JP2001192259A - Spinel-carbonaceous brick for hearth of direct current electric furnace - Google Patents

Spinel-carbonaceous brick for hearth of direct current electric furnace

Info

Publication number
JP2001192259A
JP2001192259A JP2000149867A JP2000149867A JP2001192259A JP 2001192259 A JP2001192259 A JP 2001192259A JP 2000149867 A JP2000149867 A JP 2000149867A JP 2000149867 A JP2000149867 A JP 2000149867A JP 2001192259 A JP2001192259 A JP 2001192259A
Authority
JP
Japan
Prior art keywords
spinel
brick
carbon
mgo
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000149867A
Other languages
Japanese (ja)
Other versions
JP3748196B2 (en
Inventor
Masato Iiyama
眞人 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000149867A priority Critical patent/JP3748196B2/en
Publication of JP2001192259A publication Critical patent/JP2001192259A/en
Application granted granted Critical
Publication of JP3748196B2 publication Critical patent/JP3748196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a means capable of stably executing melting of scrap, etc., by improving the corrosion resistance of a corrosive brick for the hearth of a direct current electric furnace. SOLUTION: This means is attained by using a spinel carbonaceous brick for the hearth of the direct current electric furnace consisting of an aggregate consisting of Al2O3-MgO based spinel, magnesia and alumina and in which the weight ratio of respective components are (Al2O3-MgO based spinel >= magnesia) and (Al2O3-MgO based spinel >= alumina) and 5-25 wt.% carbon per the sum of the aggregate and the carbon and moreover containing a binder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】スクラップ溶解用の直流電気
炉の炉底電極には、鋼に電流を流すマルチピン式とスチ
ールロッド式、および導電性耐火物に電流を流す方式が
ある。本発明は後者の導電性炉底電極用耐火物に関する
ものである。
BACKGROUND OF THE INVENTION As a bottom electrode of a DC electric furnace for melting scrap, there are a multi-pin type and a steel rod type in which an electric current flows through steel, and a method in which an electric current flows through a conductive refractory. The present invention relates to the latter refractory for a conductive bottom electrode.

【0002】[0002]

【従来の技術】直流電気炉炉底用導電材耐火物として、
転炉でも通常使用されているMgO−C煉瓦が一般的に
使用されている。カーボンは煉瓦中でスラグによる侵食
やスラグの浸透・剥離を防止するのに有効であるが、電
極として不可欠な特性である導電性を付与している。M
gO質の骨材はスラグに対する耐食性に優れている。
2. Description of the Related Art As a conductive material refractory for a furnace bottom of a DC electric furnace,
MgO-C bricks, which are usually used also in converters, are generally used. Carbon is effective in preventing erosion by slag and permeation and exfoliation of slag in bricks, but imparts conductivity, which is an essential property as an electrode. M
The gO-based aggregate has excellent corrosion resistance to slag.

【0003】しかしながら、従来のMgO−C煉瓦では
損耗速度が大きいため補修材の使用量が多くなってしま
い、新材質の耐火物の採用により耐火物の材料費や施工
のコストを低減することが要求されている。
However, the conventional MgO-C brick has a high wear rate, so that the amount of repair material used increases, and adoption of a new refractory material can reduce the material cost and construction cost of the refractory material. Has been requested.

【0004】このような問題を解決するべくスピネル−
カーボン系煉瓦が開発されている(特開昭54−125
209号公報)。この煉瓦は主にホットスポット部等の
炉壁用のもので、MgO/Alが重量比で75/
25〜28/72の組成を有するスピネル質溶融骨材が
65〜95重量%、カーボン又はカーボン含有物がC換
算で35〜5重量%からなるものである。
[0004] In order to solve such a problem, spinel-
Carbon bricks have been developed (JP-A-54-125).
209). This brick is mainly for a furnace wall such as a hot spot portion, and has a weight ratio of MgO / Al 2 O 3 of 75 /
The spinel-based molten aggregate having a composition of 25 to 28/72 is 65 to 95% by weight, and the carbon or carbon-containing material is 35 to 5% by weight in terms of C.

