JPH10212159A - Alumina-magnesia-carbon refractory for hearth electrode - Google Patents

Alumina-magnesia-carbon refractory for hearth electrode

Info

Publication number
JPH10212159A
JPH10212159A JP9028388A JP2838897A JPH10212159A JP H10212159 A JPH10212159 A JP H10212159A JP 9028388 A JP9028388 A JP 9028388A JP 2838897 A JP2838897 A JP 2838897A JP H10212159 A JPH10212159 A JP H10212159A
Authority
JP
Japan
Prior art keywords
magnesia
alumina
carbon
brick
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9028388A
Other languages
Japanese (ja)
Inventor
Minoru Nitta
実 新田
Yoshinobu Ugawa
好信 鵜川
Tomoharu Kawanishi
智春 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yotai Refractories Co Ltd
Original Assignee
Yotai Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yotai Refractories Co Ltd filed Critical Yotai Refractories Co Ltd
Priority to JP9028388A priority Critical patent/JPH10212159A/en
Publication of JPH10212159A publication Critical patent/JPH10212159A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an unfired brick for a hearth electrode having higher corrosion resistance than the conventional magnesia-carbon brick by using alumina, magnesia and carbon in a specified ratio and blending a specified amt. of the magnesia in the form of periclase. SOLUTION: This brick for a hearth electrode is an unfired alumina- magnesia-carbon or alumina-spinel-magnesia-carbon brick contg. 45-90wt.% alumina, 5-30wt.% magnesia and 5-25wt.% carbon, contg. >=5wt.%, preferably 5-30wt.% of the magnesia in the form of periclase and having electric conductivity represented by <=2×10<-4> Ω.m specific resistance. The brick further contains 0.5-10wt.% powder of Al, Mg, Si or an alloy of them as an antioxidant. An org. resin binder such as phenolic resin is added at the time of blending starting materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、製鋼用直流電気炉の炉
床電極れんがに使用される耐火物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory used for a hearth electrode brick of a DC electric furnace for steelmaking.

【0002】[0002]

【従来の技術】炉床電極れんがとしては導電性のあるマ
グネシア−カーボン質れんがが一般的に使用されている
が、さらなる耐用向上が要求されている。
2. Description of the Related Art Electroconductive magnesia-carbon bricks are generally used as hearth electrode bricks, but further improvement in durability is required.

【0003】[0003]

【発明が解決しようとする課題】炉床電極れんがの稼動
面側は溶鋼の流動による摩耗損傷と吹錬中の酸素による
カーボンの酸化にさらされており、耐用向上のためには
これらに対して抵抗力の強い耐火物が必要となる。
The operating surface side of the hearth electrode brick is exposed to wear damage due to the flow of molten steel and oxidation of carbon due to oxygen during blowing, and in order to improve the durability, it is necessary to use these materials. A refractory with strong resistance is required.

【0004】[0004]

【課題を解決するための手段】本発明は、アルミナ45
〜90重量%,マグネシア5〜30重量%,カーボン5
〜25重量%の範囲にあり、上記含有マグネシアは少な
くとも5重量%以上がペリクレースとして配合されたア
ルミナ−マグネシア−カーボンおよびアルミナ−スピネ
ル−マグネシア−カーボンれんがを炉床電極れんがとし
て使用することにより、耐用の向上が図れることを見い
だした。
SUMMARY OF THE INVENTION The present invention relates to an alumina 45.
~ 90% by weight, magnesia 5 ~ 30% by weight, carbon 5
The content of magnesia is at least 5% by weight or more, and alumina-magnesia-carbon and alumina-spinel-magnesia-carbon bricks containing at least 5% by weight of periclase are used as hearth electrode bricks. Has been found to be improved.

