JP2015189640A - Alumina-silicon carbide-carbonaceous brick - Google Patents

Alumina-silicon carbide-carbonaceous brick Download PDF

Info

Publication number
JP2015189640A
JP2015189640A JP2014068860A JP2014068860A JP2015189640A JP 2015189640 A JP2015189640 A JP 2015189640A JP 2014068860 A JP2014068860 A JP 2014068860A JP 2014068860 A JP2014068860 A JP 2014068860A JP 2015189640 A JP2015189640 A JP 2015189640A
Authority
JP
Japan
Prior art keywords
mass
alumina
less
particle size
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014068860A
Other languages
Japanese (ja)
Other versions
JP6154772B2 (en
Inventor
賢典 松尾
Katsunori Matsuo
賢典 松尾
田中 雅人
Masahito Tanaka
雅人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2014068860A priority Critical patent/JP6154772B2/en
Publication of JP2015189640A publication Critical patent/JP2015189640A/en
Application granted granted Critical
Publication of JP6154772B2 publication Critical patent/JP6154772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new alumina-silicon carbide-carbonaceous brick high in durability.SOLUTION: A binder is added to a refractory raw material blend comprising: graphite in which the content of intermediate grain alumina with a grain size of 0.075 to below 1 mm is 35 to 55 mass%; coase grain alumina with a grain size of 1 to below 5 mm by 0.25 to 1.00 in a mass ratio to the intermediate grain alumina;fine grain alumina with a grain size below 0.075 mm by 0.05 to 0.30 in a mass ratio to the intermediate grain alumina; graphite in which the ratio of the intermediate grains with a grain size of 0.075 to below 1.0 mm is 50 mass% or higher by 3 to 20 mass%; silicon carbide in which the ratio of fine grains with a grain size below 0.075 mm is 50 mass% or higher by 1 to 10 mass%; a metal in which the ratio of fine grains with a grain size below 0.075 mm is 70 mass% or higher by 0.1 to 5 mass%, and in which the total content of the alumina is 60 to 95 mass%, to perform kneading, molding and heat treatment.

Description

本発明は、溶銑の運搬、貯蔵、精製などを行う際に使用する溶銑容器の内張り材に好適に使用されるアルミナ−炭化珪素−炭素質れんがに関する。   The present invention relates to an alumina-silicon carbide-carbonaceous brick that is suitably used for a lining material of a hot metal container used for transporting, storing, refining, etc. hot metal.

製銑工程において、溶銑を高炉から転炉へ運搬する間に、溶銑中のSi、P、Sを除去するいわゆる溶銑予備処理が広く行われている。また、溶銑予備処理の一環として混銑車において脱Si処理を行う、いわゆる混銑車脱Siも広く行われている。   In the iron making process, so-called hot metal pretreatment for removing Si, P, and S in the hot metal is widely performed while the hot metal is transported from the blast furnace to the converter. In addition, so-called kneading vehicle de-Si, which performs de-Si processing in a kneading vehicle as part of the hot metal pretreatment, is also widely performed.

近年、特に我が国においては鋼の高級化志向に伴い、鋼中のSi、P、S等の含有量が極めて少ないことが要求されるようになってきた。これに伴い、溶銑予備処理の条件が過酷化し、結果として溶銑容器に使用される耐火物の損傷が増大する傾向にある。そこで、混銑車等の溶銑容器の内張り材として一般に使用されているアルミナ−炭化珪素−炭素質れんがについても、更なる高耐用化が強く望まれてきている。   In recent years, particularly in Japan, it has been demanded that the content of Si, P, S, etc. in steel is extremely low with the trend toward higher grade steel. As a result, the hot metal pretreatment conditions become severe, and as a result, damage to the refractory used in the hot metal container tends to increase. Therefore, further enhancement of durability has been strongly demanded for alumina-silicon carbide-carbonaceous bricks generally used as lining materials for hot metal containers such as kneading vehicles.

このアルミナ−炭化珪素−炭素質れんがの損傷原因は種々挙げられるか、近年の溶銑予備処理条件の過酷化を考慮すると、スラグによる損耗が主と考えられる。   There are various causes of the damage of the alumina-silicon carbide-carbonaceous brick, or it is considered that wear due to slag is mainly considered in view of the recent severe hot metal pretreatment conditions.

スラグによる損耗の理由は、主としてスラグがれんがの組織中へ浸透して骨材のアルミナが溶損することにあり、この溶損は、酸化によって組織中のカーボンボンドが劣化して組織がポーラスになった場合により顕著になる。   The reason for wear by slag is that the slag is penetrated into the brick structure and the alumina of the aggregate is melted. This melt damage causes the carbon bond in the structure to deteriorate due to oxidation and the structure becomes porous. It becomes more noticeable.

従来、この溶損を抑制するための手法としては、マグネシアやマグネシアリッチスピネルをれんがに含有させておき、使用中にアルミナと反応してスピネルを生成することで組織を緻密にし、スラグの浸透を防止する手法が知られている。このマグネシアやマグネシアリッチスピネルの使用は、スピネルの生成によってれんがの残存膨張が大きくなるため目地開きによる目地溶損を防止できることにもなる。また、酸化防止のためアルミニウム等の金属、あるいはガラス粉末等の原料配合への使用も良く知られている。   Conventionally, as a technique for suppressing this melting loss, magnesia or magnesia-rich spinel is contained in the brick, and the spinel is formed by reacting with alumina during use to make the structure dense, and the penetration of slag. Techniques for preventing this are known. The use of magnesia or magnesia-rich spinel can prevent joint melting due to joint opening because the residual expansion of brick increases due to the generation of spinel. In addition, it is well known to be used for blending raw materials such as metals such as aluminum or glass powder for preventing oxidation.

例えば、特許文献1にはスピネルやマグネシアの使用例として、アルミナ質材料30〜90%、炭素質材料3〜30%、粒径1mm以下のAl―MgO系スピネル質材料5〜50%、ガラス質材料を外掛けで0.1〜5%含む配合物を使用した炭素含有耐火物が開示されている。そして、ガラス質材料の介在で微粉のスピネル粒子同士が結合し、耐火物使用中の稼動面にスピネル架橋層が構成される結果、耐食性及び耐酸化性が向上するとされている。 For example, in Patent Document 1, as examples of using spinel and magnesia, an alumina material 30 to 90%, a carbonaceous material 3 to 30%, and an Al 2 O 3 —MgO-based spinel material 5 to 50% having a particle diameter of 1 mm or less. In addition, a carbon-containing refractory using a composition containing 0.1 to 5% of a vitreous material as an outer shell is disclosed. And as a result of spinel particle | grains of fine powder couple | bonding together by interposition of glassy material and a spinel bridge | crosslinking layer is comprised in the operation surface in use of a refractory material, it is supposed that corrosion resistance and oxidation resistance will improve.

また、特許文献2には、スピネル超微粉を2質量%以上20質量%以下使用したアルミナカーボン系不焼成れんがが開示されている。スピネル超微粉から発生する気相Mgによって周囲のアルミナ骨材表面で再酸化されて、多孔質の二次スピネルを生成するために、耐食性や熱間強度が向上するとされている。   Patent Document 2 discloses an alumina carbon-based unfired brick using spinel ultrafine powder in an amount of 2% by mass to 20% by mass. It is said that the corrosion resistance and the hot strength are improved in order to re-oxidize on the surface of the surrounding alumina aggregate by the vapor phase Mg generated from the spinel ultrafine powder to produce a porous secondary spinel.

一方、組織を緻密化する例として、特許文献3には、高純度仮焼アルミナを5〜25重量%配合した炭化珪素・アルミナれんがが開示されている。仮焼アルミナを配合することにより成形性が良好になり、また、焼成によって焼結が促進されて、アルミナと炭化珪素を緻密に結合させることができ、得られるれんがの気孔率及び通気性を著しく低下させることができるとされている。   On the other hand, as an example of densifying the structure, Patent Document 3 discloses silicon carbide / alumina brick containing 5 to 25% by weight of high-purity calcined alumina. By blending calcined alumina, formability is improved, and sintering is promoted by firing, so that alumina and silicon carbide can be closely bonded, and the porosity and breathability of the resulting brick are remarkably increased. It can be lowered.

特開平9−25160号公報Japanese Patent Laid-Open No. 9-25160 特開2012−36064号公報JP 2012-36064 A 特開平5−105507号公報JP-A-5-105507

しかしながら、特許文献1のれんがは、例えば配合組成において1mm以下の原料を使用するなど原料粒子の粒度分布幅が広く、微粒のコントロールができていない。この結果、使用中の組織の緻密性が不十分となっている可能性が高い。しかも、微粒が多い場合には焼結が過度に進行するため耐熱衝撃性(耐スポーリング性)が悪化する問題がある。更に、上述の混銑車における脱Si処理条件下ではれんが中にMgO成分を含有しているためその耐食性は低下してしまう。   However, the brick of Patent Document 1 has a wide particle size distribution range of raw material particles, for example, using a raw material of 1 mm or less in the composition, and fine particles cannot be controlled. As a result, there is a high possibility that the denseness of the tissue in use is insufficient. In addition, when there are many fine particles, the sintering proceeds excessively, so that there is a problem that the thermal shock resistance (spalling resistance) deteriorates. Furthermore, since the MgO component is contained in the brick under the de-Si processing condition in the above-described kneading vehicle, the corrosion resistance is lowered.

特許文献2のれんがも同様に、実施例の耐火原料配合物において粒径0.1mm以下の電融アルミナを使用しており、この原料中の微粒のコントロールが不十分であるため、れんがの使用中を想定した1400℃3時間焼成後の見掛け気孔率が低く、使用中の組織の緻密性が不十分となっている可能性がある。更に、上述の混銑車における脱Si処理条件下ではれんが中にMgO成分を含有しているためその耐食性は低下してしまう。   Similarly, the brick of Patent Document 2 uses fused alumina having a particle size of 0.1 mm or less in the refractory raw material composition of the example, and the use of bricks is insufficient because the control of the fine particles in this raw material is insufficient. The apparent porosity after firing at 1400 ° C. for 3 hours assuming the inside is low, and the denseness of the tissue in use may be insufficient. Furthermore, since the MgO component is contained in the brick under the de-Si processing condition in the above-described kneading vehicle, the corrosion resistance is lowered.

また、特許文献3のように、アルミナ−炭化珪素−炭素質れんがにおいて仮焼アルミナを使用すると、使用中に焼結が進行してれんがが収縮するため目地が開きやすくなるという問題がある。更には焼結が過度に進行するため耐熱衝撃性も低下する。   Further, as in Patent Document 3, when calcined alumina is used in alumina-silicon carbide-carbonaceous brick, there is a problem that the joint is easily opened because sintering progresses during use and the brick shrinks. Furthermore, since the sintering proceeds excessively, the thermal shock resistance also decreases.

つまり、従来は、マグネシア、スピネル、あるいはガラス等の各種添加剤を添加することで耐酸化性や耐食性を向上する手法が採られていたが、特に、近年の溶銑予備処理が過酷になった混銑車などでは耐用性の改善に限界が生じていた。   In other words, conventionally, a technique of improving oxidation resistance and corrosion resistance by adding various additives such as magnesia, spinel, or glass has been adopted, but in particular, the hot metal pretreatment has become severe in recent years. There was a limit in improving durability in cars.

そこで、本発明が解決しようとする課題は、これまでになかった耐用性の高いアルミナ−炭化珪素−炭素質れんがを提供することにあり、より具体的には、耐熱衝撃性を維持しつつ、現状よりも耐食性及び耐酸化性を向上させ、しかも適切な残存膨張性を有するアルミナ−炭化珪素−炭素質れんがを提供することにある。   Accordingly, the problem to be solved by the present invention is to provide an alumina-silicon carbide-carbonaceous brick with high durability that has never been achieved, and more specifically, while maintaining thermal shock resistance, An object of the present invention is to provide an alumina-silicon carbide-carbonaceous brick having improved corrosion resistance and oxidation resistance as compared with the current situation and having suitable residual expansibility.

本発明者らは、れんがの使用中にその組織を緻密に維持することができれば、れんが組織中への酸素やスラグの浸透が抑制されて、れんがの耐食性及び耐酸化性が向上し、しかも酸化防止剤等の添加を最小限にできると考えた。   If the present inventors can maintain the structure densely during the use of the brick, the penetration of oxygen and slag into the brick structure is suppressed, the corrosion resistance and oxidation resistance of the brick are improved, and the oxidation is also performed. It was thought that the addition of an inhibitor or the like could be minimized.

そこで熱間で組織の緻密化に最も影響を与えるアルミナの粒度構成に着目し、アルミナを粒径1mm以上5mm未満の粗粒、粒径0.075mm以上1mm未満の中間粒、及び粒径0.075mm未満の微粒の3つのグループに分け、これらの配合割合と見掛け気孔率、耐食性及び耐酸化性との関係について調査した。   Therefore, attention is paid to the particle size constitution of alumina that has the greatest influence on the densification of the structure hot, and alumina is coarse particles having a particle size of 1 mm or more and less than 5 mm, intermediate particles having a particle size of 0.075 mm or more and less than 1 mm, It was divided into three groups of fine particles of less than 075 mm, and the relationship among these blending ratios, apparent porosity, corrosion resistance and oxidation resistance was investigated.

その結果、中間粒を粗粒よりも富化した配合割合とすることで、今までになかった緻密なれんがとなり、耐食性及び耐酸化性に格段に優れ、更に微粒の配合量を制御することにより過度な焼結の進行が阻止され、しかも適切な残存膨張性を有するアルミナ−炭化珪素−炭素質れんがが得られた。   As a result, by making the blending ratio of the intermediate grains richer than the coarse grains, it becomes a dense brick that has never existed before, and it has excellent corrosion resistance and oxidation resistance, and further by controlling the blending amount of the fine grains Alumina-silicon carbide-carbonaceous brick was obtained in which the progress of excessive sintering was inhibited and the residual swelling property was adequate.