【0005】また、製鋼用電気炉の炉床に使用される耐
火物として、アルミナ45〜90重量%、マグネシア5
〜30重量%、カーボン25〜25重量%を含有し、上
記マグネシアの少なくとも5重量%以上がペリクレース
の形で配合されており、フェノール樹脂または他の有機
樹脂系バインダーからなるアルミナ−スピネル−マグネ
シア−カーボン煉瓦も知られている(特開平10−25
1055号公報)。この煉瓦はスラグ耐食性に問題があ
る。
As refractories used in the hearth of an electric furnace for steel making, 45 to 90% by weight of alumina,
-30% by weight and 25-25% by weight of carbon, wherein at least 5% by weight or more of the above magnesia is blended in the form of periclase, and alumina-spinel-magnesia made of a phenolic resin or another organic resin binder is used. Carbon bricks are also known (JP-A-10-25)
No. 1055). This brick has a problem in slag corrosion resistance.

【0006】特開平10−212159号公報には、炉
床電極用アルミナ−マグネシア−カーボン系耐火物が開
示されている。この耐火物は、アルミナ45〜90wt
%、マグネシア5〜30wt%、カーボン5〜25wt
%、酸化防止剤0〜10wt%で、5wt%以上はベリ
クレースのアルミナ−スピネル−マグネシア−カーボン
系耐火物であり、電気比抵抗が2×10−4Ω・m以下
である。
JP-A-10-212159 discloses an alumina-magnesia-carbon refractory for a hearth electrode. This refractory is made of alumina 45 to 90 wt.
%, Magnesia 5-30wt%, carbon 5-25wt
%, The antioxidant is 0 to 10% by weight, and 5% by weight or more is an alumina-spinel-magnesia-carbon refractory of Vericlace, and has an electric resistivity of 2 × 10 −4 Ω · m or less.

【0007】[0007]

【発明が解決しようとする課題】直流電気炉炉底電極に
使用するMgO−C耐火物は煉瓦自身に流れる電流のジ
ュール熱による発熱と炉内雰囲気の高温により1700
℃以上になることがある。MgO−C煉瓦は高温で使用
されると煉瓦自身のマグネシアとカーボンが反応を起こ
し煉瓦の組織が脆弱化し損耗が促進されることが知られ
ており、MgO−C煉瓦を炉底に使用した炉底電極では
この反応が損傷要因のひとつになっていると考えられ
る。使用後の炉底電極の解体調査によってもMgO−C
煉瓦は煉瓦自身のMgOとCの酸化−還元反応による脱
炭とMgO骨材のやせ細りによる脆化が起き、そこにス
ラグ、メタルが浸透し損耗が進んでいることが確認され
た。以上に述べたMgO−C煉瓦の高温での耐火物自身
の酸化−還元反応を防止する事が課題である。
The MgO-C refractory used for the bottom electrode of the DC electric furnace is heated to 1700 due to the heat generated by the Joule heat of the current flowing through the brick itself and the high temperature of the furnace atmosphere.
℃ or higher. It is known that when MgO-C bricks are used at a high temperature, magnesia and carbon of the bricks themselves react with each other to weaken the structure of the bricks and promote wear. Therefore, a furnace using MgO-C bricks as a furnace bottom is known. This reaction is considered to be one of the causes of damage at the bottom electrode. Disassembly investigation of the bottom electrode after use showed that MgO-C
It was confirmed that the brick was decarburized by the oxidation-reduction reaction of MgO and C of the brick itself and embrittled due to the thinning of the MgO aggregate, and slag and metal penetrated there, and it was confirmed that wear was progressing. It is an object to prevent the oxidation-reduction reaction of the refractory itself at a high temperature of the MgO-C brick described above.