【0005】[0005]

【作用】本発明は、アルミナ質原料にマグネシア質原料
およびカーボンを添加した耐火物に関するものであり、
予熱昇温および使用中にアルミナ質原料とマグネシア質
原料が反応してスピネルの生成による体積膨張により気
孔が閉塞し、外部より耐火物内部への空気の流入を遮断
し、耐火物中の構成成分であるカーボンの酸化を防止す
る、同時に本耐火物は緻密化し溶鋼の流れによる摩耗を
防止する。
The present invention relates to a refractory obtained by adding a magnesia material and carbon to an alumina material,
The alumina-based material and the magnesia-based material react during preheating and use, causing pores to close due to volume expansion due to spinel formation, blocking the flow of air from the outside into the refractory, and the constituents in the refractory. In addition, the refractory is prevented from being oxidized, and at the same time, the refractory is densified to prevent wear due to the flow of molten steel.

【0006】またカーボン添加は導電性の付与の他、濡
れ性の減少によるスラグの浸入・反応の減少および耐ス
ポーリング性に優れた特性により損耗を減少することが
可能である。
In addition to the addition of carbon, the addition of carbon can reduce slag infiltration and reaction due to reduction in wettability, and reduce wear due to its excellent spalling resistance.

【0007】[0007]

【発明の構成】本発明に用いられるアルミナ原料は電融
アルミナ,焼結アルミナ,ボーキサイトおよびその他の
アルミナ80重量%以上含有するハイアルミナ原料の使
用が可能で、スピネル原料はアルミナ,マグネシアを各
々90〜20重量%,10〜80重量%含有し、そのア
ルミナとマグネシアの合計が80重量%以上含有するア
ルミナリッチからマグネシアリッチの電融および焼結ク
リンカーの使用が可能であり、マグネシア原料としてマ
グネシア80重量%以上含有する電融マグネシアや海水
および天然マグネシアクリンカーの使用が可能である。
The alumina raw material used in the present invention can be fused alumina, sintered alumina, bauxite and other high alumina raw materials containing at least 80% by weight of alumina. Alumina-rich to magnesia-rich electrofused and sintered clinker containing up to 20% by weight, 10-80% by weight, and a total of alumina and magnesia of 80% by weight or more can be used. It is possible to use electrofused magnesia, seawater, and natural magnesia clinker containing at least 10% by weight.

【0008】マグネシア成分のうち、ペリクレース結晶
分の配合量は5〜30重量%とするのがよく、5重量%
未満では膨張が小さいため気孔の閉塞が不充分であり、
30重量%より多いと膨張が大きくなりすぎ、組織劣化
を起こし耐摩耗性に劣る。
[0008] In the magnesia component, the compounding amount of the periclase crystal is preferably 5 to 30% by weight, and 5% by weight.
If it is less than 10, the pores are not sufficiently closed due to small expansion,
If the content is more than 30% by weight, the swelling becomes too large, the structure is deteriorated, and the wear resistance is poor.

【0009】カーボン原料としては天然黒鉛,人造黒鉛
のほか、電極屑,コークス,カーボンブラック等の使用
が可能であるが、導電性に大きく影響するためリン状黒
鉛の使用が好ましくまた成形時の充填性の点からも優れ
ている。
As the carbon raw material, in addition to natural graphite and artificial graphite, electrode scrap, coke, carbon black, and the like can be used. However, phosphorous graphite is preferably used because it greatly affects the conductivity, and filling during molding is preferable. Excellent in terms of sex.

【0010】カーボン原料の配合量は5〜25重量%と
するのがよく、5重量%以下では還元焼成等の処理を実
施しても電気導電性が低く電極れんがとして使用できな
いこと、またスラグ浸透等により構造スポーリングによ
る剥離損傷が大きくなり損耗も大きくなる。またカーボ
ンが25重量%以上は導電性や構造スポーリングに対し
ては良好であるが酸化に対する抵抗性が低下し損耗が大
きくなる。
The amount of the carbon raw material is preferably 5 to 25% by weight. If the amount is less than 5% by weight, even if a treatment such as reduction firing is carried out, the electric conductivity is so low that it cannot be used as an electrode brick. Due to such factors, peeling damage due to structural spalling increases and wear increases. When the content of carbon is 25% by weight or more, conductivity and structural spalling are good, but resistance to oxidation is reduced and wear is increased.

【0011】上記の原料を加えた配合に樹脂系結合剤を
添加して混練し、成形後熱処理をして不焼成れんがを得
る。樹脂系結合剤は熱処理によって硬化するものであれ
ば、よく、特に限定するものではないが、フェノール樹
脂などを使用するのが好ましい。
[0011] A resin binder is added to the mixture containing the above-mentioned raw materials and kneaded. The resin-based binder is not particularly limited as long as it can be cured by heat treatment, but a phenol resin or the like is preferably used.

【0012】なお酸化防止策として、アルミニウム粉
末,マグネシウム粉末,シリコン金属粉末またはそれら
の合金粉末より選ばれた1種または2種以上の組み合わ
せた添加合計が0.5〜10重量%も本発明に含まれ
る。
[0012] As an antioxidant measure, the present invention also provides that the total addition of one or more selected from aluminum powder, magnesium powder, silicon metal powder or an alloy powder thereof is 0.5 to 10% by weight. included.

【0013】[0013]

【実施例1】表1に示す配合物を混練した坏土をフリク
ションプレスにより成形し、250℃で12時間の熱処
理を行なって不焼成れんがを得た。導電性については、
還元雰囲気1000℃で加熱し冷却した後比抵抗値を測
定した。一般に導電性耐火物としては、2×10-4Ω・
m以下が必要である。
Example 1 A kneaded clay obtained by kneading the compounds shown in Table 1 was formed by a friction press, and heat-treated at 250 ° C. for 12 hours to obtain an unfired brick. For conductivity,
After heating and cooling at 1000 ° C. in a reducing atmosphere, the specific resistance was measured. Generally, as a conductive refractory, 2 × 10 −4 Ω ·
m or less is required.

【0014】損傷状況の評価は回転浸食試験法で行な
い、表2に示す組成のスラグを用いて1600℃〜16
50℃の温度で10時間浸食試験を実施し、溶損量を比
較した。
The damage condition was evaluated by a rotary erosion test method, using a slag having a composition shown in Table 2 at 1600 ° C. to 16 ° C.
An erosion test was performed at a temperature of 50 ° C. for 10 hours, and the amount of erosion was compared.

【0015】酸化試験は炭化珪素発熱体電気炉を用い、
大気雰囲気中で1400℃で3時間加熱した後、炉外に
取り出して冷却、切断後酸化層の厚さを測定比較した。
なお浸食試験結果、酸化試験結果については表1の比較
例12を100とした指数によって表示した。
The oxidation test uses a silicon carbide heating element electric furnace,
After heating at 1400 ° C. for 3 hours in an air atmosphere, it was taken out of the furnace, cooled, cut, and the thickness of the oxide layer was measured and compared.
The results of the erosion test and the results of the oxidation test are indicated by an index with Comparative Example 12 in Table 1 being 100.

【0016】[0016]

【発明の効果】本発明品の炉床電極れんがを使用するこ
とにより、従来のマグネシア−カーボンれんがより、約
1.4倍の耐食性を示し耐用延長が期待できる。また炉
床の交換時期が延長し、取り替え回数が減少することに
よる作業環境の改善も図れる。
By using the hearth electrode brick of the present invention, corrosion resistance is about 1.4 times higher than that of the conventional magnesia-carbon brick, and the service life can be extended. In addition, the work environment can be improved by extending the replacement time of the hearth and reducing the number of replacement times.

【表1】 [Table 1]

【表2】 [Table 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉床れんがが電極となる耐火物(以下炉
床電極れんがと称する)において、アルミナ45〜90
重量%,マグネシア5〜30重量%,カーボン5〜25
重量%を含有し、上記の含有マグネシアは少なくとも5
重量%以上がペリクレースの形で配合されており、フェ
ノール樹脂または他の有機樹脂系バインダーおよびその
組み合わせを使用してなることを特長とし電気比抵抗値
が2×10-4Ω・m以下の導電性を有する不焼成アルミ
ナ−マグネシア−カーボンおよびアルミナ−スピネル−
マグネシア−カーボンれんが。
In a refractory whose hearth brick serves as an electrode (hereinafter referred to as hearth electrode brick), alumina 45 to 90 is used.
Wt%, magnesia 5-30 wt%, carbon 5-25
% By weight, and the magnesia content is at least 5%.
% By weight or more in the form of periclase, characterized by using a phenolic resin or another organic resin-based binder and a combination thereof, and having an electrical resistivity of 2 × 10 −4 Ω · m or less. Alumina-magnesia-carbon and alumina-spinel having properties
Magnesia-carbon brick.
【請求項2】 請求項1記載の耐火材料100重量%に
対して、酸化防止剤としてアルミニウム粉末,マグネシ
ウム粉末,シリコン粉末,またはこれらの合金粉末より
選ばれた1種または2種以上を組み合わせた粉末を合計
で0.5〜10重量%使用した炉床電極れんが。
2. One or two or more selected from aluminum powder, magnesium powder, silicon powder, or an alloy powder thereof are used as an antioxidant with respect to 100% by weight of the refractory material according to claim 1. Hearth electrode bricks using a total of 0.5 to 10% by weight of powder.
【請求項3】 炉床れんがが電極となる製鋼用直流電気
炉において、請求項1,2記載の耐火物を炉床電極れん
がとして使用することを特徴とした製鋼用直流電気炉。
3. A direct current electric furnace for steel making, wherein the hearth brick serves as an electrode, wherein the refractory according to claim 1 or 2 is used as a hearth electrode brick.
JP9028388A 1997-01-27 1997-01-27 Alumina-magnesia-carbon refractory for hearth electrode Pending JPH10212159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9028388A JPH10212159A (en) 1997-01-27 1997-01-27 Alumina-magnesia-carbon refractory for hearth electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9028388A JPH10212159A (en) 1997-01-27 1997-01-27 Alumina-magnesia-carbon refractory for hearth electrode

Publications (1)

Publication Number Publication Date
JPH10212159A true JPH10212159A (en) 1998-08-11

Family

ID=12247280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9028388A Pending JPH10212159A (en) 1997-01-27 1997-01-27 Alumina-magnesia-carbon refractory for hearth electrode

Country Status (1)

Country Link
JP (1) JPH10212159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052233A1 (en) * 1998-01-28 2000-11-15 Krosaki Corporation Alumina-magnesia-graphite type refractory
KR100384619B1 (en) * 2000-09-06 2003-05-22 조선내화 주식회사 sliding plate refractory for flow controling of molten metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052233A1 (en) * 1998-01-28 2000-11-15 Krosaki Corporation Alumina-magnesia-graphite type refractory
EP1052233A4 (en) * 1998-01-28 2004-11-03 Krosaki Corp Alumina-magnesia-graphite type refractory
KR100384619B1 (en) * 2000-09-06 2003-05-22 조선내화 주식회사 sliding plate refractory for flow controling of molten metal

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
Thethwayo et al. A review of carbon-based refractory materials and their applications
EP0116194B1 (en) A carbon-containing refractory
JPH10212159A (en) Alumina-magnesia-carbon refractory for hearth electrode
JPH10251055A (en) Alumina-magnesia-carbon refractory material for heath of electric furnace
JPH11322405A (en) Low carbon refractory and its production
JP2002080272A (en) Magnesia-spinel-carbonaceous brick
JP2950622B2 (en) Carbon containing refractories
JPH0585805A (en) Carbon-containing fire-resistant material
JP2001192259A (en) Spinel-carbonaceous brick for hearth of direct current electric furnace
JPH10101407A (en) Alumina-magnesia-carbon refractory for bottom electrode
JP4203157B2 (en) Magnesia refractory
KR940006422B1 (en) Magnesia-spinel-carbon of refractories
JP2868809B2 (en) Magnesia carbon brick
JP2005139062A (en) Low carbon unfired brick
JP2001316170A (en) Carbon containing refractory and kiln using the same
JP2018015763A (en) Lining refractory material for continuous casting tundish
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPS63134571A (en) Zrb2-graphite-containing refractories
JPH1017357A (en) Production of carbon-containing refractory
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory
JP2765458B2 (en) Magnesia-carbon refractories
JPH05148010A (en) Graphite-containing fire-resistant brick for refining melted metal
JPS63288968A (en) Composite refractories
JPH05319902A (en) Carbon-containing basic refractory

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 14