すなわち、本発明によれば、以下の(1)から(3)のアルミナ−炭化珪素−炭素質れんがが提供される。
(1)耐火原料配合物にバインダーを添加して混練、成形、熱処理してなるアルミナ−炭化珪素−炭素質れんがであって、
前記耐火原料配合物は、
粒径0.075mm以上1mm未満の中間粒のアルミナを35質量%以上55質量%以下、
粒径1mm以上5mm未満の粗粒のアルミナを前記中間粒のアルミナに対して質量比で0.25以上1.00以下、
粒径0.075mm未満の微粒のアルミナを前記中間粒のアルミナに対して質量比で0.05以上0.30以下、
粒径0.075mm以上1.0mm未満の中間粒が50質量%以上である黒鉛を3質量%以上20質量%以下、
粒径0.075mm未満の微粒が50質量%以上である炭化珪素を1質量%以上10質量%以下、
粒径0.075mm未満の微粒が70質量%以上である金属を0.1質量%以上5質量%以下含有し、
かつ、前記耐火原料配合物中のアルミナの合量が60質量%以上95質量%以下である、アルミナ−炭化珪素−炭素質れんが。
(2)前記耐火原料配合物が、更に、粒径0.075mm以下の微粒が70質量%以上であるガラスを5質量%以下含有する、(1)に記載のアルミナ−炭化珪素−炭素質れんが。
(3)前記耐火原料配合物が、更に、粒径0.075mm以上5mm未満の粒子が70質量%以上であるマグネシア及び/又はスピネルを10質量%以下含有する、(1)又は(2)に記載のアルミナ−炭化珪素−炭素質れんが。
That is, according to the present invention, the following (1) to (3) alumina-silicon carbide-carbonaceous bricks are provided.
(1) Alumina-silicon carbide-carbonaceous brick formed by kneading, forming, and heat-treating by adding a binder to the refractory raw material composition,
The refractory raw material composition is
35% by mass or more and 55% by mass or less of intermediate alumina having a particle size of 0.075 mm or more and less than 1 mm,
Coarse-grained alumina having a particle size of 1 mm or more and less than 5 mm is 0.25 or more and 1.00 or less in a mass ratio with respect to the intermediate-grain alumina.
Fine alumina having a particle size of less than 0.075 mm is 0.05 to 0.30 in terms of mass ratio with respect to the intermediate alumina.
3% by mass or more and 20% by mass or less of graphite having 50% by mass or more of intermediate grains having a particle size of 0.075 mm or more and less than 1.0 mm,
1% by mass or more and 10% by mass or less of silicon carbide in which fine particles having a particle size of less than 0.075 mm are 50% by mass or more,
Containing 0.1% by mass or more and 5% by mass or less of a metal having 70% by mass or more of fine particles having a particle size of less than 0.075 mm;
And the alumina-silicon carbide-carbonaceous brick whose total amount of the alumina in the said refractory raw material mixture is 60 to 95 mass%.
(2) The alumina-silicon carbide-carbonaceous brick according to (1), wherein the refractory raw material composition further contains 5% by mass or less of glass having a particle size of 0.075 mm or less of 70% by mass or more. .
(3) (1) or (2), wherein the refractory raw material composition further contains 10% by mass or less of magnesia and / or spinel in which particles having a particle size of 0.075 mm or more and less than 5 mm are 70% by mass or more. The alumina-silicon carbide-carbonaceous brick described.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

アルミナは、アルミナ−炭化珪素−炭素質れんがにおいて、耐食性を左右する重要な原料であり、耐火原料配合物に占める割合で60質量%以上95質量%以下含有させる。アルミナが60質量%未満では耐食性が不十分となり、95質量%を超えると黒鉛が不足するため、耐熱衝撃性が不十分となる。   Alumina is an important raw material that affects corrosion resistance in alumina-silicon carbide-carbonaceous brick, and is contained in an amount of 60% by mass or more and 95% by mass or less in the proportion of the refractory raw material mixture. If the alumina is less than 60% by mass, the corrosion resistance is insufficient, and if it exceeds 95% by mass, the graphite is insufficient, so that the thermal shock resistance is insufficient.

アルミナ−炭化珪素−炭素質れんがの代表的な用途である混銑車での使用温度においては、アルミナ同士の焼結や他の原料との反応などにより組織が変化する。このため、アルミナの粒度構成のコントロールが極めて重要である。ここで、本発明者らの過去の使用済みれんがの解析などの経験上、アルミナは粒径0.075mmを境界として微粒側は活性が高く粒径の小さな他のアルミナや他の原料と反応して組織を変化させやすい。このため本発明ではアルミナの中間粒と微粒との境界値を0.075mmとした。また、同様に本発明者らの経験上、アルミナは粒径が1mm以上になると1mm未満のアルミナよりも明らかに反応性が低くなる傾向にあるため、アルミナの粗粒と中間粒との境界値を1mmとした。すなわち、本発明では、粒径0.075mm未満を微粒、粒径0.075mm以上1mm未満を中間粒、粒径1mm以上5mm未満を粗粒と定義した。   At a use temperature in a kneading vehicle, which is a typical application of alumina-silicon carbide-carbon brick, the structure changes due to sintering of alumina or reaction with other raw materials. For this reason, control of the particle size composition of alumina is extremely important. Here, according to the experience of the present inventors in the analysis of the past used bricks and the like, alumina reacts with other alumina and other raw materials having a small particle size with high activity on the fine particle side with a particle size of 0.075 mm as a boundary. It is easy to change the organization. Therefore, in the present invention, the boundary value between the alumina intermediate grains and the fine grains is set to 0.075 mm. Similarly, from the experience of the present inventors, when alumina has a particle diameter of 1 mm or more, the reactivity tends to be clearly lower than that of alumina of less than 1 mm. Was 1 mm. That is, in the present invention, the particle size of less than 0.075 mm is defined as fine particles, the particle size of 0.075 mm or more and less than 1 mm is defined as intermediate particles, and the particle size of 1 mm or more and less than 5 mm is defined as coarse particles.

本発明におけるアルミナの粒度構成について説明すると、まず、粒径0.075mm以上1mm未満の中間粒の割合は、耐火原料配合物に占める割合で35質量%以上55質量%以下である。中間粒が35質量%未満ではれんがの見掛け気孔率が高くなり、耐食性が低下する。中間粒が55質量%を超えると成形時の充填性が悪くなり、見掛け気孔率が上昇し、耐食性が低下する。このアルミナの中間粒の割合は43質量%以上55質量%以下であることが好ましい。   The particle size constitution of alumina in the present invention will be described. First, the proportion of intermediate particles having a particle size of 0.075 mm or more and less than 1 mm is 35% by mass or more and 55% by mass or less as a proportion of the refractory raw material composition. If the intermediate grain is less than 35% by mass, the apparent porosity of the brick increases and the corrosion resistance decreases. If the intermediate grain exceeds 55% by mass, the filling property at the time of molding deteriorates, the apparent porosity increases, and the corrosion resistance decreases. The proportion of the intermediate grains of alumina is preferably 43% by mass or more and 55% by mass or less.

粒径1mm以上5mm未満の粗粒は、中間粒よりも多くなると見掛け気孔率が高くなるため、中間粒の含有割合に対して少ない量を含有させる。具体的には、中間粒に対して質量比(粗粒/中間粒)で0.25以上1.00以下とする。0.25未満では成形時の充填性が悪くなり、見掛け気孔率が上昇する。   Coarse particles having a particle diameter of 1 mm or more and less than 5 mm have a higher apparent porosity when they are larger than the intermediate particles, so that a small amount is contained with respect to the content ratio of the intermediate particles. Specifically, the mass ratio (coarse grains / intermediate grains) is 0.25 or more and 1.00 or less with respect to the intermediate grains. If it is less than 0.25, the filling property at the time of shaping | molding will worsen, and apparent porosity will rise.

粒径0.075mm未満の微粒は、中間粒に対する質量比(微粒/中間粒)で0.05以上0.30以下とする。0.05未満では耐食性が不十分となり、0.30を超えると見掛け気孔率が高くなって耐食性が不十分となり、残存膨張がマイナスあるいは小さくなり、更に耐熱衝撃性が悪くなる。   The fine particles having a particle size of less than 0.075 mm have a mass ratio (fine particles / intermediate particles) to 0.05 to 0.30 with respect to the intermediate particles. If it is less than 0.05, the corrosion resistance becomes insufficient, and if it exceeds 0.30, the apparent porosity becomes high, the corrosion resistance becomes insufficient, the residual expansion becomes negative or small, and the thermal shock resistance becomes worse.

このようにアルミナの粒度構成を、1mmと0.075mmとを境界値として粗粒、中間粒、及び微粒の3つのグループに分けて、常に中間粒が多い粒度構成とすることで、組織を緻密にすると同時に、残存膨張性と十分な耐熱衝撃性を満足することができる。   In this way, the grain size composition of alumina is divided into three groups of coarse grains, intermediate grains, and fine grains with a boundary value of 1 mm and 0.075 mm, and the grain size composition is always rich in intermediate grains, so that the structure is dense. At the same time, the residual expansibility and sufficient thermal shock resistance can be satisfied.

次に、本発明において使用するアルミナ以外の原料について説明する。   Next, raw materials other than alumina used in the present invention will be described.

黒鉛は主に耐熱衝撃性及び耐食性を付与するために使用し、3質量%以上20質量%以下で使用する。その粒度構成としては、粒度が大きいほど熱処理後の残存膨張率が小さくなり熱処理後の見掛け気孔率が低下するため、0.075mm以上1.0mm未満の中間粒を50質量%以上含有するものを使用する。   Graphite is mainly used for imparting thermal shock resistance and corrosion resistance, and is used in an amount of 3% by mass to 20% by mass. As the particle size constitution, the larger the particle size, the smaller the residual expansion coefficient after the heat treatment and the apparent porosity after the heat treatment decreases, so that the particles containing 50% by mass or more of intermediate particles of 0.075 mm or more and less than 1.0 mm are contained. use.

炭化珪素は酸化防止剤として使用し、1質量%以上10質量%以下で使用する。1質量%未満では耐酸化性が不足し、10質量%を超えると使用中のれんがに生成するSiOの影響で耐食性が低下する。炭化珪素の使用量は3質量以上8質量%以下であることが好ましい。一方、炭化珪素の粒度構成としては、十分な耐酸化性を得るため、粒径0.075mm未満の微粒を50質量%以上含有するものを使用する。 Silicon carbide is used as an antioxidant and is used in an amount of 1 to 10% by mass. If it is less than 1% by mass, the oxidation resistance is insufficient, and if it exceeds 10% by mass, the corrosion resistance is lowered due to the influence of SiO 2 produced on the brick in use. It is preferable that the usage-amount of silicon carbide is 3 mass% or more and 8 mass% or less. On the other hand, as the particle size constitution of silicon carbide, one containing 50% by mass or more of fine particles having a particle size of less than 0.075 mm is used in order to obtain sufficient oxidation resistance.

金属も酸化防止剤として使用し、0.1質量%以上5質量%で使用する。金属としては、アルミニウム(Al)、シリコン(Si)、マグネシウム(Mg)及びこれらの合金が挙げられ、これらの1種又は2種以上を組み合わせて使用できるが、耐食性及び耐酸化性の面からはアルミニウムが最も好ましい。金属の使用量が5質量%を超えると、二次結合が過度に発達するため耐熱衝撃性が低下し、また、生成した金属の酸化物が耐食性を低下させる。金属の使用量は、0.1質量%以上3.0質量%以下であることが好ましい。金属の粒度構成としては、十分な耐酸化性を得るため、粒径0.075mm未満の微粒を70質量%以上含有するものを使用する。   Metal is also used as an antioxidant and is used in an amount of 0.1 to 5% by mass. Examples of the metal include aluminum (Al), silicon (Si), magnesium (Mg), and alloys thereof. One or a combination of two or more of these can be used, but from the viewpoint of corrosion resistance and oxidation resistance. Aluminum is most preferred. When the amount of the metal used exceeds 5% by mass, the secondary bond develops excessively, so that the thermal shock resistance decreases, and the generated metal oxide reduces the corrosion resistance. The amount of metal used is preferably 0.1% by mass or more and 3.0% by mass or less. As the particle size constitution of the metal, one containing 70% by mass or more of fine particles having a particle size of less than 0.075 mm is used in order to obtain sufficient oxidation resistance.

ガラスは酸化防止剤として必要に応じて使用する。例えば硼珪酸系ガラス、燐酸系ガラス等を使用できる。ただし、ガラスの使用量が5質量%を超えると耐食性を大きく低下させるため5質量%以下で使用し、好ましくは3質量%以下で使用する。ガラスの粒度構成としては、十分な耐酸化性を得るため、粒径0.075mm未満の微粒を70質量%以上含有するものを使用する。   Glass is used as necessary as an antioxidant. For example, borosilicate glass or phosphoric acid glass can be used. However, if the amount of glass used exceeds 5% by mass, the corrosion resistance is greatly reduced, so it is used at 5% by mass or less, preferably at 3% by mass or less. As the particle size constitution of the glass, one containing 70% by mass or more of fine particles having a particle size of less than 0.075 mm is used in order to obtain sufficient oxidation resistance.

マグネシア及び/又はスピネルは、残存膨張性及び耐酸化性を更に高めたい場合に使用することができる。その使用量は10質量%以下が好ましい。10質量%を超えて使用すると耐食性が著しく低下し、また残存膨張率が大きくなりすぎてしまうため、れんが同士のせりによる割れが発生し、更には耐熱衝撃性の低下によりれんがに剥離が発生する。マグネシア及び/又はスピネルの粒度構成としては、粗粒を多く使用すると残存膨張率を上昇させることができる。一方、微粒を多く使用すると上述したアルミナとの反応により耐酸化性を著しく向上させることができるが、それと同時に耐食性が低下し、特に粒径0.075mm未満の微粉を多く使用しすぎると耐食性の低下が顕著となる。そのため、マグネシア及び/はスピネルの粒度構成としては、粒径0.075mm以上5mm未満の中間粒及び粗粒を70質量%以上含有するものを使用する。   Magnesia and / or spinel can be used when it is desired to further increase the residual swellability and oxidation resistance. The amount used is preferably 10% by mass or less. If the amount exceeds 10% by mass, the corrosion resistance is remarkably lowered, and the residual expansion rate becomes too large, so that cracks due to the bricks are generated, and further, the bricks are peeled off due to the reduced thermal shock resistance. . As the particle size constitution of magnesia and / or spinel, if a large amount of coarse particles is used, the residual expansion rate can be increased. On the other hand, when a large amount of fine particles are used, the oxidation resistance can be remarkably improved by the reaction with the above-mentioned alumina, but at the same time, the corrosion resistance is lowered. The decrease is remarkable. For this reason, magnesia and / or spinel having a particle size of 70% by mass or more of intermediate particles and coarse particles having a particle size of 0.075 mm or more and less than 5 mm is used.

本発明においてマグネシア及び/又はスピネルは、ガラスと併用することで更に耐酸化性の向上に寄与する。そのメカニズムは次のように考えられる。本発明のアルミナ−炭化珪素−炭素質れんがにおいて炭化珪素(SiC)は、高温下では酸素と反応してSiO及びSiOを生成し、またこのときアルミナ(Al)共存下では、複合化合物であるムライト(3Al・2SiO)を生成する。また、ガラスは高温下ではシリカ系の液相を生成し、またAl共存下では3Al・2SiOの液相を生成する。更に、これら複合化合物の生成段階で、マグネシア(MgO)及び/又はスピネル(MgO・Al)が共存した場合、その液相はSiO−Al−MgOの三成分系となり、従来の一成分、二成分系よりも融点が低下し、それに伴い粘性が低下する。この三成分系の液相は一成分系、二成分系よりも低温側で低粘性の酸化被膜として作用するため、炭素含有耐火物の耐酸化性の低下を抑制し、あるいは耐酸化性を向上させる。 In the present invention, magnesia and / or spinel contributes to the improvement of oxidation resistance when used in combination with glass. The mechanism is considered as follows. In the alumina-silicon carbide-carbonaceous brick of the present invention, silicon carbide (SiC) reacts with oxygen at a high temperature to generate SiO and SiO 2, and at this time, in the presence of alumina (Al 2 O 3 ), the composite The compound mullite (3Al 2 O 3 · 2SiO 2 ) is produced. Further, glass generates a silica-based liquid phase at a high temperature, and generates a 3Al 2 O 3 .2SiO 2 liquid phase in the presence of Al 2 O 3 . Furthermore, when magnesia (MgO) and / or spinel (MgO.Al 2 O 3 ) coexist in the production stage of these composite compounds, the liquid phase becomes a ternary system of SiO 2 —Al 2 O 3 —MgO, The melting point is lower than that of the conventional one-component or two-component system, and the viscosity decreases accordingly. This ternary liquid phase acts as a low-viscosity oxide film on the lower temperature side than one-component and two-component systems, so it suppresses the reduction in oxidation resistance of carbon-containing refractories or improves oxidation resistance Let

本発明のアルミナ−炭化珪素−炭素質れんがは、使用中でも非常に緻密な組織となっているので、従来のようにマグネシアやスピネルを多量に使用しなくても残存膨張性や耐酸化性が十分得られ、格段に耐食性が優れている。また、耐熱衝撃性にも優れている。更に、マグネシアやスピネルを適量使用することで、残存膨張性及び耐酸化性を更に向上させることもできる。このため、溶銑予備処理条件の厳しい混銑車においても十分な耐用性が得られる。   Since the alumina-silicon carbide-carbonaceous brick of the present invention has a very dense structure even during use, the residual expandability and oxidation resistance are sufficient without using a large amount of magnesia or spinel as in the past. It is obtained and has excellent corrosion resistance. It also has excellent thermal shock resistance. Furthermore, residual expansibility and oxidation resistance can be further improved by using an appropriate amount of magnesia or spinel. For this reason, sufficient durability can be obtained even in a kneading vehicle having severe hot metal pretreatment conditions.

本発明で使用するアルミナは、Alを80質量%以上、好ましくは90質量%以上含有する耐火原料であり、耐火物に一般的に使用されているアルミナ原料を使用することができる。例えば、電融アルミナ、焼結アルミナ、ボーキサイト、及びバン土頁岩のうち1種以上を使用することができる。なお、仮焼アルミナも使用できるが、過焼結を抑制する点から粒径0.075mm未満の仮焼アルミナは3質量%以下で使用することが好ましい。 The alumina used in the present invention is a refractory raw material containing Al 2 O 3 in an amount of 80% by mass or more, preferably 90% by mass or more, and alumina materials generally used for refractories can be used. For example, one or more of electrofused alumina, sintered alumina, bauxite, and van earth shale can be used. Although calcined alumina can be used, calcined alumina having a particle size of less than 0.075 mm is preferably used at 3% by mass or less from the viewpoint of suppressing oversintering.

黒鉛としては通常の鱗状黒鉛が使用可能であるが、これに換えて又はこれと併用して膨張黒鉛、人造黒鉛、キッシュグラファイトなどを使用してもよい。その組成は特に限定されるものではないが、より高い耐食性を得るためにはC純度が高い黒鉛を使用した方がよく、C純度は85%以上が好ましく、98%以上がより好ましい。   As the graphite, ordinary scaly graphite can be used, but expanded graphite, artificial graphite, quiche graphite, or the like may be used instead of or in combination with this. Although the composition is not particularly limited, it is better to use graphite having high C purity in order to obtain higher corrosion resistance, and the C purity is preferably 85% or more, more preferably 98% or more.

炭化珪素はとして、通常の耐火物に使用される炭化珪素原料でSiC含有量が80質量%以上のものを使用することができる。   As the silicon carbide, silicon carbide raw materials used for ordinary refractories and having a SiC content of 80% by mass or more can be used.

金属としては、アルミニウム、マグネシウム、シリコン及びこれらの合金のうち1種以上を使用することができる。   As the metal, one or more of aluminum, magnesium, silicon, and alloys thereof can be used.

ガラスとしては、硼珪酸ガラス、燐酸ガラス、珪酸ガラス、鉛含有ガラス、リチウム含有ガラスなどを使用することができる。   As the glass, borosilicate glass, phosphate glass, silicate glass, lead-containing glass, lithium-containing glass and the like can be used.

マグネシアとしては、電融マグネシア、焼結マグネシア等を使用することができ、スピネルとしては、Al及びMgOを主成分とする耐火材料で、MgO含有量が5質量%以上、好ましくはMgOの含有量が20質量%以上のものを使用することができる。 As magnesia, electrofused magnesia, sintered magnesia or the like can be used, and as spinel, a refractory material mainly composed of Al 2 O 3 and MgO, MgO content is 5 mass% or more, preferably MgO. A content of 20% by mass or more can be used.

上記以外の原料としては、ムライト、カーボンブラック、無煙炭、コークス粉、ピッチ、窒化珪素、炭化硼素等の1種以上を5質量%以下であれば使用することが可能である。   As raw materials other than the above, one or more of mullite, carbon black, anthracite, coke powder, pitch, silicon nitride, boron carbide and the like can be used if they are 5% by mass or less.

本発明のアルミナ−炭化珪素−炭素質れんがは、耐火原料配合物にバインダーを添加して混練後、成形し、150〜500℃程度で熱処理する一般的な製法で製造することができる。なお、バインダーとしては、フェノール樹脂やフラン樹脂などを使用することができる。   The alumina-silicon carbide-carbonaceous brick of the present invention can be produced by a general production method in which a binder is added to a refractory raw material composition, kneaded, molded, and heat-treated at about 150 to 500 ° C. In addition, a phenol resin, a furan resin, etc. can be used as a binder.

表1、2に記載の割合にて原料秤量を行い、バインダーとしてフェノール樹脂を添加して混練し、150MPa以上で加圧成形後、250℃で熱処理した。これから物性測定用試料を切り出して見掛け気孔率及び残存膨張率を測定するとともに、耐食性、耐酸化性及び耐熱衝撃性を評価した。   Raw materials were weighed at the ratios shown in Tables 1 and 2, phenol resin was added as a binder and kneaded. After pressure molding at 150 MPa or more, heat treatment was performed at 250 ° C. From this, a sample for measuring physical properties was cut out to measure the apparent porosity and residual expansion rate, and the corrosion resistance, oxidation resistance and thermal shock resistance were evaluated.

Figure 2015189640
Figure 2015189640

Figure 2015189640
Figure 2015189640

見掛け気孔率の測定においては形状60×60×60mmの試料を使用した。この見掛け気孔率の測定は、れんがの使用中の緻密性を評価するために1400℃で3時間の還元雰囲気での焼成後に行った。焼成温度を1400℃とした理由は、1400℃未満では、アルミナ−炭化珪素−炭素質れんが内部での反応が完了しきれず、熱負荷も十分でないため緻密性の評価として適当ではなく、また1400℃を超える温度では焼結が進行し、緻密性の評価として焼結の効果を分離して評価することが困難になるうえ、焼成を行う炉への負荷が大きく定常的な測定法として好ましくなくなるためである。焼成の時間は3時間未満ではアルミナ−炭化珪素−炭素質れんが内部での反応が完了しきれず適当ではない。更にこれよりも長時間の焼成では焼結が進行してその効果を分離して評価することが困難になる。本実施例では、1400℃で3時間の還元雰囲気での焼成後の試料を、媒液を白灯油としたアルキメデス法(JIS R 2205)に準じて見掛け気孔率を測定した。   In measuring the apparent porosity, a sample having a shape of 60 × 60 × 60 mm was used. The apparent porosity was measured after firing in a reducing atmosphere at 1400 ° C. for 3 hours in order to evaluate the denseness of the brick during use. The reason for setting the firing temperature at 1400 ° C. is that when the temperature is less than 1400 ° C., the reaction inside the alumina-silicon carbide-carbonaceous brick cannot be completed, and the heat load is not sufficient, so that it is not suitable for evaluation of denseness. Sintering proceeds at a temperature exceeding 1, and it becomes difficult to separate and evaluate the effect of sintering as an evaluation of denseness, and the load on the furnace for firing is large, making it unpreferable as a steady measurement method. It is. If the firing time is less than 3 hours, the reaction inside the alumina-silicon carbide-carbonaceous brick cannot be completed, which is not suitable. Furthermore, if firing is performed for a longer time, sintering proceeds and it is difficult to separate and evaluate the effect. In this example, the apparent porosity of a sample after firing in a reducing atmosphere at 1400 ° C. for 3 hours was measured according to the Archimedes method (JIS R 2205) using white kerosene as a liquid medium.

残存膨張率の測定においては20×20×80mmの試料を使用し、1400℃で3時間の還元雰囲気での熱処理後前後の試料の寸法を計測して残存膨張率を算出した。   In the measurement of the residual expansion coefficient, a 20 × 20 × 80 mm sample was used, and the residual expansion coefficient was calculated by measuring the dimensions of the sample before and after the heat treatment in a reducing atmosphere at 1400 ° C. for 3 hours.

耐食性は、回転侵食試験にて評価した。回転侵食試験では、水平の回転軸を有するドラムの内面に供試れんがをライニングし、スラグを投入、加熱してれんが表面を侵食させた。加熱源は酸素−プロパンバーナーとし、試験温度は1500℃、スラグ組成はCaO/SiO=1.0、FeO=1.5質量%とし、スラグの排出、投入を30分毎に10回繰り返した。試験終了後、各れんがの最大溶損部の寸法を計測して侵食量を算出し、表1に記載の「比較例1」の侵食量を100とする耐食性指数で表示した(耐食性指数=100×比較例1の侵食量(cm)/各例の侵食量(cm))。この耐食性指数は数値の大きいものほど耐食性に優れることを示す。 Corrosion resistance was evaluated by a rotational erosion test. In the rotary erosion test, a test brick was lined on the inner surface of a drum having a horizontal rotation axis, slag was added, and the brick surface was eroded by heating. The heating source was an oxygen-propane burner, the test temperature was 1500 ° C., the slag composition was CaO / SiO 2 = 1.0, FeO = 1.5 mass%, and slag discharge and charging were repeated 10 times every 30 minutes. . After the test was completed, the size of the maximum melted portion of each brick was measured to calculate the erosion amount, and the erosion amount of “Comparative Example 1” shown in Table 1 was expressed as a corrosion resistance index with 100 (corrosion resistance index = 100 × Erosion amount of Comparative Example 1 (cm 3 ) / Erosion amount of each example (cm 3 )). The higher the corrosion resistance index, the better the corrosion resistance.

耐酸化性の評価においては乾燥後の試料からφ50×50mmに切り出し、大気雰囲気下で電気炉中1400℃で15時間焼成した。焼成後の試料の高さ方向の中央を切断し、炭素成分が脱炭して変色した部分の厚さを4方向計測してこの値の平均値を脱炭層厚さとした。そして、表1に記載の「比較例1」の脱炭層厚さを100とする耐酸化性指数で表示した(耐酸化性指数=100×比較例1の脱炭層厚さ(mm)/各例の脱炭層厚さ(mm))。この耐酸化性指数は数値の大きいものほど耐酸化性に優れることを示す。   In the evaluation of oxidation resistance, the sample after drying was cut out to φ50 × 50 mm and fired in an electric furnace at 1400 ° C. for 15 hours in an air atmosphere. The center in the height direction of the sample after firing was cut, the thickness of the portion where the carbon component was decarburized and discolored was measured in four directions, and the average value of these values was taken as the decarburized layer thickness. And it displayed with the oxidation resistance index | exponent which makes the thickness of the decarburization layer of "Comparative example 1" of Table 1 100 (oxidation resistance index = 100x decarburization layer thickness (mm) of comparative example 1 / each example Decarburization layer thickness (mm)). The larger the numerical value of this oxidation resistance index, the better the oxidation resistance.

耐熱衝撃性の評価においては、40×40×190mmの大きさの試料を、1400℃3時間還元焼成の後、1500℃の溶銑に90秒浸漬後、30秒水冷の熱衝撃を10回繰り返す試験を行い、亀裂・剥落の状態を観察した。表中で、◎は試験後に亀裂・剥落がなかったもの、○は軽微な亀裂・剥落が発生したもの、△は中程度の亀裂・剥落が発生したもの、×は大きな亀裂又は割れが発生したものである。   In the evaluation of thermal shock resistance, a 40 × 40 × 190 mm sample was reduced and fired at 1400 ° C. for 3 hours, immersed in 1500 ° C. hot metal for 90 seconds, and then subjected to 30-second water-cooled thermal shock 10 times. And observed the state of cracks and peeling. In the table, ◎ indicates that there was no crack or peeling after the test, ○ indicates that a slight crack or peeling occurred, △ indicates that a moderate crack or peeling occurred, × indicates that a large crack or crack occurred. Is.

以下、表1及び表2を参照して各例の評価結果を説明する。   Hereinafter, the evaluation results of each example will be described with reference to Table 1 and Table 2.

実施例1〜3はアルミナの中間粒が異なる割合になっているが、本発明の範囲内である。ガラス、マグネシア、あるいはスピネルを使用していないにもかかわらず、焼成後の見掛け気孔率が低いことから組織が緻密になっており、耐食性及び耐酸化性に優れている。また、十分な残存膨張性も有している。   Examples 1 to 3 have different proportions of alumina intermediate grains, but are within the scope of the present invention. Despite the fact that glass, magnesia, or spinel is not used, the structure is dense due to the low apparent porosity after firing, and is excellent in corrosion resistance and oxidation resistance. Moreover, it has sufficient residual expansibility.