【0008】特開平10−212159号公報の耐火物
は、アルミナ原料が主骨材で、5wt%以上はペリクレ
ースであり、スピネルは生成時の組織緻密化、体積安定
が目的である。
The refractory disclosed in Japanese Patent Application Laid-Open No. Hei 10-212159 is composed of alumina as a main aggregate and 5 wt% or more of periclase. The purpose of spinel is to densify the structure and stabilize the volume at the time of formation.

【0009】[0009]

【課題を解決するための手段】炉底電極に使用された後
のMgO−C煉瓦の解析によって、ピンの周辺部は煉瓦
自身のマグネシアとカーボンの反応によって煉瓦の損傷
が進んでいることが確認された。このような煉瓦自身の
骨材とカーボンとの反応による損傷を低減するためカー
ボン含有煉瓦において、マグネシアクリンカーから他の
クリンカーに材質変更しカーボンとの反応による損傷を
低減することにした。
The analysis of the MgO-C brick after being used for the furnace bottom electrode confirmed that the brick was damaged more by the reaction of the magnesia and carbon of the brick itself at the periphery of the pin. Was done. In order to reduce the damage caused by the reaction between the aggregate and the carbon of the brick itself, in the carbon-containing brick, the material was changed from magnesia clinker to another clinker to reduce the damage caused by the reaction with carbon.

【0010】マグネシアに代わり安価で耐食性に優れ、
かつ高温でカーボンによる還元に対して強い骨材として
はアルミナ、Al−MgO系スピネル等がある
が、電気炉のスラグに対してはスピネルの方が耐食性に
優れているのでスピネルを主骨材とするスピネル−マグ
ネシア−アルミナ−C系およびスピネル−アルミナ−マ
グネシア−C系の煉瓦を開発、適用することにした。
Inexpensive and excellent in corrosion resistance instead of magnesia,
And alumina as a strong aggregate against reduction by carbon at high temperatures, there are Al 2 O 3 -MgO based spinel, mainly a spinel so towards the spinel is excellent in corrosion resistance against slag electric furnace Spinel-magnesia-alumina-C and spinel-alumina-magnesia-C bricks were developed and applied as aggregates.

【0011】マグネシアはカーボンと酸化−還元反応を
起こすという点で、またアルミナはスラグに対する耐食
性が悪く望ましくないが、第2、第3成分として使用す
るには量が少なく上記の欠点が低減される。また、約1
200℃以上になるとアルミナとマグネシアが反応しス
ピネルを生成し始めるので問題はさらになくなる。さら
には一般に知られているようにスピネル生成に伴う膨張
により組織が緻密になり耐食性が向上するという効果も
期待できる。
Although magnesia causes an oxidation-reduction reaction with carbon, and alumina has poor corrosion resistance to slag, it is not desirable. However, when used as the second and third components, the amount thereof is small and the above-mentioned disadvantages are reduced. . Also, about 1
When the temperature exceeds 200 ° C., the problem further disappears because alumina and magnesia react to start generating spinel. Further, as is generally known, an effect that the structure is made dense by the expansion accompanying spinel generation and the corrosion resistance is improved can be expected.

【0012】スピネル原料はAlとMgOが等モ
ル比の場合、重量比では71.7:28.3になる。商
用の製品では重量比は広範囲に渡っており、少量のTi
、SiO、FeO等の不純物も含まれている。
本発明が適用されるスピネルはAl:MgOの重
量比が60:40〜90:10程度のものである。使用
するスピネル骨材は焼成品でも良いが、電融品の方が緻
密で耐用性に優れる。スピネルの粒径は最大粒径が5m
m程度のものが好ましい。
The spinel material has a weight ratio of 71.7: 28.3 when Al 2 O 3 and MgO are equimolar. Commercial products have a wide range of weight ratios and small amounts of Ti
It also contains impurities such as O 2 , SiO 2 , and FeO 3 .
The spinel to which the present invention is applied has a weight ratio of Al 2 O 3 : MgO of about 60:40 to 90:10. The spinel aggregate used may be a fired product, but an electrofused product is denser and has excellent durability. The maximum particle size of spinel is 5m
m is preferable.

