JPH0688829B2 - Refractory - Google Patents

Refractory

Info

Publication number
JPH0688829B2
JPH0688829B2 JP2053058A JP5305890A JPH0688829B2 JP H0688829 B2 JPH0688829 B2 JP H0688829B2 JP 2053058 A JP2053058 A JP 2053058A JP 5305890 A JP5305890 A JP 5305890A JP H0688829 B2 JPH0688829 B2 JP H0688829B2
Authority
JP
Japan
Prior art keywords
refractory
alloy
boron
chromium
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2053058A
Other languages
Japanese (ja)
Other versions
JPH03257055A (en
Inventor
喜久雄 有賀
武夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2053058A priority Critical patent/JPH0688829B2/en
Publication of JPH03257055A publication Critical patent/JPH03257055A/en
Publication of JPH0688829B2 publication Critical patent/JPH0688829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高焼結性能を有し、かつ残存膨脹性を有する
製鉄用耐火煉瓦に関するものである。
TECHNICAL FIELD The present invention relates to a refractory brick for iron making having high sintering performance and residual expansivity.

(従来の技術) 最近の鉄鋼業界は製品の高品質化,合理化,高能率化が
進められ新しい製法が開発されて来ているなかその操業
条件は、高温化,処理の多様化,長時間操業化等
々により使用時の条件としては、高温化と温度変化が
大きくなり、長時間化、スラグ組成変化域が広くな
る。等々の事により耐火物に対する使用条件は益々厳し
くなって来ている。
(Prior Art) In the recent steel industry, as the quality, rationalization, and efficiency of products have been improved and new manufacturing methods have been developed, the operating conditions are high temperature, diversification of treatment, and long-term operation. As a condition during use, the temperature rises and the temperature change becomes large, and the operating time becomes long and the slag composition change range becomes wide. Due to such things, the usage conditions for refractories are becoming more and more severe.

この諸条件に対応するために 耐熱スポーリング性 スラグ等の異物浸透による構造的耐スポーリング性 化学的耐浸食性 等に対する抵抗性が高く安定した操業ができしかも長寿
命化の計れる耐火物が強く望まれている。
In order to meet these conditions, heat resistant spalling resistance Structural spalling resistance due to the penetration of foreign matter such as slag High resistance to chemical erosion resistance, etc. Highly resistant refractory that enables stable operation and long life Is desired.

(発明が解決しようとする問題点) 現在この要求に対処するため、 使用原料の高純度化,高級化を進めている。(Problems to be solved by the invention) Currently, in order to meet this requirement, the raw materials used are being highly purified and upgraded.

これらの厳選された高純度原料の特性を生かすため高
圧力による成形と、高温で長時間を要しての焼成を行い
粒子間の結合度を高め組織を緻密化することが品質上か
らは製造の絶対条件となって来ている。特に現在焼成工
程においてはマグネシア・クロム系の塩基性耐火物にお
いては窯詰から窯詰迄に約200時間(10日間)と云う長
い時間を要し、しかも1800℃以上の高温度を必要とす
る。このため煉瓦1トンを焼成するのに600〜800と
云う膨大な燃料(重油)を使う等製造コストが非常に高
くかかる。この傾向は益々大きくなるのが現状である。
また最近これらの耐火材料にクロムボロン系合金粉末を
用い低温処理(150℃〜1000℃)により製出する方法も
提案されて来てこれらの問題点をも解決して来ているが
この方法の欠点として使用時の高温下では収縮現象を起
し主に煉瓦の接合部(目地部)が開き、この接合部から
の溶損が進み、クボミを造り、いわゆるカマボコ状とな
るため、このクボミにより寿命が決ってしまうとか、多
面よりの受熱、溶損が進み、亀裂の発生、剥落現象が生
じ素材の特性を充分生かすことが出来得ず総合的には長
時間焼成品に比べ若干の改善はされて来ているが充分な
耐用を修める迄に至っていないのが現状である。
In order to take advantage of the characteristics of these carefully selected high-purity raw materials, high pressure molding and firing at high temperature for a long time to increase the degree of bonding between particles and densify the structure Has become an absolute requirement. Especially in the present firing process, it takes about 200 hours (10 days) from kiln-filling to kiln-filling with a magnesia / chromium-based basic refractory, and a high temperature of 1800 ° C or higher is required. . Therefore, a huge amount of fuel (heavy oil) of 600 to 800 is used to burn 1 ton of bricks, resulting in a very high manufacturing cost. The current situation is that this tendency becomes even greater.
Recently, a method for producing these refractory materials by using low temperature treatment (150 ° C to 1000 ° C) using chrome boron alloy powder has been proposed and these problems have been solved, but the drawbacks of this method are As a result, shrinkage occurs at high temperatures during use, mainly the joints (joints) of bricks open, and melting loss progresses from these joints, creating dullness and forming a so-called kamaboko-like shape. However, the characteristics of the material could not be fully utilized because heat reception from multiple faces, melting loss proceeded, cracking, flaking phenomenon occurred, and overall there was a slight improvement compared to the long-time baked product. However, the current situation is that it has not reached the point where it has been sufficiently durable.

(問題点を解決するための手段) この様な現状に鑑み本発明者等は種々研究を重ねた結果
150ミクロン以下のクロムボロン系合金とAlおよびまた
はAl合金の粉末を添加することにより 緻密な組織を形成させること 残存膨脹性を保持させること スラグ等の異物の浸潤性を小さくすること 耐熱スポーリング性を高めること 等々の結果を引き出すことに成功し従来のこの種の耐火
物の欠点を大きく改善し使用時一枚板状の耐火壁を構成
させる耐火物を得ることが出来た。
(Means for Solving Problems) As a result of various researches conducted by the present inventors in view of such a current situation
Add a chrome-boron alloy of 150 microns or less and Al and / or Al alloy powder to form a dense structure Maintain a residual expansive property Reduce infiltration of foreign substances such as slag Heat spalling resistance We have succeeded in drawing out the results such as increasing the level, and have greatly improved the drawbacks of conventional refractory materials of this kind, and have obtained a refractory material that constitutes a single plate-shaped refractory wall when used.

本発明品はクロム(Cr)と硼素(B)をモル比で1:1〜
1:2の範囲にあるクロムボロン系合金とAlおよびまたはA
l合金を0.15mm以下の微粉末状として添加することによ
り厳選された耐火材料の特性を充分生かしかつ150℃〜1
000℃での低温域での硬化処理を行うことにより製出し
得るものである。
The product of the present invention contains chromium (Cr) and boron (B) in a molar ratio of 1: 1 to
Chrome boron alloy in the range of 1: 2 and Al and / or A
l Add alloys in the form of fine powder of 0.15 mm or less to make full use of the characteristics of refractory materials carefully selected and 150 ℃ ~ 1
It can be produced by carrying out a curing treatment at a low temperature range of 000 ° C.

即ちクロムボロン系合金粉末は使用時において稼動層よ
り徐々に分解酸化しては耐火物の特性を高めることと同
時に焼結能力を高め緻密な組織を形成するに非常に有効
である。そしてAlやAl合金は使用時に徐々に酸化して母
材中のMgOやSiO2との間でスピネル(MgO・Al2O3)やム
ライト(3Al2O3・2SiO2)を形成して耐火物に残存膨脹
性を付与させるものである。次に詳しくこれらの作用を
記述する。
That is, the chrome boron alloy powder is very effective for gradually decomposing and oxidizing the active layer during use to enhance the characteristics of the refractory and at the same time enhance the sintering ability to form a dense structure. The Al or Al alloy to form a spinel (MgO · Al 2 O 3) or mullite (3Al 2 O 3 · 2SiO 2 ) gradually between MgO and SiO 2 in the base material is oxidized during use refractory It imparts residual swelling property to the product. Next, these actions will be described in detail.

(クロムボロン系合金の添加効果について) クロムボロン系合金粉末を配合することにより使用中に
稼動層より徐々に分解しCrとBと更にそれぞれ酸化する
ことによりCr2O3とB2O3とを生成する。
(Regarding the effect of addition of chromium boron alloy) By mixing chromium boron alloy powder, it gradually decomposes from the operating layer during use and further oxidizes with Cr and B, respectively, to generate Cr 2 O 3 and B 2 O 3. To do.

ここに生成したB2O3とCr2O3は後述の如くそれぞれ有効
に働く。
The B 2 O 3 and Cr 2 O 3 generated here work effectively as described later.

B2O3は耐火物の代表的成分でありしかも難焼結性であ
るMgOやAl2O3等との間に於いていづれも焼結効果が高く
品質特性への影響も小さいので素材特性を害することな
く耐火物の稼動層に緻密な層を形成する。この緻密な層
は高温下での粘性が高く秀れた物理的な特性を保持す
る。
B 2 O 3 is a typical component of refractory and is hard to sinter, even if it is mixed with MgO, Al 2 O 3, etc. A dense layer is formed on the working layer of the refractory without damaging the material. This dense layer has high viscosity at high temperature and retains excellent physical properties.

Cr2O3は、MgO,Al2O3,SiO2との各成分間ではスピネル
(ピクロクロマイトMgO,Cr2O3)を生成させることが耐
熱性を大きく向上させる効果を有すると共に製鉄時のス
ラグ中に溶出した場合はスラグの耐熱性を向上させるた
め融点が高められることとなりスラグの粘性が高まり化
学反応性が著しく小さくなるので耐火物の溶損を小さく
する等耐食性を高めると共にスラグ等異物のレンガ組織
内えの浸透を抑え浸透に起因する変質層の生成が小さく
なるので構造的スポーリングをも改善される。
Cr 2 O 3 has the effect of significantly improving heat resistance by forming spinel (picromchromite MgO, Cr 2 O 3 ) between each of the components MgO, Al 2 O 3 and SiO 2 If it is dissolved in the slag, the melting point will be increased to improve the heat resistance of the slag, and the viscosity of the slag will increase and the chemical reactivity will decrease significantly. Structural percolation is also improved because the permeation of foreign matter into the brick structure is suppressed and the generation of an altered layer due to permeation is reduced.

(Al又はAl合金の使用効果) Al又はAl合金は使用中酸化して活性度高い耐火物と成り
耐火物中のMgO、又はSiO2との間で反応としてスピネル
又はムライトを形成する。
(Effect of using Al or Al alloy) Al or Al alloy oxidizes during use to become a highly active refractory, and forms spinel or mullite as a reaction with MgO or SiO 2 in the refractory.

Al→Al2O3+MgO→MgO,Al2O3→スピネルの生成→(酸化
反応) Al→Al2O3+SiO2→3Al2O3、2SiO2−ムライトの生成→
(酸化反応) 分解酸化し母材との間でスピネルやムライトを生成する
ことにより残存膨脹性となり一枚板の耐火壁を形成する
と共に耐異物浸透性や耐熱性耐スポーリング特性を
も向上させる等の効果がありしかも難焼結性耐火材料で
も従来の同系材料の欠点を改善し使用材料の特性を充分
生かし得た耐火物を得ることが出来たものである。
Al → Al 2 O 3 + MgO → MgO, Al 2 O 3 → Spinel formation → (oxidation reaction) Al → Al 2 O 3 + SiO 2 → 3Al 2 O 3 , 2SiO 2 − Mullite formation →
(Oxidation reaction) Decomposes and oxidizes to form spinel and mullite with the base material, resulting in residual swelling and forming a single-plate fireproof wall, while improving foreign matter penetration resistance and heat resistance and spalling resistance. It is possible to obtain a refractory material which has effects such as the above and which is capable of improving the drawbacks of the conventional similar materials even with the refractory material which is difficult to sinter and making good use of the characteristics of the material used.

尚これら添加された金属粉末は表層より徐々に分解、酸
化反応が進むので常に均一なる焼結層を保つことが出来
て安定した状態を持続することが出来るものである。
The added metal powders gradually decompose and oxidize from the surface layer, so that a uniform sintered layer can be always maintained and a stable state can be maintained.

限定理由 ボロン−クロム系合金の化学成分値を金属クロムと硼
素のモル比を1:1〜1:2としCr+Bを90%以上とする理由 B(硼素)の含有量がモル比で1:1以下の場合 焼成効果が低く物理的品質の向上が小さい。
Reasons for limitation Reasons for setting the chemical composition of boron-chromium alloy to a molar ratio of metallic chromium and boron of 1: 1 to 1: 2 and Cr + B of 90% or more: The content of B (boron) is 1: 1 by molar ratio. In the following cases, the firing effect is low and the improvement in physical quality is small.

B(硼素)の含有量がモル比で1:2以上の場合 硼素の含有量がモル比で1:2以上となると合金素材がCrB
2+Bとなり遊離のB,(硼素)を含有することとなり、
耐火物材に添加した場合遊離の硼素が組織中で容易に移
動が生ずることとなり目標品質および安定した均一なる
品質が保持出来なく成る また合金製造時に材料の収率が低下すると共に成分的に
もバラツキが大きくなる。
When the content of B (boron) is 1: 2 or more in molar ratio When the content of boron is 1: 2 or more in molar ratio, the alloy material is CrB.
2 + B and contains free B, (boron),
When added to refractory materials, free boron easily migrates in the structure, making it impossible to maintain the target quality and stable and uniform quality. Also, the yield of the material decreases during alloy production and the composition is The variation increases.

Cr+Bで90%以上とした理由 添加量を0.5%〜10.0%としており不純成分が増すと母
材に対して低融物生成と云う欠点が出るため 0.15mm以下の粉末とする理由 クロムボロン合金の添加する目的が焼結性と耐食性の向
上にある。
The reason why 90% or more of Cr + B is added. The added amount is 0.5% to 10.0%, and when the impurity content increases, there is a drawback that a low melt is formed in the base material. The reason why the powder is less than 0.15 mm Addition of chrome boron alloy The purpose is to improve sinterability and corrosion resistance.

この効果により耐食性,耐スラグ浸透性を高めることに
より溶損及び熱的、構造的スポーリング性を高めること
にある。このためには合金の分解及び酸化してそれぞれ
の働きをするものである。
This effect is to improve corrosion resistance and slag penetration resistance, thereby enhancing melting loss and thermal and structural spalling properties. For this purpose, the alloy is decomposed and oxidized to perform their respective functions.

Al又はAl,Mg合金、は酸化して活性度の高いAl2O3他これ
がスピネル(MgO−Al2O3),ムライト(3Al2O3,2SiO2
を形成して残存膨脹化とスラグ浸透性を小さくするもの
であるため粒子度が大きいと反応性が乏しくなり効果が
小さくなる。このため0.15mm以下の粒子系とすることが
効果的である。
Al or Al, Mg alloy, which is highly active due to oxidation, is Al 2 O 3 and others, which are spinel (MgO-Al 2 O 3 ) and mullite (3Al 2 O 3 , 2SiO 2 ).
Therefore, since the residual expansion and the slag permeability are reduced, the reactivity becomes poor and the effect becomes small when the particle size is large. Therefore, it is effective to use a particle size of 0.15 mm or less.

実施例 次に本発明の実施例について詳記する。Example Next, an example of the present invention will be described in detail.

1 実施例に用いる原料の化学成分値を表−1に示す。1 The chemical component values of the raw materials used in the examples are shown in Table-1.

上記の原料を用いて 表−2 金属粉末の添加量(Cr−B合金材,Al材) 表−3 金属粉末の粒度(Cr−B合金材,Al材) 表−4 金属材の化学成差(Cr−B合金材,Al材) (以上基礎試験=結果) 表−5 実施例(Cr−B合金材,Al材の複合添加
量) の各項目についての各試験結果を示す。
Using the above raw materials Table-2 Addition amount of metal powder (Cr-B alloy material, Al material) Table-3 Particle size of metal powder (Cr-B alloy material, Al material) Table-4 Chemical difference of metal material (Cr-B alloy material, Al material) (above basic test = result) Table-5 shows each test result for each item of the example (composite addition amount of Cr-B alloy material, Al material).

尚温試体の製作条件は、 成形圧力は1000kg/cm2で、硬化温度350℃を基準とする
詳細は実施例の各表中に記載する。
The manufacturing conditions for the hot specimen are as follows: molding pressure is 1000 kg / cm 2 , and curing temperature is 350 ° C.

(発明の効果) 以上の実施例に示されるように従来のマグネシアクロム
材および同材クロムボロン合金添加材では1600℃の処理
を行うことにより比較品材2,4,5はそれぞれ−0.62%,
−1.33%,−1.79%とそれぞれ残存収縮性を示すが本発
明品はすべて残存膨脹性を示すと共に溶損量およびスラ
グ等の異物浸透深さにおいても最高長時間焼成品に比べ
本発明実施例品は94%〜100%,と55%〜86%と従来の
マグネシア−クロム材に比べては54%〜58%と33%〜52
%と品質的に大きな向上を修めることが出来る。この様
にスラグ等の異物の浸透による変質層の生成,これに伴
う構造的剥落等も防止することが出来ることと最も特筆
すべきことは前述の如く残存膨脹性を保有させることが
出来たことにより従来品が残存収縮性であったがために
主に目地部(煉瓦接合部)の開きによりカマボコ状と成
り極部的に溝状の凹み溶損を来たしこのため多面よりの
受熱、浸食を受けることにより溶損を早めかつ稼動層の
剥落現象をも助長し素材の特質を充分生かしきれず寿命
を来たしていたものが使用時には平滑な一放岩状の稼動
面を形成し素材の特性を充分生かしきることの出来たこ
とにより安定した操業が出来、かつ長寿命化が計れるも
のでありその効果は絶大なるものがある。
(Effect of the invention) As shown in the above examples, the conventional magnesia chrome material and the chrome boron alloy additive material of the same material were treated at 1600 ° C.
-1.33% and -1.79%, respectively, but each of the present invention products shows residual expansion properties, and at the same time, the invention examples show the maximum amount of erosion and the penetration depth of foreign substances such as slag. The products are 94% to 100%, 55% to 86%, 54% to 58% and 33% to 52% compared to conventional magnesia-chromium materials.
It is possible to improve significantly in terms of quality. In this way, it is possible to prevent the formation of an altered layer due to the permeation of foreign matter such as slag, and the structural detachment that accompanies this, and most notably, it was possible to retain the residual expansivity as described above. Due to the residual shrinkage of the conventional product, the joints (brick joints) mainly open to form a chamfered shape, resulting in groove-shaped pits and melting damage at the poles, which results in heat reception and erosion from multiple faces. By receiving it, it accelerates melting loss and promotes the phenomenon of stripping of the operating layer, and the characteristics of the material could not be fully utilized and the product had reached the end of its life. Since it can be fully utilized, stable operation can be achieved and the life can be extended, and its effect is great.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一者若しくは二者以上より成る耐火材料に
150ミクロン以下のクロムと硼素のモル比1:1〜1:2で不
純成分10%以内のクロムボロン合金0.5%〜10%とAlお
よびまたはAl合金で不純成分10%以内の金属粉末を0.5
%〜5.0%添加し有機及びまたは無機質の適宜のバイン
ダーを用い混練、成形し150℃〜1000℃で硬化させたこ
とを特徴とする製鉄用耐火物。
1. A refractory material composed of one or more members
Chromium-boron alloy 0.5% to 10% with an impure component within 10% and Al and / or Al alloy with an impure component within 10% at a molar ratio of chromium to boron of 1: 1 to 1: 2 is 0.5 to 0.5.
% -5.0% added, kneaded and molded using an appropriate organic and / or inorganic binder, and cured at 150 ° C to 1000 ° C, a refractory for iron making.
JP2053058A 1990-03-05 1990-03-05 Refractory Expired - Lifetime JPH0688829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053058A JPH0688829B2 (en) 1990-03-05 1990-03-05 Refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053058A JPH0688829B2 (en) 1990-03-05 1990-03-05 Refractory

Publications (2)

Publication Number Publication Date
JPH03257055A JPH03257055A (en) 1991-11-15
JPH0688829B2 true JPH0688829B2 (en) 1994-11-09

Family

ID=12932250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053058A Expired - Lifetime JPH0688829B2 (en) 1990-03-05 1990-03-05 Refractory

Country Status (1)

Country Link
JP (1) JPH0688829B2 (en)

Also Published As

Publication number Publication date
JPH03257055A (en) 1991-11-15

Similar Documents

Publication Publication Date Title
US4605635A (en) Carbon-containing refractory
CN103708844B (en) Al2O3-Cr2O3 refractory product and preparation method thereof
KR20140007009A (en) Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising c and si
JPS6141862B2 (en)
JPH0688829B2 (en) Refractory
JPH0881256A (en) Brick containing compressed and pulverized expanded graphite
JPS6016393B2 (en) Method for manufacturing carbon-containing refractories with high oxidation resistance
JPH0688830B2 (en) Refractory
JPH09295857A (en) Carbon-containing brick containing aluminum oxycarbide
RU2148049C1 (en) Spinel-periclase-carbonic refractory material
JPH0688827B2 (en) Refractory
JPS6243948B2 (en)
JP2001192259A (en) Spinel-carbonaceous brick for hearth of direct current electric furnace
JPH04280858A (en) Production of unburned magnesia-carbon brick
JPH0585805A (en) Carbon-containing fire-resistant material
JPH05301772A (en) Carbon-containing brick
JPH0578180A (en) Carbon fiber-containing refractory
JPH06263523A (en) Production of carbon-containing unburned brick
JP3703104B2 (en) Magnesia-chromic unfired brick
JPH03232762A (en) Magnesia-containig refractory
JPS63151660A (en) Lining brick for vacuum degassing furnace
JPH03237053A (en) Refractory
JP2000327401A (en) Plate for slide gate
JPH07172907A (en) Carbon-containing refractory
JP3795933B2 (en) Magnesia-chromic fired brick