JP4203157B2 - Magnesia refractory - Google Patents

Magnesia refractory Download PDF

Info

Publication number
JP4203157B2
JP4203157B2 JP29896498A JP29896498A JP4203157B2 JP 4203157 B2 JP4203157 B2 JP 4203157B2 JP 29896498 A JP29896498 A JP 29896498A JP 29896498 A JP29896498 A JP 29896498A JP 4203157 B2 JP4203157 B2 JP 4203157B2
Authority
JP
Japan
Prior art keywords
magnesia
refractory
weight
resistance
clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29896498A
Other languages
Japanese (ja)
Other versions
JP2000128622A (en
Inventor
健之 玉木
公一 清水
謹二 松下
政彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Sumitomo Metal Industries Ltd
Original Assignee
Krosaki Harima Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp, Sumitomo Metal Industries Ltd filed Critical Krosaki Harima Corp
Priority to JP29896498A priority Critical patent/JP4203157B2/en
Publication of JP2000128622A publication Critical patent/JP2000128622A/en
Application granted granted Critical
Publication of JP4203157B2 publication Critical patent/JP4203157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、RH、VOD等の真空脱ガス炉の内張りに好適に使用される耐食性、耐熱的スポーリング性、耐スラグ浸潤性及び耐構造的スポーリング性に優れたマグネシア質耐火物に関する。
【0002】
【従来の技術】
従来から、この真空脱ガス炉の内張り耐火物は、高温真空下においてスラグや溶鋼流と長時間接する苛酷な条件下の使用と、処理される鋼品質を厳格に維持する必要性があることから、高耐用性を有し且つ、真空下でも化学的に安定なマグネシアを主成分とする塩基性耐火物が好適に使用されてきた。塩基性耐火物の中でも、特公昭58−13510号公報に開示されているマグネシアクロム質耐火物は、粒子間の結合形態が粒子が直接結合したダイレクト結合や、粒子内から析出したスピネルを介した二次スピネル結合であるため、高温下でも強固な組織を有し、耐食性にも優れていることから、主に、マグネシアクロム質耐火物が使用されてきた。
【0003】
しかし、近年、地球環境に対する社会的関心が高まるにつれて、有害物質の六価クロムが生成する使用済み屑の廃棄に神経を使うマグネシアクロム耐火物の使用は敬遠されるようになり、Cr23を含まない、いわゆるクロムフリーの塩基性耐火物の需要が急速に高まってきた。
【0004】
Cr23を含まない塩基性耐火物には、例えばマグネシア質耐火物がある。 例えば、特開平9−124360号公報には、マトリックスがジルコニア3〜10重量%とマグネシアからなり、粗粒部がマグネシアからなる焼成塩基性耐火物が報告されている。しかし単純にジルコニアを微粒域に添加したのでは過焼結となり、耐スラグ浸潤性は向上しても耐熱的スポーリング性が顕著に劣化してしまう。
【0005】
また、特開平6−107451号公報および特公平4−56785号公報においては、カルシウムジルコネートとマグネシアを配合した耐火物も報告されている。しかし、CaOをZrO2と一緒にして配合したのでは、特開平6−107451号公報にも記載されているように焼結を促進するばかりで、やはり耐スラグ浸潤性は向上しても耐熱的スポーリング性が劣化してしまう。また、CaOを生石灰のような原料で単味で添加すると、分散性、耐消化性に問題がある。
【0006】
このように、マグネシア質耐火物は耐食性に非常に良好なものの、マグネシアクロム質耐火物に比較して熱的スポーリング、さらには、スラグが耐火物内部に侵入して組織劣化層を形成し、背後の健全層との組織差から境界部分に亀裂が発生して剥離に至る、いわゆる構造的スポーリングが発生し易いという致命的な欠点がある。そのためマグネシア質耐火物は、現在は真空脱ガス炉の内張り用には全く使用されていない。
【0007】
【発明が解決しようとする課題】
本発明の解決しようとする課題は、マグネシアクロム質耐火物と同等以上の耐熱的スポーリング性、耐構造的スポーリング性を有し、真空脱ガス炉の内張りライニングとして充分適用可能なマグネシア質耐火物を提供することにある。
【0008】
【課題を解決するための手段】
本発明のマグネシア質耐火物は、
CaOを1.5〜4重量%含有するマグネシアクリンカーを93〜97重量%と、粒径0.044mm未満のジルコニアを3〜7重量%とからなる配合物を成形した後に1700℃以上で焼成したもので、
配合物中のマグネシアクリンカーのうち粒径0.5mm以上は電融クリンカーであり、且つ、粒径0.5mm未満は焼結クリンカーであり、
さらに、
焼成物の化学組成は、CaOが1.4〜3.9重量%、ZrO2が3.0〜7.0重量%、MgOが89.3〜95.5重量%の範囲にあることを特徴とする。
【0009】
本発明において使用するマグネシアクリンカーとしては、焼結品、電融品のいずれも通常市販されているもので差し支えなく、成形に際して使用するバインダーの選定、混練、成形、焼成の各工程は、従来のマグネシア質耐火物に準じた公知のものが採用できる。
【0010】
本発明における粒径0.044mm未満のジルコニアは、マグネシアクロム質耐火物におけるCr23成分と同様に、耐火物のマトリックス中に微細且つ均一に分散し、気孔を介して侵入してきたスラグと先行反応してこれを高粘性化し、それ以上深く侵入するのを抑制する機能を有する。
【0011】
ジルコニアは、純度99%以上の未安定な物が使用でき、その配合量が3重量%未満の場合、スラグ侵入抑制効果が不十分であり、また、7重量%を超えると組織中のスラグと先行反応する部分が過剰となり、耐食性に悪影響を及ぼす。さらに、ジルコニアの粒径は、分散性を高めて必要最小限の量でスラグ浸潤効果を十分発揮させるためには、0.044mm未満であることが要求される。
【0012】
マグネシアクリンカーとして、CaOを1.5〜4重量%含有するマグネシアクリンカーを特に使用するのは、ZrO2添加による過焼結を抑制するのが主目的であり、副次的にはCaOにもスラグと先行反応して高粘性化する働きがあり、スラグ浸潤抑制にこれを利用するためである。すなわち、本発明は、CaOはマグネシアクリンカーの方に適量含有させたものである。このCaO含有量が、1.5重量%未満では量的に過焼結抑制効果が不十分であり、4重量%を超えるとクリンカーの耐消化性が劣化し、それに付随してマグネシア質耐火物の耐消化性も不足して保管等の取り扱いが煩雑になる。
【0013】
本発明においては、マグネシアクリンカーとして、粒径0.5mm以上は電融品を使用し、粒径0.5mm未満は焼結品を使用する。これは、粗粒域と微粒域に焼結性の差を持たせ、焼成収縮率の違いにより粗粒(骨材)と微粒(マトリックス)の境界に気孔を局在化し、緻密な全体の中に粗雑な部分を適度に分布する不均質な組織を導入し、この局在化した気孔が熱応力を緩和することにより、耐熱的スポーリング性をマグネシアクロム質耐火物並みに高めるためである。
【0014】
また、電融品と焼結品を使い分ける粒径の境界が0.5mmなのは、0.5mm以上に焼結品を使用すると骨材域まで緻密化して気孔の局在化が不十分となり、また逆に0.5mm未満まで電融品を使用するとマトリックス域まで粗雑化してやはり気孔の局在化が不足するためである。
【0015】
なお、各粒径のマグネシアクリンカーの使用比率は、0.5mm以上の電融品:0.5mm未満の焼結品=1:1〜7:1が望ましい。
【0016】
焼成温度を1700℃以上と規定したのは、1700℃未満では焼結効果が不十分で組織全体が粗雑となり、耐スラグ浸潤性に劣るためである。
【0017】
【発明の実施の形態】
以下、表1に示す実施例によって、本発明の実施の形態を説明する。表2に比較例を示す。
【0018】
【表1】