これに対して、比較例1は、アルミナの中間粒が30質量%と本発明の下限値35質量%未満であるため、焼成後の見掛け気孔率が高くラフな組織となり、耐食性及び耐酸化性が不十分である。また、比較例2は、アルミナの中間粒が60質量%と本発明の上限値55質量%を上回っているため、焼成後の見掛け気孔率が高く、耐食性及び耐酸化性が低下している。更に、比較例20はガラスとマグネシアを添加した例であるが、アルミナの中間粒が30質量%と本発明の下限値を下回っているため、実施例1〜3と比較すると耐食性がかなり劣る結果となっている。   On the other hand, in Comparative Example 1, since the alumina intermediate grains are 30% by mass and less than the lower limit of 35% by mass of the present invention, the apparent porosity after firing becomes a rough structure, and the corrosion resistance and oxidation resistance are increased. Is insufficient. Moreover, since the intermediate grain of alumina exceeds 60 mass% and the upper limit of 55 mass% of the present invention in Comparative Example 2, the apparent porosity after firing is high, and the corrosion resistance and oxidation resistance are reduced. Furthermore, Comparative Example 20 is an example in which glass and magnesia were added, but the intermediate grain of alumina was 30% by mass and below the lower limit of the present invention, so that the corrosion resistance was considerably inferior compared with Examples 1-3. It has become.

実施例4〜6はアルミナの微粒が異なる割合になっているが、本発明の範囲内であり、焼成後の見掛け気孔率が低いことから組織が緻密になっており、耐食性及び耐酸化性に優れている。また、十分な残存膨張性も有している。   Examples 4 to 6 have different proportions of alumina fine particles, but are within the scope of the present invention, and since the apparent porosity after firing is low, the structure is dense, and corrosion resistance and oxidation resistance are improved. Are better. Moreover, it has sufficient residual expansibility.

これに対して、比較例3は、アルミナの微粒の割合(微粒/中間粒)が0.00と本発明の下限値0.05を下回っているため、耐食性が不十分である。比較例4は、微粉/中間粒が0.35と本発明の上限値0.30を超えているため、焼成後の見掛け気孔率が高くなり耐食性及び耐酸化性が不十分となり、残存膨張が小さくなっている。更に耐熱衝撃性も低下している。   On the other hand, since the ratio of the fine particles of alumina (fine particles / intermediate particles) is 0.00, which is lower than the lower limit value 0.05 of the present invention, Comparative Example 3 has insufficient corrosion resistance. In Comparative Example 4, the fine powder / intermediate grain is 0.35, which exceeds the upper limit of 0.30 of the present invention, so that the apparent porosity after firing becomes high, the corrosion resistance and oxidation resistance become insufficient, and the residual expansion is reduced. It is getting smaller. Furthermore, the thermal shock resistance is also reduced.

実施例7〜9はアルミナの粗粒が異なる割合になっているが、本発明の範囲内であり、焼成後の見掛け気孔率が低いことから組織が緻密になっており、耐食性及び耐酸化性に優れている。また、十分な残存膨張性も有している。   Examples 7 to 9 have different proportions of alumina coarse particles, but they are within the scope of the present invention, and the structure is dense due to the low apparent porosity after firing, corrosion resistance and oxidation resistance. Is excellent. Moreover, it has sufficient residual expansibility.

これに対して、比較例5は、アルミナの粗粒の割合(粗粒/中間粒)が0.1と本発明の下限値0.25を下回っているため、焼成後の見掛け気孔率が高くなり耐食性が低下している。比較例6は、粗粒/中間粒が1.25と本発明の上限値1.00を超えているため、焼成後の見掛け気孔率が高くなり耐食性及び耐酸化性が低下している。   On the other hand, since the ratio of coarse particles of alumina (coarse particles / intermediate particles) is 0.1, which is lower than the lower limit value 0.25 of the present invention, Comparative Example 5 has a high apparent porosity after firing. Corrosion resistance is reduced. In Comparative Example 6, since the coarse / intermediate grain is 1.25, which exceeds the upper limit of 1.00 of the present invention, the apparent porosity after firing becomes high, and the corrosion resistance and oxidation resistance are lowered.

実施例10〜12は黒鉛量が異なる割合になっているが、本発明の範囲内であり、焼成後の見掛け気孔率が低いことから組織が緻密になっており、耐食性及び耐酸化性に優れている。また、十分な残存膨張性も有している。   Examples 10 to 12 have different proportions of graphite, but within the scope of the present invention, the apparent porosity after firing is low, the structure is dense, and excellent in corrosion resistance and oxidation resistance. ing. Moreover, it has sufficient residual expansibility.

これに対して、比較例7は黒鉛量が0質量%と本発明の下限値3質量%を下回っているため、焼成後の見掛け気孔率が高くなり耐食性が低下している。比較例8は、黒鉛量が23質量%と本発明の上限値20%を上回っているため、焼成後の見掛け気孔率が高くなり耐食性及び耐酸化性が低下している。   On the other hand, in Comparative Example 7, the amount of graphite is 0% by mass, which is lower than the lower limit of 3% by mass of the present invention. Therefore, the apparent porosity after firing becomes high and the corrosion resistance is lowered. In Comparative Example 8, the amount of graphite is 23% by mass, which exceeds the upper limit of 20% of the present invention, so that the apparent porosity after firing becomes high and the corrosion resistance and oxidation resistance are lowered.

実施例13は、硼珪酸ガラスを1質量%添加したものであるが耐酸化性が改善されている。   In Example 13, 1% by mass of borosilicate glass was added, but the oxidation resistance was improved.

実施例14〜19は、アルミニウム、シリコン、硼珪酸ガラス、燐酸ガラス、マグネシア、及びスピネルの添加量を変えた例であるが、いずれも本発明の範囲内であり、焼成後の見掛け気孔率が低いことから組織が緻密になっており、耐食性及び耐酸化性に優れている。また、十分な残存膨張性も有している。   Examples 14 to 19 are examples in which the addition amount of aluminum, silicon, borosilicate glass, phosphate glass, magnesia, and spinel was changed, but all are within the scope of the present invention, and the apparent porosity after firing is Since it is low, the structure is dense, and it has excellent corrosion resistance and oxidation resistance. Moreover, it has sufficient residual expansibility.

Claims (3)

耐火原料配合物にバインダーを添加して混練、成形、熱処理してなるアルミナ−炭化珪素−炭素質れんがであって、
前記耐火原料配合物は、
粒径0.075mm以上1mm未満の中間粒のアルミナを35質量%以上55質量%以下、
粒径1mm以上5mm未満の粗粒のアルミナを前記中間粒のアルミナに対して質量比で0.25以上1.00以下、
粒径0.075mm未満の微粒のアルミナを前記中間粒のアルミナに対して質量比で0.05以上0.30以下、
粒径0.075mm以上1.0mm未満の中間粒が50質量%以上である黒鉛を3質量%以上20質量%以下、
粒径0.075mm未満の微粒が50質量%以上である炭化珪素を1質量%以上10質量%以下、
粒径0.075mm未満の微粒が70質量%以上である金属を0.1質量%以上5質量%以下含有し、
かつ、前記耐火原料配合物中のアルミナの合量が60質量%以上95質量%以下である、アルミナ−炭化珪素−炭素質れんが。
Alumina-silicon carbide-carbonaceous brick formed by adding a binder to a refractory raw material composition and kneading, molding, and heat-treating,
The refractory raw material composition is
35% by mass or more and 55% by mass or less of intermediate alumina having a particle size of 0.075 mm or more and less than 1 mm,
Coarse-grained alumina having a particle size of 1 mm or more and less than 5 mm is 0.25 or more and 1.00 or less in a mass ratio with respect to the intermediate-grain alumina.
Fine alumina having a particle size of less than 0.075 mm is 0.05 to 0.30 in terms of mass ratio with respect to the intermediate alumina.
3% by mass or more and 20% by mass or less of graphite having 50% by mass or more of intermediate grains having a particle size of 0.075 mm or more and less than 1.0 mm,
1% by mass or more and 10% by mass or less of silicon carbide in which fine particles having a particle size of less than 0.075 mm are 50% by mass or more,
Containing 0.1% by mass or more and 5% by mass or less of a metal having 70% by mass or more of fine particles having a particle size of less than 0.075 mm;
And the alumina-silicon carbide-carbonaceous brick whose total amount of the alumina in the said refractory raw material mixture is 60 to 95 mass%.
前記耐火原料配合物が、更に、粒径0.075mm以下の微粒が70質量%以上であるガラスを5質量%以下含有する、請求項1に記載のアルミナ−炭化珪素−炭素質れんが。   The alumina-silicon carbide-carbonaceous brick according to claim 1, wherein the refractory raw material composition further contains 5% by mass or less of glass having a particle size of 0.075 mm or less of 70% by mass or more. 前記耐火原料配合物が、更に、粒径0.075mm以上5mm未満の粒子が70質量%以上であるマグネシア及び/又はスピネルを10質量%以下含有する、請求項1又は2に記載のアルミナ−炭化珪素−炭素質れんが。   The alumina-carbonization according to claim 1 or 2, wherein the refractory raw material composition further contains 10% by mass or less of magnesia and / or spinel in which particles having a particle size of 0.075 mm or more and less than 5 mm are 70% by mass or more. Silicon-carbon brick.
JP2014068860A 2014-03-28 2014-03-28 Alumina-silicon carbide-carbon brick Active JP6154772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014068860A JP6154772B2 (en) 2014-03-28 2014-03-28 Alumina-silicon carbide-carbon brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014068860A JP6154772B2 (en) 2014-03-28 2014-03-28 Alumina-silicon carbide-carbon brick

Publications (2)

Publication Number Publication Date
JP2015189640A true JP2015189640A (en) 2015-11-02
JP6154772B2 JP6154772B2 (en) 2017-06-28

Family

ID=54424470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014068860A Active JP6154772B2 (en) 2014-03-28 2014-03-28 Alumina-silicon carbide-carbon brick

Country Status (1)

Country Link
JP (1) JP6154772B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168014A (en) * 2017-03-30 2018-11-01 Jfeスチール株式会社 Unfired brick refractory and method for producing unfired brick refractory
JP2021075449A (en) * 2019-10-31 2021-05-20 Jfeスチール株式会社 Graphite contained castable refractory and production method therefor
CN116924779A (en) * 2023-08-22 2023-10-24 新疆天山建材集团耐火材料有限责任公司 Low-carbon environment-friendly aluminum carbon brick and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183828A (en) * 1992-12-16 1994-07-05 Toshiba Ceramics Co Ltd Production of refractory for casting
JPH0925160A (en) * 1995-07-13 1997-01-28 Harima Ceramic Co Ltd Production of carbon-containing refractory
JPH09239503A (en) * 1996-03-01 1997-09-16 Toshiba Ceramics Co Ltd Nozzle refractories for continuous casting
JPH11189477A (en) * 1997-12-25 1999-07-13 Kawasaki Steel Corp Graphite-containing castable refractory material for mixer car
JP2001072474A (en) * 1999-09-02 2001-03-21 Kurosaki Harima Corp Magnesia-carbonaceous unburned refractory brick and apparatus for degassing molten steel under vacuum, lined by using the same brick
JP2012036064A (en) * 2010-08-11 2012-02-23 Kurosaki Harima Corp Alumina-carbon unfired brick for lining molten metal holding furnace, method for producing the same, and furnace equipment and construction method using the same
JP2013001584A (en) * 2011-06-14 2013-01-07 Shinagawa Refractories Co Ltd Method for producing porous refractory material and porous refractory material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183828A (en) * 1992-12-16 1994-07-05 Toshiba Ceramics Co Ltd Production of refractory for casting
JPH0925160A (en) * 1995-07-13 1997-01-28 Harima Ceramic Co Ltd Production of carbon-containing refractory
JPH09239503A (en) * 1996-03-01 1997-09-16 Toshiba Ceramics Co Ltd Nozzle refractories for continuous casting
JPH11189477A (en) * 1997-12-25 1999-07-13 Kawasaki Steel Corp Graphite-containing castable refractory material for mixer car
JP2001072474A (en) * 1999-09-02 2001-03-21 Kurosaki Harima Corp Magnesia-carbonaceous unburned refractory brick and apparatus for degassing molten steel under vacuum, lined by using the same brick
JP2012036064A (en) * 2010-08-11 2012-02-23 Kurosaki Harima Corp Alumina-carbon unfired brick for lining molten metal holding furnace, method for producing the same, and furnace equipment and construction method using the same
JP2013001584A (en) * 2011-06-14 2013-01-07 Shinagawa Refractories Co Ltd Method for producing porous refractory material and porous refractory material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168014A (en) * 2017-03-30 2018-11-01 Jfeスチール株式会社 Unfired brick refractory and method for producing unfired brick refractory
JP2021075449A (en) * 2019-10-31 2021-05-20 Jfeスチール株式会社 Graphite contained castable refractory and production method therefor
JP7011010B2 (en) 2019-10-31 2022-01-26 Jfeスチール株式会社 Graphite-containing castable refractory and its manufacturing method
CN116924779A (en) * 2023-08-22 2023-10-24 新疆天山建材集团耐火材料有限责任公司 Low-carbon environment-friendly aluminum carbon brick and preparation method thereof

Also Published As

Publication number Publication date
JP6154772B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2014112493A1 (en) Magnesia-carbon brick
JP4681456B2 (en) Low carbon magnesia carbon brick
CN109996772B (en) Magnesia carbon brick and its making process
WO2014119593A1 (en) Magnesia carbon brick
JP6546687B1 (en) Method of manufacturing magnesia carbon brick
JP6215109B2 (en) Magnesia carbon brick
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP6600729B1 (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank
JP6219729B2 (en) Magnesia carbon brick
JP6194257B2 (en) Magnesia carbon brick
WO2011058811A1 (en) Sliding nozzle plate
JP6190730B2 (en) Magnesia carbon brick
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP2015171991A (en) Iron-making vessel
JP6361705B2 (en) Lining method of converter charging wall
JPH05262559A (en) Unburned carbon-containing brick
JP4203157B2 (en) Magnesia refractory
JP5578680B2 (en) Carbon-containing refractories
JPH07291715A (en) Spinel refractory brick
JP2018015763A (en) Lining refractory material for continuous casting tundish
JP2000191364A (en) Shaped magnesia-chrome refractory
JP2023109590A (en) Method of producing magnesia-chrome brick
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
JP2014091633A (en) Carbon-containing brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170602

R150 Certificate of patent or registration of utility model

Ref document number: 6154772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250