【0013】マグネシアは最大粒径が5mm程度のもの
が好ましい。Al−MgO系スピネル:マグナシ
アの比率は重量比で1:0〜1:1程度が適当である。
マグネシアの好ましい添加量は0.1〜35重量%であ
る。
Magnesia preferably has a maximum particle size of about 5 mm. Al 2 O 3 -MgO spinel: ratio of Magunashia a weight ratio of 1: 0 to 1: about 1 is appropriate.
The preferred addition amount of magnesia is 0.1 to 35% by weight.

【0014】アルミナは最大粒径が5mm程度のものが
好ましい。Al−MgO系スピネル:アルミナの
比率は重量比で1:0〜1:1程度が適当である。アル
ミナの好ましい添加量は0.1〜35重量%である。
The alumina preferably has a maximum particle size of about 5 mm. Al 2 O 3 -MgO spinel: the ratio of alumina in a weight ratio of 1: 0 to 1: about 1 is appropriate. The preferable addition amount of alumina is 0.1 to 35% by weight.

【0015】本発明ではこのマグネシアやアルミナを添
加することによって組織をより緻密化することができ
る。
In the present invention, the structure can be further densified by adding magnesia or alumina.

【0016】カーボン原料は鱗状黒鉛、人造黒鉛、土状
黒鉛、キッシュグラファイト、無煙炭等が使えるが高純
度のものが耐用性が良い。粒径は1mm以下程度のもの
が好ましい。配合量は5%より少ないと熱的なスポーリ
ングを起こすことが多く、また25%以上になると酸化
が多くなるので望ましくない。好ましい配合量は6〜2
0重量%程度である。
As the carbon raw material, scaly graphite, artificial graphite, earthy graphite, quiche graphite, anthracite, etc. can be used, but those having high purity have good durability. The particle size is preferably about 1 mm or less. If the amount is less than 5%, thermal spalling often occurs, and if it is more than 25%, oxidation is increased, which is not desirable. The preferred amount is 6 to 2
It is about 0% by weight.

【0017】バインターは通常の有機バインダーが使用
可能であり、MgO−C煉瓦で使用されるフェノール樹
脂あるいはピッチを単独、または併用で使用することが
一般的である。このバインダーは骨材、カーボン等を結
合して一体化するものであり、焼成後は炭化して引続き
バインダー機能を発揮するものである。バインダーの配
合量は骨材とカーボンの合計100重量部に対し2〜7
重量部程度が適当である。
As the binder, a usual organic binder can be used, and it is common to use a phenol resin or a pitch used for MgO-C bricks alone or in combination. This binder binds and integrates aggregate, carbon, and the like, and after firing, carbonizes and continuously exhibits a binder function. The amount of the binder is 2 to 7 based on 100 parts by weight of the aggregate and carbon in total.
A suitable amount is about parts by weight.

【0018】本発明では、前記の骨材成分に加えて、A
l、Si、Mg又はBを加えることが好ましい。これら
は単体(Al、Si)、合金(Al−Mg等)又は化合物
(B4C等)の形で添加することができる。
In the present invention, in addition to the above-mentioned aggregate component, A
It is preferable to add 1, Si, Mg or B. These can be added in the form of simple substance (Al, Si), alloy (Al-Mg or the like) or compound (B4C or the like).

【0019】煉瓦製造時の混練、成形、乾燥の方法は通
常のMgO−C煉瓦と同様である。通常、乾燥後に樹脂
の強度を確保するため150〜300℃程度で熱処理を
行う。さらに高温で熱処理を行い、樹脂の分解やカーボ
ンボンドが形成されるまで焼成しても構わない。
The method of kneading, molding and drying at the time of brick production is the same as that of ordinary MgO-C brick. Usually, heat treatment is performed at about 150 to 300 ° C. to secure the strength of the resin after drying. Further, heat treatment may be performed at a high temperature, followed by baking until the resin is decomposed or carbon bonds are formed.