Figure 0004203157
【表2】
Figure 0004203157
表1に、本発明によるマグネシア質耐火物の配合物組成、焼成温度、焼成物の化学組成、それに、耐スラグ浸潤性、耐構造的スポーリング性、耐熱的スポーリング性、耐食性及び耐消化性の特性評価を示す。
【0019】
耐スラグ浸潤性及び耐構造的スポーリング性の評価は横型回転侵食炉を用いて行った。試験方法は厚さ50mmの試料を6個1組で内張りした横型回転侵食炉を時間当たり200℃で昇温し、1700℃に達したら侵食剤を投入する。30分間保持した後に侵食剤を排出し、800℃まで30分間で急降温し、30分間保持した後に1700℃まで30分間で急昇温する。この加熱冷却操作を6回繰り返す。侵食剤はCaO/SiO2/Fe23=60/20/20重量%粉末を使用した。炉の回転速度は毎分4回転である。試験後サンプルを回収し、スラグ浸潤厚み及び変質層と健全層の境界の亀裂発生状態を観察した。
【0020】
実施例1〜9の試料は、いずれもスラグ浸潤厚みがマグネシアクロム質耐火物の比較例12の試料に比較して、ほぼ同等である。亀裂の発生状態も実施例1〜9は比較例12と遜色無い。すなわち本発明によるマグネシア質耐火物はマグネシアクロム質耐火物と同等以上の耐スラグ浸潤性及び耐構造的スポーリング性を有すると言える。
【0021】
耐熱的スポーリング性の評価は高周波誘導炉を用いた溶銑浸漬法を用いて行った。試験方法は次の通りである。40×40×200mmの形状に切削した試料は高周波誘導炉で1500℃に保持した溶銑中に3分間浸漬した後、大気中で15分間放冷される。これを繰り返すことにより試料には亀裂が発生し、それが徐々に拡大してついには剥落に至る。試料が剥落に至る回数の多少で耐スポーリング性は評価される。すなわち剥落に至る回数の多いものほど耐熱的スポーリング性が良好である。試験は各試料について4回行い、その平均値を記載した。
【0022】
実施例1〜9に試料は、いずれもマグネシアクロム質耐火物の比較例12の試料に比較して剥落に至る回数が同等もしくは1〜2回程度多くなっている。すなわち本発明によるマグネシア質耐火物はマグネシアクロム質耐火物と同等以上の耐熱的スポーリング性を有していると言える。
【0023】
耐食性の評価は高周波誘導炉内張り法を用いて行った。試験方法はサンプルを内張りした高周波誘導炉で極低炭鋼を溶解し、1700℃に保持して侵食剤を投入する。保持時間は5時間で侵食剤は30分毎に交換した。侵食剤はCaO/SiO2/Fe23=60/20/20重量%の粉末を使用した。試験後サンプルを回収し、損耗量を測定した。損耗指数は数値が小さいほど良好である。
【0024】
実施例1〜9の試料は、いずれも損耗指数がマグネシアクロム質耐火物の比較例12も試料に比較して、10以上小さい。すなわち本発明によるマグネシア質耐火物はマグネシアクロム質耐火物を凌駕する耐食性を有すると言える。
【0025】
耐消化性の評価はオートクレーブ法を用いて行った。試験方法は50×50×50mmの形状に切削した試料をオートクレーブ(圧力窯)中で2気圧、3時間の条件で保持し、試験前後の重量増加率を測定する。
【0026】
実施例1〜9の試料は、マグネシアクロム質耐火物の比較例12と同様に試験後の重量増加が認められず、サンプルに亀裂や粉化も発生しなかった。すなわち本発明によるマグネシア質耐火物はマグネシアクロム質耐火物と遜色ない。
【0027】
本発明の範囲である実施例1〜9を、従来のマグネシアクロム質耐火物に代わってRH下部槽環流管及び浸漬管に使用した。その結果、従来の1.2〜1.5倍の耐用性を示した。
【0028】
【発明の効果】
本発明によって、マグネシアクロム質耐火物に比較して、耐食性及び耐熱的スポーリング性に優れ、耐スラグ浸潤性とそれに付随する耐構造的スポーリング性が遜色ないレベルにあるマグネシア質耐火物を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnesia refractory excellent in corrosion resistance, heat resistant spalling resistance, slag infiltration resistance and structural spalling resistance, which is preferably used for the lining of vacuum degassing furnaces such as RH and VOD.
[0002]
[Prior art]
Conventionally, the refractory lining of this vacuum degassing furnace has to be used under severe conditions where it is in contact with slag or molten steel for a long time under high temperature vacuum, and the quality of the steel to be processed must be strictly maintained. Basic refractories mainly composed of magnesia, which has high durability and is chemically stable even under vacuum, have been suitably used. Among the basic refractories, the magnesia chrome refractory disclosed in Japanese Patent Publication No. 58-13510 is based on the direct bonding in which the particles are directly bonded or the spinel precipitated from within the particles. Since it is a secondary spinel bond, it has a strong structure even at high temperatures and is excellent in corrosion resistance. Therefore, magnesia-chromic refractories have been mainly used.
[0003]
However, in recent years, with increasing social interest in the global environment, the use of magnesia chrome refractories that use nerves to dispose of used waste generated by the hexavalent chromium harmful substance has been avoided, and Cr 2 O 3 The demand for so-called chromium-free basic refractories that do not contain benzene has increased rapidly.
[0004]
Examples of basic refractories that do not contain Cr 2 O 3 include magnesia refractories. For example, Japanese Laid-Open Patent Publication No. 9-124360 reports a fired basic refractory material having a matrix composed of 3 to 10% by weight of zirconia and magnesia, and a coarse grain portion composed of magnesia. However, simply adding zirconia to the fine-grained region results in oversintering, and even if the slag infiltration resistance is improved, the heat-resistant spalling property is remarkably deteriorated.
[0005]
JP-A-6-107451 and JP-B-4-56785 also report refractories containing calcium zirconate and magnesia. However, when CaO is blended together with ZrO 2 , it only promotes sintering as described in JP-A-6-107451, and even if slag infiltration resistance is improved, it is heat resistant. The spalling performance will deteriorate. Moreover, when CaO is added with a raw material such as quick lime, there is a problem in dispersibility and digestion resistance.
[0006]
Thus, although the magnesia refractory is very good in corrosion resistance, thermal spalling compared to the magnesia chrome refractory, and further, the slag penetrates into the refractory to form a tissue deterioration layer, There is a fatal defect that so-called structural spalling, in which cracks are generated in the boundary portion due to the difference in structure with the sound layer behind, leading to separation, is likely to occur. Therefore, magnesia refractories are not used at all for lining of vacuum degassing furnaces at present.
[0007]
[Problems to be solved by the invention]
