publication date
JPH0688829B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
CN107879753B (en) Silicon carbide-magnesium aluminate spinel composite refractory material
US5212123A (en) Refractory materials formed from refractory grains bonded by a sialon matrix containing dispersed graphite and/or boron nitride particles and a process for the preparation of these materials
US5925585A (en) Materials formed by refractory grains bound in a matrix of aluminum nitride or sialon containing titanium nitride
US4605635A (en) Carbon-containing refractory
JPH03257055A (en) Refractory
JP2012192430A (en) Alumina carbon-based slide gate plate
JPH09295857A (en) Carbon-containing brick containing aluminum oxycarbide
JPS63285168A (en) Carbon containing refractories
JP2951432B2 (en) Unfired refractory containing magnesia
JPS6141861B2 (en)
JPH0688830B2 (en) Refractory
JPH03237053A (en) Refractory
JPH08119719A (en) Brick containing carbon and aluminum silicon carbide
JPS6243948B2 (en)
JPH0688827B2 (en) Refractory
JPH03232762A (en) Magnesia-containig refractory
JPS6051671A (en) Castable refractories
JP2000327401A (en) Plate for slide gate
JP2765458B2 (en) Magnesia-carbon refractories
JPH0283250A (en) Production of carbon-containing calcined refractory
JPH07172907A (en) Carbon-containing refractory
JPH0583509B2 (en)
JP2001139366A (en) Magnesia-carbon unburned refractory brick
JPH04193759A (en) Carbon-containing basic refractory
JPH03232761A (en) Magnesia-containing refractory material, production thereof and refractory