【0020】なお、骨材の材質を変更してもカーボンの
変更は無いので、新しく開発した煉瓦の導電性に関して
は問題は生じない。
Since the carbon is not changed even if the material of the aggregate is changed, there is no problem regarding the conductivity of the newly developed brick.

【0021】[0021]

【実施例】煉瓦の試作にはスピネル骨材としてAl
の重量比が68%(最大粒径4mm)の焼成スピネル
Aと85%(最大粒径4mm)の電融スピネルBの2種
類を使用した。MgO骨材は純度98%(最大粒径0.5
mm)の電融品、Al 骨材は純度99%(最大粒
径2mm)の電融品、カーボン(鱗状黒鉛)は純度98
重量%(最大粒径1mm)の鱗状黒鉛を用いた。
EXAMPLE For the trial production of brick, Al was used as spinel aggregate.2O
3Baked spinel with a weight ratio of 68% (maximum particle size 4 mm)
A and 85% (maximum particle size 4mm) electrofused spinel B
Used. MgO aggregate is 98% pure (maximum particle size 0.5
mm) electrofused product, Al2O 3Aggregate is 99% pure (maximum grain
Electrolyte with a diameter of 2 mm), purity of carbon (scale graphite) 98
% By weight (maximum particle size: 1 mm) of scale graphite was used.

【0022】これらの原料にフェノール樹脂3重量%を
添加して混練し、成形、乾燥後、250℃で10時間の
熱処理を行い、表の11種類の煉瓦1〜11を試作し
た。
To these raw materials, 3% by weight of a phenolic resin was added, kneaded, molded, dried, and then heat-treated at 250 ° C. for 10 hours to produce 11 types of bricks 1 to 11 as shown in the table.

【0023】比較用のMgO−C煉瓦MおよびAl
−C煉瓦AのMgO、Al、カーボン原料およ
び製造方法は試作煉瓦と同一である。
Comparative MgO-C brick M and Al 2 O
MgO, Al 2 O 3 , carbon raw material and manufacturing method of the 3- C brick A are the same as those of the prototype brick.

【0024】試作煉瓦の耐用性を従来のMgO−C煉瓦
Mと比較調査するため、Ar雰囲気で1700℃、2時
間の加熱処理を行い、煉瓦自体の酸化−還元反応による
処理前後の重量減少率を求めた。また、1700℃で回
転ドラム侵食試験を行い侵食速度を比較した。使用した
スラグの成分はCaO:35、SiO:20、Al
:6、MgO:8、FeO:31(wt%)であ
る。
The durability of the prototype brick was changed to the conventional MgO-C brick.
1700 ° C, 2 hours in Ar atmosphere for comparison with M
Heat treatment during the oxidation and reduction of the brick itself
The weight loss rate before and after the treatment was determined. Also, at 1700 ° C
Rolling drum erosion tests were performed to compare the erosion rates. used
The components of the slag are CaO: 35, SiO2: 20, Al 2
O3: 6, MgO: 8, FeO: 31 (wt%)
You.

【0025】この試験結果よりマグネシア主成分の煉瓦
は耐食性は良いが酸化還元反応には弱く、アルミナ主成
分の煉瓦は酸化還元反応には強いが耐食性が悪く、スピ
ネル主成分の煉瓦は両特性をバランス良く備えているこ
とが確認できる。
According to the test results, the magnesia-based brick has good corrosion resistance but is weak to the oxidation-reduction reaction, and the alumina-based brick is strong to the oxidation-reduction reaction but has poor corrosion resistance, and the spinel-based brick has both properties. You can see that they are well-balanced.

【0026】[0026]

【表1】 [Table 1]

【0027】導電炉床方式の80トン直流電気炉の炉底
電極部で煉瓦2と、煉瓦6に金属粉末Al、Siをそれ
ぞれ2%、1%添加した煉瓦6’を従来材のMgO−C
質比較煉瓦Mの中に部分的に張り分けを行い効果を確認
した。
The brick 2 and the brick 6 'obtained by adding 2% and 1% of metal powders Al and Si to the brick 6 at the furnace bottom electrode portion of a conductive hearth type 80-ton DC electric furnace, respectively, are made of a conventional material, MgO-C.
The effect was confirmed by partially separating the inside of the quality comparison brick M.

【0028】使用後の解体調査によると従来材のMgO
−C煉瓦、Mは稼働面から約15mmの深さまで酸化−
還元反応による脆化が起き、一部スラグ、メタルが浸透
している。一方、本発明による煉瓦2、6’は脆化の深
さは2mmである。また、煉瓦の長さは初期に500m
mであったが従来材Mの残厚が200mmに対して煉瓦
2が260mm、煉瓦6’が280mmと耐用性が高い
ことが確認された。
According to the disassembly investigation after use, it was found that MgO
-C brick and M are oxidized to a depth of about 15mm from the working surface-
Embrittlement occurs due to a reduction reaction, and slag and metal partially penetrate. On the other hand, the bricks 2, 6 'according to the invention have a brittleness depth of 2 mm. The length of the brick is initially 500m
m, but the remaining thickness of the conventional material M was 200 mm, the brick 2 was 260 mm, and the brick 6 ′ was 280 mm, confirming high durability.

【0029】[0029]

【発明の効果】本発明により、直流電気炉炉底の煉瓦の
高温における耐食性を改善して、電気炉の煉瓦交換時期
を延長させ、安定してスクラップ等の溶解を行うことが
できる。
According to the present invention, it is possible to improve the corrosion resistance of bricks at the bottom of a DC electric furnace at a high temperature, prolong the brick replacement time of the electric furnace, and stably dissolve scraps and the like.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性耐火物を使用した炉底電極からな
る直流電気炉の煉瓦であって、酸化物の骨材とカーボン
およびバインダー、酸化防止剤からなり、カーボンの含
有量が5〜25重量%、骨材がAl−MgO系ス
ピネルを主成分として他にマグネシア、アルミナからな
るスピネル−マグネシア−アルミナ−C質煉瓦又はスピ
ネル−アルミナ−マグネシア−C質煉瓦
1. A brick for a DC electric furnace comprising a furnace bottom electrode using a conductive refractory, comprising an oxide aggregate, carbon, a binder and an antioxidant, and having a carbon content of 5 to 25. wt%, magnesia aggregate to another as main components Al 2 O 3 -MgO spinel, spinel of alumina - magnesia - alumina -C bricks or spinel - alumina - magnesia -C bricks
【請求項2】 Al−MgO系スピネルとマグネ
シアとアルミナからなり、各成分の重量比が Al−MgO系スピネル ≧ マグネシア Al−MgO系スピネル ≧ アルミナ である骨材と、カーボンを該骨材とカーボンの和の5〜
25重量%からなり、さらにバインダーを含む直流電気
炉炉底用スピネル−C質煉瓦
2. An aggregate comprising Al 2 O 3 —MgO-based spinel, magnesia and alumina, wherein the weight ratio of each component is Al 2 O 3 —MgO-based spinel ≧ Magnesia Al 2 O 3 —MgO-based spinel ≧ Alumina. And carbon is 5 to 5 times the sum of the aggregate and carbon.
Spinel-C brick for DC electric furnace hearth comprising 25% by weight and further containing a binder
【請求項3】 請求項1又は2の骨材とカーボンとの和
100重量部に対して10重量部以下のAl、Si、M
g又はBを含有する直流電気炉炉底用スピネル−C質煉
3. Al, Si, M not more than 10 parts by weight based on 100 parts by weight of the sum of the aggregate of claim 1 or 2 and carbon.
g or B containing spinel-C brick for furnace bottom of DC electric furnace
JP2000149867A 1999-10-21 2000-05-22 Spinel for DC electric furnace hearth-C brick Expired - Fee Related JP3748196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149867A JP3748196B2 (en) 1999-10-21 2000-05-22 Spinel for DC electric furnace hearth-C brick

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-299027 1999-10-21
JP29902799 1999-10-21
JP2000149867A JP3748196B2 (en) 1999-10-21 2000-05-22 Spinel for DC electric furnace hearth-C brick

Publications (2)

Publication Number Publication Date
JP2001192259A true JP2001192259A (en) 2001-07-17
JP3748196B2 JP3748196B2 (en) 2006-02-22

Family

ID=26561756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149867A Expired - Fee Related JP3748196B2 (en) 1999-10-21 2000-05-22 Spinel for DC electric furnace hearth-C brick

Country Status (1)

Country Link
JP (1) JP3748196B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126374A (en) * 2008-11-25 2010-06-10 Ngk Insulators Ltd Method for producing magnesium oxide-spinel composite oxide
JP2017007901A (en) * 2015-06-24 2017-01-12 品川リフラクトリーズ株式会社 Spinel-magnesia-carbonaceous brick
JP2018505835A (en) * 2014-12-22 2018-03-01 レフラテクニック ホルディング ゲゼルシャフト ミット ベシュレンクテル ハフツングREFRATECHNIK Holding GmbH Refractories and their use
CN114478031A (en) * 2021-12-27 2022-05-13 偃师中岳耐火材料有限公司 Production process of unburned aluminum-magnesia-carbon brick for electric furnace steel ladle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126374A (en) * 2008-11-25 2010-06-10 Ngk Insulators Ltd Method for producing magnesium oxide-spinel composite oxide
JP2018505835A (en) * 2014-12-22 2018-03-01 レフラテクニック ホルディング ゲゼルシャフト ミット ベシュレンクテル ハフツングREFRATECHNIK Holding GmbH Refractories and their use
JP2017007901A (en) * 2015-06-24 2017-01-12 品川リフラクトリーズ株式会社 Spinel-magnesia-carbonaceous brick
CN114478031A (en) * 2021-12-27 2022-05-13 偃师中岳耐火材料有限公司 Production process of unburned aluminum-magnesia-carbon brick for electric furnace steel ladle

Also Published As

Publication number Publication date
JP3748196B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
JPH0729847B2 (en) Magnesite-Carbon refractory
JP2001192259A (en) Spinel-carbonaceous brick for hearth of direct current electric furnace
JP4187183B2 (en) Magnesia-carbon brick
JP2002080272A (en) Magnesia-spinel-carbonaceous brick
JP2006056735A (en) Magnesia-graphite brick
JP2015189640A (en) Alumina-silicon carbide-carbonaceous brick
JP2006021972A (en) Magnesia-carbon brick
JPH09295857A (en) Carbon-containing brick containing aluminum oxycarbide
JPH11322405A (en) Low carbon refractory and its production
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JPH0585805A (en) Carbon-containing fire-resistant material
JPS61266345A (en) Carbon-containing basic refractory brick
JPH05301772A (en) Carbon-containing brick
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
JP2004196578A (en) Magnesia-graphite brick
JPH10251055A (en) Alumina-magnesia-carbon refractory material for heath of electric furnace
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory
JP2000191364A (en) Shaped magnesia-chrome refractory
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH10212159A (en) Alumina-magnesia-carbon refractory for hearth electrode
JP2003322479A (en) Electrode member
JPH05319902A (en) Carbon-containing basic refractory
JPH1017357A (en) Production of carbon-containing refractory
JPH0475184B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees