JPS641092B2 - - Google Patents

Info

Publication number
JPS641092B2
JPS641092B2 JP13103280A JP13103280A JPS641092B2 JP S641092 B2 JPS641092 B2 JP S641092B2 JP 13103280 A JP13103280 A JP 13103280A JP 13103280 A JP13103280 A JP 13103280A JP S641092 B2 JPS641092 B2 JP S641092B2
Authority
JP
Japan
Prior art keywords
vehicle speed
speed
rank
correction amount
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13103280A
Other languages
Japanese (ja)
Other versions
JPS5754530A (en
Inventor
Hiroshi Kishida
Shigeo Sato
Toshio Tominaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP13103280A priority Critical patent/JPS5754530A/en
Publication of JPS5754530A publication Critical patent/JPS5754530A/en
Publication of JPS641092B2 publication Critical patent/JPS641092B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Harvester Elements (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)

Description

【発明の詳細な説明】 本発明は、負荷検出手段が設けられると共に、
その負荷検出手段の検出情報に基づいて、車速修
正量を所定周期で繰返し判別する車速修正量判別
手段が設けられ、その車速修正量判別手段の判別
情報に基づいて、車速を設定修正量で変更するよ
うに走行用変速装置を操作する変速操作手段が設
けられたコンバインの自動車速制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a load detection means, and
Vehicle speed correction amount determining means is provided that repeatedly determines the vehicle speed correction amount at a predetermined cycle based on the detection information of the load detection means, and the vehicle speed is changed by the set correction amount based on the determination information of the vehicle speed correction amount determining means. The present invention relates to a vehicle speed control device for a combine harvester, which is provided with a speed change operation means for operating a traveling speed change device.

かかる自動車速制御装置において、前回の判別
で増速が判別された時にも、前回の判別で減速が
判別された時にも、同じ周期で車速修正量を判別
させることが考えられる。
In such a vehicle speed control device, it is conceivable to determine the amount of vehicle speed correction at the same cycle both when speed increase was determined in the previous determination and when deceleration was determined in the previous determination.

上記手段により車速修正量を判別させると、過
負荷発生に伴い減速制御を迅速に行わせること
と、制御のハンチングを回避すべく増速制御をゆ
るやかに行わせることとの両者を適確に満足させ
ることができないものとなる。
By determining the amount of vehicle speed correction using the above means, it is possible to accurately satisfy both of the requirements of quickly performing deceleration control when an overload occurs and performing speed increase control slowly to avoid control hunting. It becomes something that cannot be done.

つまり、この種の車速制御は、例えば脱穀装置
に過負荷を与えることを回避しながらも、脱穀装
置の処理能力を充分活用した収穫作業を行えるよ
うにするためのものであつて、過負荷発生時には
それを迅速に回避すべく、減速制御を迅速に行わ
せることが望まれる。これに対し、増速制御は軽
負荷の時に行われるものであつて、その増速制御
を必要以上に迅速に行うと、その増速のために過
負荷が検出されて、再び減速制御が行われること
が繰返される、いわゆるハンチングが生じるもの
となる。
In other words, this type of vehicle speed control is intended to enable harvesting operations that fully utilize the threshing equipment's processing capacity while avoiding, for example, overloading the threshing equipment. Sometimes, in order to quickly avoid this, it is desirable to perform deceleration control quickly. On the other hand, speed increase control is performed when the load is light, and if the speed increase control is performed more quickly than necessary, an overload will be detected due to the speed increase, and deceleration control will be performed again. This results in what is called hunting, which occurs repeatedly.

本発明は、上記実状に鑑みて為されたものであ
つて、その目的は、減速制御及び増速制御の夫々
を適切に行えるようにする点にある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to enable appropriate deceleration control and speed increase control.

本発明によるコンバインの自動車速制御装置の
特徴は、 (イ) 負荷検出手段が設けられ、 (ロ) 上記(イ)の検出情報に基づいて、車速修正量を
所定周期で繰返し判別する車速修正量判別手段
が設けられ、 (ハ) 上記(ロ)の判別情報に基づいて、車速を設定修
正量で変更するように走行用変速装置を操作す
る変速操作手段が設けられ、 前記車速修正量判別手段は、 前回の判別で増速を判別した時から次の判別を
行うまでの周期が、 前回の判別で減速を判別した時から次の判別を
行うまでの周期よりも 大きく構成されている点にある。
The features of the vehicle speed control device for a combine harvester according to the present invention are as follows: (a) A load detection means is provided, and (b) a vehicle speed correction amount that repeatedly determines the vehicle speed correction amount at a predetermined cycle based on the detection information in (a) above. (c) Based on the discrimination information in (b) above, a speed change operation means is provided for operating the driving transmission to change the vehicle speed by a set correction amount, and the vehicle speed correction amount judgment means The reason for this is that the period from the time when speed increase was determined in the previous determination until the next determination is made is larger than the period from the time when deceleration was determined in the previous determination until the next determination is made. be.

上記特徴構成による作用は次の通りである。 The effects of the above characteristic configuration are as follows.

すなわち、負荷検出手段の情報に基づいて、車
速修正量判別手段によつて車速修正量を判別さ
せ、その判別手段の情報に基づいて変速させる
に、前回の判別で増速が判別された時から次の判
別を行うまでの周期を、前回の判別で減速が判別
された時から次の判別を行うまでの周期よりも大
きくして、結果的に、過負荷に伴う減速制御が迅
速に行われ、そして、軽負荷に伴う増速制御がゆ
つくりと行われるようにしてある。
That is, based on the information from the load detection means, the vehicle speed modification amount determining means determines the amount of vehicle speed modification, and based on the information from the determining means, the speed change is performed from the time when speed increase was determined in the previous determination. The cycle until the next determination is made is made longer than the cycle from when deceleration was determined in the previous determination until the next determination is made, and as a result, deceleration control due to overload is performed quickly. , speed increase control accompanying light loads is performed slowly.

従つて、本発明の効果は次の通りである。 Therefore, the effects of the present invention are as follows.

過負荷に伴う減速制御を迅速に行つて、過負荷
を迅速に解消させることと、軽負荷に伴う増速制
御がゆつくりと行つて、ハンチングが生じること
との両者を一挙に満足させた、良好な車速制御を
行わせることができるようになつた。
This system satisfies both the problems of quickly performing deceleration control in response to overload to quickly eliminate the overload, and preventing hunting from occurring due to slow speed increase control associated with light load. It has become possible to perform good vehicle speed control.

以下本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図はコンバインの概略を示す全体側面図で
あつて、左右一対のクローラ走行装置1,1を装
偏した機台2に脱穀装置3、エンジン4、操縦席
5及び操縦搭6が搭載連結されるとともに、多条
の植立穀稈を刈取立姿勢に引起す引起し装置7
…、引起された穀稈の株元を切断する切断装置
8、刈取つた多条の穀稈を合流させる搬送装置
9、合流した穀稈を後方上方に搬送して脱穀装置
3に沿つて設けたフイードチエーン10に横倒れ
姿勢で受渡す搬送装置11、等を装偏した刈取前
処理部12が、前記機台2の前部に支点Pを中心
に上下揺動できるよう連結されている。
Figure 1 is an overall side view schematically showing a combine harvester, in which a threshing device 3, an engine 4, a pilot seat 5, and a pilot tower 6 are mounted and connected to a machine platform 2 on which a pair of left and right crawler traveling devices 1 and 1 are mounted. At the same time, a raising device 7 raises the multi-row planted grain culm to a standing position for reaping.
..., a cutting device 8 for cutting the stock base of the raised grain culms, a conveying device 9 for merging the multi-rowed grain culms, and a conveying device 9 for conveying the merged grain culms rearward and upward, and installed along the threshing device 3. A reaping pre-processing section 12 equipped with a conveying device 11 and the like that delivers the feed chain 10 in a sideways posture is connected to the front part of the machine stand 2 so as to be able to swing up and down about a fulcrum P.

前記脱穀装置3は、フイードチエーン10で穀
稈の株元部を挾持して扱室13内に挿入された着
粒部を回転扱胴14の刃15で打撃して脱粒処理
し、離脱処理物を下方の選別室16において揺動
選別シーブ17にかけて揺動選別するとともにブ
ロワ18からの風にて風選別し、精選された1番
物(穀粒)を1番スクリユーコンベア19にて装
置外に搬出して回収し、2番物(穀粒とワラ屑の
混在したもの)は2番スクリユーコンベア20と
スロワ21にて扱室13に環元して再処理するよ
うに構成されている。又、脱穀処理後の排ワラは
フイードチエーン10に引続く搬送装置22にて
更に後方に搬送したのち、カツタ23で細断して
地上に放出するようになつている。
The threshing device 3 clamps the base of the grain culm with the feed chain 10, and strikes the granulation part inserted into the handling chamber 13 with the blade 15 of the rotary handling cylinder 14 to perform threshing processing and release processing. The materials are subjected to oscillating sorting through the oscillating sorting sieve 17 in the lower sorting room 16, and are also air-sorted by the wind from the blower 18, and the selected first product (grain) is transferred to the first screw conveyor 19 by the device. The structure is such that the second product (mixed grain and straw waste) is returned to the handling room 13 via the second screw conveyor 20 and thrower 21 for reprocessing. There is. Further, the waste straw after threshing is further transported rearward by a transport device 22 following the feed chain 10, and then shredded by a cutter 23 and discharged onto the ground.

前記エンジン4からの動力は2系統に分岐さ
れ、一方の分岐動力が脱穀クラツチ24を介して
脱穀装置3及びこれに付随するフイードチエーン
10、排ワラ搬送装置22、カツタ23に伝えら
れる。又、他の分岐動力は、圧油吐出方向の正逆
切換え及び吐出油量の連続変更が可能な可変容量
型の油圧ポンプ25と定容量型の油圧モータ26
とからなる油圧式無段変速装置(H.S.T)27に
入力され、該変速装置27からの変速回転出力の
一部がクローラ走行装置1,1のミツシヨンケー
ス28に入力されるとともに、出力の他の一部が
前記刈取前処理部12の各装置に伝達されるよう
になつている。
The power from the engine 4 is branched into two systems, and one branched power is transmitted via a threshing clutch 24 to the threshing device 3, the feed chain 10 attached thereto, the waste straw conveying device 22, and the cutter 23. Other branched power sources include a variable displacement hydraulic pump 25 and a fixed displacement hydraulic motor 26, which are capable of switching between forward and reverse directions of pressurized oil discharge and continuously changing the amount of discharged oil.
A part of the speed change rotation output from the transmission 27 is input to the transmission case 28 of the crawler traveling device 1, 1, and a part of the speed change rotation output from the transmission 27 is input to the transmission case 28 of the crawler traveling device 1, 1. A part of the information is transmitted to each device of the pre-reaping processing section 12.

前記変速装置27は変速レバー29にて人為的
に変速操作できる他に脱穀作業負荷に応じて自動
変速制御可能であり、次に車速自動制御について
説明する。
The transmission device 27 can be operated to change speed manually using a speed change lever 29, and can also be controlled to change speed automatically according to the threshing work load. Next, automatic vehicle speed control will be explained.

前記扱胴14の入力部には、扱胴トルクと扱胴
回転速度を各別に且つ同時的にパルス信号として
検出する負荷検出手段としてのセンサ30が設け
られるとともに、ミツシヨンケース28の入力軸
には回転速度に比例した数のパルスを発生する車
速センサ31が装偏されており、各センサ30,
31からの出力が夫々扱胴トルク計測回路32、
扱胴回転速度計測回路33、及び車速計測回路3
4に入力されて、扱胴トルクT、扱胴回転速度
N、及び車速Vが計測される。又、計測された扱
胴トルクTと扱胴回転速度Nとは、車速修正量判
別手段として機能する扱胴負荷判別回路35にて
総合的に判別されて、車速修正量ΔV0が判別され
る。この判別結果に基づいて、車速決定回路3
6、比較判別回路37、及び、変速用の正逆モー
タ38からなる変速操作手段によつて、車速が変
更される。つまり、先ず、車速決定回路36によ
つて、現在の車速Vと車速修正量ΔV0とに基づい
て、目標車速V0が決定される。そして、検出さ
れた実車速Vと前記目標車速V0とが比較判別回
路37にて比較されて両車速V,V0の偏差の有
無が判別され、この判別結果に基づいて前記変速
装置27の変速レバー29を自動操作するための
正逆転モータ38を制御して実車速Vを目標車速
V0に近づけるのである。
The input section of the handling cylinder 14 is provided with a sensor 30 as a load detection means for separately and simultaneously detecting the handling cylinder torque and the handling cylinder rotation speed as pulse signals. is equipped with a vehicle speed sensor 31 that generates a number of pulses proportional to the rotational speed, and each sensor 30,
The outputs from 31 are respectively transmitted to the handling cylinder torque measuring circuit 32,
Handling cylinder rotation speed measurement circuit 33 and vehicle speed measurement circuit 3
4, and the handling cylinder torque T, handling cylinder rotational speed N, and vehicle speed V are measured. In addition, the measured handling cylinder torque T and handling cylinder rotational speed N are comprehensively determined by a handling cylinder load determination circuit 35 that functions as a vehicle speed modification amount determining means, and the vehicle speed modification amount ΔV 0 is determined. . Based on this determination result, the vehicle speed determining circuit 3
6. The vehicle speed is changed by a speed change operating means consisting of a comparison/discrimination circuit 37 and a forward/reverse speed change motor 38. That is, first, the target vehicle speed V 0 is determined by the vehicle speed determining circuit 36 based on the current vehicle speed V and the vehicle speed correction amount ΔV 0 . Then, the detected actual vehicle speed V and the target vehicle speed V 0 are compared in a comparison/discrimination circuit 37 to determine whether there is a deviation between the two vehicle speeds V and V 0 , and based on this determination result, the transmission device 27 is The forward/reverse motor 38 for automatically operating the gear shift lever 29 is controlled to convert the actual vehicle speed V to the target vehicle speed.
This brings it closer to V 0 .

尚、前記変速レバー29とモータ38との間に
は摩擦伝動装置39が介在されていて、モータ3
8に関係なく手動で優先的に変速操作できるもの
となつている。
A friction transmission device 39 is interposed between the speed change lever 29 and the motor 38.
8, manual gear shifting can be performed preferentially.

次に前記扱胴負荷判別回路35の機能について
説明する。
Next, the function of the handling cylinder load determination circuit 35 will be explained.

第3図は扱胴負荷判別を行うためのランク分け
線図であつて、扱胴回転速度変動範囲が無負荷時
の回転速度n0を基準にして設定量づつの差Δn1
Δn2,Δn3をもつて予め複数段階(実施例では4
段階)にランク分けA1,A2…されるとともに、
扱胴トルク変動範囲が予め設定してある値t0を基
準にして設定量づつの差Δt1,Δt2をもつて予め
複数段階(実施例では4段階)にランク分けB1
B2…されており、且つ、両ランクの重複ランク
群が負荷の大小から複数段階(7段階)にランク
分けC1,C2…されている。
FIG. 3 is a ranking diagram for determining the handling cylinder load, and shows that the handling cylinder rotational speed fluctuation range is a set amount difference Δn 1 , based on the no-load rotational speed n 0 ,
Δn 2 and Δn 3 in advance in multiple stages (in the example, 4 stages)
Ranked into A 1 , A 2 , etc. (stages),
The handling cylinder torque fluctuation range is ranked in advance into a plurality of stages (4 stages in the embodiment) with differences Δt 1 and Δt 2 of set amounts based on a preset value t 0 B 1 ,
B 2 . . . , and the overlapping rank group of both ranks is ranked into multiple stages (7 stages) C 1 , C 2 . . . based on the magnitude of load.

そして、前述のように検出された扱胴回転速度
Nと扱胴トルクTを夫々のランクA1…,B1…に
対比させることによつて扱胴負荷ランクC1…の
いずれに属しているかを判別するのである。
Then, by comparing the handling cylinder rotation speed N and handling cylinder torque T detected as described above with the respective ranks A 1 ..., B 1 ..., it is determined which of the handling cylinder load ranks C 1 ... it belongs to. It is to determine.

ここで、前記扱胴負荷ランクC1…のうち、ラ
ンクC3は 適正回転速度ランクA2の回転速度Nが検出
され、且つ、適正トルクランクB2のトルクT
が検出された場合、 ′ 適正回転速度ランクA2よりも1段階低速
度側の回転速度ランクA3の回転速度Nが検
出され、且つ、適正トルクランクB2よりも
1段階低い側のトルクンクB1のトルクTが
検出された場合、及び、 ″ 適正回転速度ランクA2よりも1段階高速
側の回転速度ランクA1の回転速度Nが検出
され、且つ、適正トルクランクB2よりも1
段階高い側のトルクランクB3のトルクTが
検出された場合の夫々に対応するものであつ
て、 適正負荷ランクとして車速増減速が不要とさ
れ、これより低負荷側ランクC2,C1は、)適
正回転速度ランクA2の回転速度Nが検出され、
且つ、適正トルクランクB2よりも低い側のトル
クランクB1のトルクTが検出された場合や、
)′適正回転速度ランクA2よりも高速側の回転
速度ランクA1の回転速度Nが検出され、且つ、
適正トルクランクB2並びにそれよりも低い側の
トルクランクB1のトルクTが検出された場合の
夫々に対応するものであつて、車速の増大を行
い、又、高負荷側のランクC4,C5,C6,C7は、
)検出された回転速度NやトルクTが、上記
),)′,)″及び),)′で無い時に対
応するものであつて、車速の減少を行う。又、増
速用の各ランクC1,C2及び減速用の各ランクC4
C5,C6,C7の夫々にには目標車速修正量ΔV01
ΔV02…が予め設定されていて、実検出回転速度
N及びトルクTから負荷ランクC1…が判別され
ると、これに応じて目標車速修正量が決定され、
車速決定回路36で前の目標車速V0が増減修正
され、新たな目標車速V0に対して実検出車速V
が比較されるのである。
Here, among the handling cylinder load ranks C 1 . . . , rank C 3 is such that the rotation speed N of the appropriate rotation speed rank A 2 is detected, and the torque T of the appropriate torque rank B 2 is detected.
is detected, ' The rotation speed N of rotation speed rank A 3 , which is one step lower than the appropriate rotation speed rank A 2, is detected, and the rotation speed N of rotation speed rank A 3 , which is one step lower than the appropriate rotation speed rank B 2, is detected, and the torque rank B is one step lower than the appropriate torque rank B 2 . If a torque T of 1 is detected, and a rotation speed N of a rotation speed rank A 1 which is one step higher than the appropriate rotation speed rank A 2 is detected, and if the rotation speed N is one step higher than the appropriate rotation speed rank B 2 ,
These correspond to the cases in which the torque T of the higher torque rank B3 is detected, and as an appropriate load rank, there is no need to increase or decrease the vehicle speed, and from this, the lower load ranks C2 and C1 are , ) Appropriate rotation speed rank A 2 rotation speed N is detected,
In addition, when a torque T of a torque rank B1 lower than the appropriate torque rank B2 is detected,
)' The rotational speed N of rotational speed rank A1 , which is higher than the appropriate rotational speed rank A2 , is detected, and
This corresponds to the case where the torque T of the appropriate torque rank B 2 and the lower torque rank B 1 is detected, and the vehicle speed is increased, and the torque of the higher load rank C 4 , C 5 , C 6 , C 7 are
) This corresponds to when the detected rotational speed N and torque T are not the above), )', )'' and ), )', and the vehicle speed is decreased. Also, each rank C for speed increase 1 , C 2 and each rank C 4 for deceleration,
C 5 , C 6 , and C 7 each have a target vehicle speed correction amount ΔV 01 ,
When ΔV 02 ... is set in advance and the load rank C 1 ... is determined from the actual detected rotational speed N and torque T, the target vehicle speed correction amount is determined accordingly,
The previous target vehicle speed V 0 is increased or decreased in the vehicle speed determining circuit 36, and the actual detected vehicle speed V is adjusted with respect to the new target vehicle speed V 0.
are compared.

尚、刈取作業開始時には変速レバー29を手動
操作して任意の車速を選択し、その後、自動車速
制御を起動した時点での実車速が当初の目標車速
として設定され、上記負荷検出に伴つて順次目標
車速を更新してゆくことになる。
In addition, when starting the reaping work, manually operate the speed change lever 29 to select an arbitrary vehicle speed, and then the actual vehicle speed at the time when the vehicle speed control is activated is set as the initial target vehicle speed, and as the load is detected, The target vehicle speed will be updated.

又、前記扱胴負荷判別のためのランク分けを設
定するに際しては次のような処理が同時に行われ
る。
Further, when setting the ranking for determining the handling cylinder load, the following processing is performed at the same time.

適正な扱胴回転速度は作物の種類(稲・麦)に
よつて変更されるものであり(扱胴駆動系の変速
による)、これに応じて前記扱胴回転速度ランク
A1…の基準となる無負荷回転速度n0を変更設定
する必要がある。そこで、本発明では無負荷であ
ることの条件として次の3つが設定されている。
The appropriate handling drum rotation speed changes depending on the type of crop (rice, wheat) (depending on the speed change of the handling drum drive system), and the handling drum rotation speed rank is adjusted accordingly.
It is necessary to change and set the no-load rotation speed n 0 , which is the reference for A 1 .... Therefore, in the present invention, the following three conditions are set as conditions for no load.

車速Vが実質的に零(0.1m/s以下)であ
ること 扱胴トルクTが設定値(0.75Kgm)以下であ
ること 扱胴回転速度Nが規定値(370rpm)以上で
あること そして、脱穀クラツチ24が入れられた時点
(クラツチレバーの変位をリミツトスイツチで検
出)で前記3条件が満されていると無負荷状態で
あると判断して自動的にこの時点の扱胴回転速度
が前記基準回転速度n0として記憶されランクA1
…が決定されるのである。
Vehicle speed V must be virtually zero (0.1m/s or less) Handling cylinder torque T must be below the set value (0.75Kgm) Handling cylinder rotational speed N must be at least the specified value (370rpm) And threshing When the clutch 24 is engaged (displacement of the clutch lever is detected by the limit switch), if the above three conditions are met, it is determined that there is no load, and the handling cylinder rotation speed at this point is automatically set to the reference rotation. Speed n is stored as 0 and rank A is 1
...is determined.

以上説明した車速制御は、機体を植立作物に追
従させて走行させる自動操縦制御刈取穀稈の稈長
に応じて搬送装置11の姿勢を変更して扱室13
の穀稈挿入長さを一定に維持する扱深さ制御、脱
穀装置3における2番スクリユーコンベア20の
詰まりに伴う回転速度低下の検出に基づく警報
や、排ワラ搬送径路での詰まり発生の検出に基づ
く警報を出すための自動警報制御、排ワラ詰まり
や運転中におけるカツタ4のカバー開放の検出に
基づくエンジン自動停止制御、等と共に、1つの
制御回路cpuを用いて処理されるものであつて、
第4図に示すように、一定時間の周期をもつて循
環する制御メインループの中で各種制御が順次時
分割されて処理されるようになつている。
The vehicle speed control explained above is an automatic pilot control that causes the machine to follow the planted crops.
handling depth control to maintain a constant grain culm insertion length, alarm based on detection of a decrease in rotational speed due to clogging of the No. 2 screw conveyor 20 in the threshing device 3, and detection of clogging in the waste straw conveyance path. Automatic alarm control to issue a warning based on the system, automatic engine stop control based on detection of clogged waste straw or opening of the cutter 4 cover during operation, etc. are processed using one control circuit CPU. ,
As shown in FIG. 4, various controls are sequentially processed in a time-division manner within a control main loop that circulates at regular intervals.

そして、前記車速Vの計測はメインループの周
期に対して充分長い周期で間欠的に行われると共
に、前記扱胴負荷判別回路35による修正量判別
処理、つまり、目標車速V0の修正更新処理も設
定された周期で間欠的に行われる。但し、修正量
判別処理において、前回の判別で増速が判別され
た時や無修正が判別された時から次の判別を行う
までの周期T1が、前回の判別で減速が判別され
た時から次の判別を行うまでの周期T2よりも大
きく設定されるようになつている。これにより、
過負荷に伴う減速制御が迅速に行われ、軽負荷に
伴う増速制御がゆつくりと行われるようになつて
いる。
The measurement of the vehicle speed V is carried out intermittently at a sufficiently long cycle with respect to the main loop cycle, and the processing of determining the amount of correction by the handling trunk load discriminating circuit 35, that is, the process of correcting and updating the target vehicle speed V 0 is also carried out. It is performed intermittently at a set period. However, in the modification amount determination process, the period T 1 from when the previous determination determined speed increase or no modification until the next determination is made is when deceleration was determined in the previous determination. It is set to be larger than the cycle T 2 from 1 to 2 until the next determination is made. This results in
Deceleration control associated with overload is performed quickly, and speed increase control associated with light load is performed slowly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るコンバインの自動車速制御
装置の実施の態様を例示し、第1図はコンバイン
の全体側面図、第2図は自動車速制御機構の構成
図、第3図は扱胴負荷判別用ランク分け線図、第
4図は自動制御全体のフローチヤートである。 27…走行用変速装置、30…負荷検出手段、
35…車速修正量判別手段、36,37,38…
変速操作手段、T1,T2…周期。
The drawings illustrate an embodiment of the vehicle speed control device for a combine harvester according to the present invention, in which FIG. 1 is an overall side view of the combine, FIG. 2 is a configuration diagram of the vehicle speed control mechanism, and FIG. 3 is a diagram showing the handling trunk load determination. FIG. 4 is a flowchart of the entire automatic control. 27... Traveling transmission, 30... Load detection means,
35...Vehicle speed correction amount determination means, 36, 37, 38...
Speed change operation means, T 1 , T 2 ...cycle.

Claims (1)

【特許請求の範囲】 1 (イ) 負荷検出手段30が設けられ、 (ロ) 上記(イ)の検出情報に基づいて、車速修正量
ΔV0を所定周期で繰返し判別する車速修正量判
別手段35が設けられ、 (ハ) 上記(ロ)の判別情報に基づいて、車速を設定修
正量で変更するように走行用変速装置27を操
作する変速操作手段36,37,38が設けら
れ、 前記車速修正量判別手段35は、 前回の判別で増速を判別した時から次の判別を
行うまでの周期T2が、 前回の判別で減速を判別した時から次の判別を
行うまでの周期T2よりも 大きく構成されている コンバインの自動車速制御装置。
[Scope of Claims] 1 (a) A load detection means 30 is provided, and (b) a vehicle speed correction amount determining means 35 that repeatedly determines the vehicle speed correction amount ΔV 0 at a predetermined cycle based on the detection information of (a) above. (c) A speed change operation means 36, 37, 38 is provided for operating the traveling transmission 27 to change the vehicle speed by a set correction amount based on the discrimination information in (b) above, and the vehicle speed The correction amount determining means 35 determines that the period T 2 from the time when speed increase was determined in the previous determination until the next determination is made is the period T 2 from the time when deceleration was determined in the previous determination until the next determination is made . A combine harvester vehicle speed control device that is larger than the .
JP13103280A 1980-09-19 1980-09-19 Automatic running speed control system of combined harvester Granted JPS5754530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13103280A JPS5754530A (en) 1980-09-19 1980-09-19 Automatic running speed control system of combined harvester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13103280A JPS5754530A (en) 1980-09-19 1980-09-19 Automatic running speed control system of combined harvester

Publications (2)

Publication Number Publication Date
JPS5754530A JPS5754530A (en) 1982-04-01
JPS641092B2 true JPS641092B2 (en) 1989-01-10

Family

ID=15048418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13103280A Granted JPS5754530A (en) 1980-09-19 1980-09-19 Automatic running speed control system of combined harvester

Country Status (1)

Country Link
JP (1) JPS5754530A (en)

Also Published As

Publication number Publication date
JPS5754530A (en) 1982-04-01

Similar Documents

Publication Publication Date Title
JPS6342284B2 (en)
JPS641092B2 (en)
JP2953956B2 (en) Combine
JPS641090B2 (en)
JPS641089B2 (en)
JP5382918B2 (en) Combine
JPS641091B2 (en)
JPS6347416B2 (en)
JP2659304B2 (en) Combine speed controller
JP2688076B2 (en) Speed control device for automatic traveling work machine
JP2736884B2 (en) Harvester vehicle speed control device
KR850000142B1 (en) Speed controll system of combine
JP6228408B2 (en) General purpose combine
JPS6347417B2 (en)
JP2608196B2 (en) Whole culm type combine
JPH0132844Y2 (en)
JPS6347418B2 (en)
JP3240444B2 (en) Combine
JPS62179314A (en) Control mechanism for engine of combine
JPS6344329B2 (en)
JP2641650B2 (en) Vehicle speed control system for all culms
JPH0117647B2 (en)
JPH0336484B2 (en)
JPS6334502Y2 (en)
JP3138882B2 (en) Combine speed controller