The problem to be solved by the present invention is a magnesia refractory that has a thermal spalling resistance and structural spalling resistance equivalent to or better than those of magnesia chrome refractories and can be sufficiently applied as a lining of a vacuum degassing furnace. To provide things.
[0008]
[Means for Solving the Problems]
The magnesia refractory of the present invention is
After molding a composition comprising 93 to 97% by weight of magnesia clinker containing 1.5 to 4% by weight of CaO and 3 to 7% by weight of zirconia having a particle size of less than 0.044 mm, it was fired at 1700 ° C. or higher. With
Of the magnesia clinker in the formulation, a particle size of 0.5 mm or more is an electrofused clinker, and a particle size of less than 0.5 mm is a sintered clinker,
further,
The chemical composition of the fired product is characterized in that CaO is in the range of 1.4 to 3.9% by weight, ZrO 2 is in the range of 3.0 to 7.0% by weight, and MgO is in the range of 89.3 to 95.5% by weight. And
[0009]
As the magnesia clinker used in the present invention, both sintered products and electrofused products are usually commercially available, and the selection of the binder used for molding, kneading, molding, and firing steps are conventional. A well-known thing according to a magnesia refractory can be adopted.
[0010]
In the present invention, zirconia having a particle size of less than 0.044 mm is finely and uniformly dispersed in the matrix of the refractory and, as in the case of the Cr 2 O 3 component in the magnesia-chromic refractory, It has a function of making it highly viscous through a prior reaction and suppressing further penetration.
[0011]
As zirconia, an unstable material having a purity of 99% or more can be used. When the blending amount is less than 3% by weight, the effect of suppressing slag penetration is insufficient. The part that precedes the reaction becomes excessive and adversely affects the corrosion resistance. Furthermore, the particle size of zirconia is required to be less than 0.044 mm in order to enhance dispersibility and to sufficiently exhibit the slag infiltration effect with a minimum amount.
[0012]
The main purpose of using magnesia clinker containing 1.5 to 4% by weight of CaO as the magnesia clinker is to suppress oversintering due to the addition of ZrO 2 , and secondaryly, slag is also added to CaO. This is because it has a function of increasing the viscosity by preceding reaction with slag, and this is used to suppress slag infiltration. That is, in the present invention, CaO is contained in an appropriate amount in the magnesia clinker. If the CaO content is less than 1.5% by weight, the effect of suppressing oversintering is insufficient. If the CaO content exceeds 4% by weight, the digestion resistance of the clinker is deteriorated. Insufficient digestion resistance makes handling such as storage complicated.
[0013]
In the present invention, as the magnesia clinker, an electrofused product is used when the particle size is 0.5 mm or more, and a sintered product is used when the particle size is less than 0.5 mm. This is because there is a difference in sinterability between the coarse-grained and fine-grained areas, and the pores are localized at the boundary between the coarse-grained (aggregate) and fine-grained (matrix) due to the difference in firing shrinkage rate. This is to introduce a heterogeneous structure in which rough portions are moderately distributed and to relax the thermal stress by the localized pores, thereby improving the heat resistance spalling property to the same level as magnesia chromium refractory.
[0014]
In addition, the grain size boundary for selectively using electrofused products and sintered products is 0.5 mm. When sintered products are used with a thickness of 0.5 mm or more, the aggregate region is densified and pore localization is insufficient. Conversely, if an electromelted product is used up to less than 0.5 mm, the matrix is coarsened and the localization of pores is still insufficient.
[0015]
The use ratio of magnesia clinker of each particle size is desirably 0.5 mm or more of electrofused product: sintered product of less than 0.5 mm = 1: 1 to 7: 1.
[0016]
The reason why the firing temperature is defined as 1700 ° C. or more is that if it is less than 1700 ° C., the sintering effect is insufficient, the entire structure becomes rough, and the slag infiltration resistance is poor.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to examples shown in Table 1. Table 2 shows a comparative example.
[0018]
[Table 1]
Figure 0004203157
[Table 2]
Figure 0004203157
Table 1 shows the composition of the magnesia refractory according to the present invention, the firing temperature, the chemical composition of the fired product, and the slag infiltration resistance, structural spalling resistance, thermal spalling resistance, corrosion resistance and digestion resistance. The characteristic evaluation of is shown.
[0019]
Evaluation of slag resistance and structural spalling resistance was performed using a horizontal rotary erosion furnace. The test method is to heat up a horizontal rotary erosion furnace lined with a set of six 50 mm thick samples at 200 ° C. per hour, and when it reaches 1700 ° C., an erosion agent is added. After maintaining for 30 minutes, the erodant is discharged, and the temperature is rapidly decreased to 800 ° C. in 30 minutes. After maintaining for 30 minutes, the temperature is rapidly increased to 1700 ° C. in 30 minutes. This heating and cooling operation is repeated 6 times. As the erodant, CaO / SiO 2 / Fe 2 O 3 = 60/20/20 wt% powder was used. The rotational speed of the furnace is 4 revolutions per minute. After the test, the sample was collected, and the slag infiltration thickness and the crack generation state at the boundary between the altered layer and the healthy layer were observed.
[0020]
As for the sample of Examples 1-9, all the slag infiltration thickness is substantially equivalent compared with the sample of the comparative example 12 of a magnesia chromium refractory. In the state of occurrence of cracks, Examples 1 to 9 are comparable to Comparative Example 12. That is, it can be said that the magnesia refractory according to the present invention has slag infiltration resistance and structural spalling resistance equal to or higher than those of the magnesia chrome refractory.
[0021]
The evaluation of the heat-resistant spalling property was performed using a hot metal dipping method using a high-frequency induction furnace. The test method is as follows. A sample cut into a shape of 40 × 40 × 200 mm is immersed in hot metal maintained at 1500 ° C. for 3 minutes in a high-frequency induction furnace, and then allowed to cool in air for 15 minutes. By repeating this, a crack occurs in the sample, which gradually expands and eventually peels off. The spalling resistance is evaluated by the number of times the sample is peeled off. That is, as the number of times of peeling is higher, the heat resistant spalling property is better. The test was performed 4 times for each sample, and the average value was described.
[0022]
In all of the samples in Examples 1 to 9, the number of times of peeling was the same or increased about 1 to 2 times compared to the sample of Comparative Example 12 of the magnesia chrome refractory. That is, it can be said that the magnesia refractory according to the present invention has the same or better thermal spalling property as the magnesia chrome refractory.
[0023]
Corrosion resistance was evaluated using a high frequency induction furnace lining method. In the test method, ultra-low carbon steel is melted in a high-frequency induction furnace lined with a sample, maintained at 1700 ° C., and an erodant is added. The retention time was 5 hours and the erodant was changed every 30 minutes. As the erodant, CaO / SiO 2 / Fe 2 O 3 = 60/20/20 wt% powder was used. After the test, a sample was collected and the amount of wear was measured. The smaller the numerical value, the better the wear index.
[0024]
All of the samples of Examples 1 to 9 have a wear index of 10 or more smaller than that of the comparative example 12 of the magnesia chrome refractory. That is, it can be said that the magnesia refractory according to the present invention has corrosion resistance superior to that of the magnesia chrome refractory.
[0025]
The digestion resistance was evaluated using an autoclave method. In the test method, a sample cut into a 50 × 50 × 50 mm shape is held in an autoclave (pressure kiln) under conditions of 2 atm and 3 hours, and the weight increase rate before and after the test is measured.
[0026]
In the samples of Examples 1 to 9, no increase in weight after the test was observed as in the comparative example 12 of the magnesiachrome refractory, and neither cracking nor powdering occurred in the samples. That is, the magnesia refractory according to the present invention is comparable to the magnesia chrome refractory.
[0027]
Examples 1 to 9, which are within the scope of the present invention, were used for the RH lower tank reflux pipe and dip pipe instead of the conventional magnesia-chromic refractory. As a result, the durability was 1.2 to 1.5 times that of the conventional one.
[0028]
【The invention's effect】
According to the present invention, a magnesia refractory having excellent corrosion resistance and heat-resistant spalling resistance and comparable slag infiltration resistance and structural spalling resistance is obtained as compared with magnesiachrome refractory. be able to.

Claims (1)

CaOを1.5〜4重量%含有するマグネシアクリンカーを93〜97重量%と、粒径0.044mm未満のジルコニアを3〜7重量%とからなる配合物を成形した後に1700℃以上で焼成したもので、
配合物中のマグネシアクリンカーのうち粒径0.5mm以上は電融クリンカーであり、且つ、粒径0.5mm未満は焼結クリンカーであり、
さらに、
焼成物の化学組成は、CaOが1.4〜3.9重量%、ZrO2が3.0〜7.0重量%、MgOが89.3〜95.5重量%の範囲にあるマグネシア質耐火物。
After molding a composition comprising 93 to 97% by weight of magnesia clinker containing 1.5 to 4% by weight of CaO and 3 to 7% by weight of zirconia having a particle size of less than 0.044 mm, it was fired at 1700 ° C. or higher. With
Of the magnesia clinker in the formulation, a particle size of 0.5 mm or more is an electrofused clinker, and a particle size of less than 0.5 mm is a sintered clinker,
further,
The chemical composition of the fired product is magnesia refractory with CaO in the range of 1.4 to 3.9% by weight, ZrO 2 in the range of 3.0 to 7.0% by weight, and MgO in the range of 89.3 to 95.5% by weight. object.
JP29896498A 1998-10-20 1998-10-20 Magnesia refractory Expired - Fee Related JP4203157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29896498A JP4203157B2 (en) 1998-10-20 1998-10-20 Magnesia refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29896498A JP4203157B2 (en) 1998-10-20 1998-10-20 Magnesia refractory

Publications (2)

Publication Number Publication Date
JP2000128622A JP2000128622A (en) 2000-05-09
JP4203157B2 true JP4203157B2 (en) 2008-12-24

Family

ID=17866472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29896498A Expired - Fee Related JP4203157B2 (en) 1998-10-20 1998-10-20 Magnesia refractory

Country Status (1)

Country Link
JP (1) JP4203157B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681456B2 (en) * 2006-01-05 2011-05-11 黒崎播磨株式会社 Low carbon magnesia carbon brick
CN112142447B (en) * 2020-09-22 2022-02-25 武汉科技大学 High-performance energy-saving magnesium-based raw material and preparation method thereof
CN112094125B (en) * 2020-09-22 2023-02-28 武汉科技大学 Low-thermal-conductivity low-thermal-expansion magnesium-based raw material and preparation method thereof

Also Published As

Publication number Publication date
JP2000128622A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
KR20150070400A (en) Magnesia-carbon brick
JPS6096567A (en) Manufacture of sliding nozzle plate
JP4203157B2 (en) Magnesia refractory
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP3343297B2 (en) Fired refractory brick for lining
CN112313188A (en) Chromium oxide brick
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JPH0952755A (en) Magnesia-chrome refractory
JPH06144939A (en) Basic castable refractory
JP2023086544A (en) Method for producing magnesia-chrome brick
JP3238592B2 (en) Irregular cast refractory moldings
JPH1017357A (en) Production of carbon-containing refractory
KR970008699B1 (en) Refractories brick
JP2004323260A (en) Nozzle material for continuous casting and nozzle for continuous casting
JPH07291716A (en) Basic refractory
JPH11314964A (en) Magnesia-chrome refractory
JP2004107124A (en) Low-carbon refractory and its manufacturing process
JPH06172044A (en) Castable refractory of alumina spinel
JPH08157252A (en) Refractory for molten iron preliminary treating vessel
JP2023109590A (en) Method of producing magnesia-chrome brick
JPH10251055A (en) Alumina-magnesia-carbon refractory material for heath of electric furnace
JP3795933B2 (en) Magnesia-chromic fired brick
JPH08143356A (en) Magnesia based non-fired brick
JPH11209169A (en) Firebrick excellent in spalling resistance and bottom of converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees