JPS6410258B2 - - Google Patents

Info

Publication number
JPS6410258B2
JPS6410258B2 JP58224255A JP22425583A JPS6410258B2 JP S6410258 B2 JPS6410258 B2 JP S6410258B2 JP 58224255 A JP58224255 A JP 58224255A JP 22425583 A JP22425583 A JP 22425583A JP S6410258 B2 JPS6410258 B2 JP S6410258B2
Authority
JP
Japan
Prior art keywords
gas
reaction
reaction chamber
raw material
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58224255A
Other languages
Japanese (ja)
Other versions
JPS60118234A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP58224255A priority Critical patent/JPS60118234A/en
Publication of JPS60118234A publication Critical patent/JPS60118234A/en
Publication of JPS6410258B2 publication Critical patent/JPS6410258B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves

Description

【発明の詳細な説明】 本発明は、出発材料粉末として金属若しくは非
金属元素又は炭素含有物質の粉粒体又は分散体若
しくはアルコキシドを利用し、これを気圧調整し
た反応室内に噴出して噴霧状にした原材料にレー
ザーもしくはマイクロウエーブの反応エネルギー
を照射し、前記の出発材料成分間または該粉末と
反応ガスとの間で化学反応を生ぜしめて、所要の
金属化合物または炭素組成物を生成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes granules, dispersions, or alkoxides of metal or nonmetallic elements or carbon-containing substances as a starting material powder, and sprays this into a reaction chamber whose pressure is adjusted to form a spray. A method for producing a desired metal compound or carbon composition by irradiating a powdered raw material with laser or microwave reaction energy to cause a chemical reaction between the starting material components or between the powder and a reactive gas. .

出発材料を混合しまたは相互に添加して所要の
条件下で反応させることは各種の化合物または組
成物を形成する方法として提案され常用されてい
る。出発材料として、固体粉粒体または気体中に
浮游させた固体粉粒体を所要条件に保持した電磁
界内で反応させる提案がされているが、まだ特別
なケースに適用されているにすぎない。所望の製
品に対応する方法として簡易なものが知られた
り、経済的なものが達成されるに到つていないこ
とによろう。また良質均一な製品を生成する方法
が得られていない。これらの現状にかんがみ、本
発明は、出発材料の粉粒体又は分散体若しくはア
ルコキシドを所要の気圧制御した反応ガス中にノ
ズルから微粉状に噴出しながら所要のエネルギー
を照射して連続的に反応させ、金属若しくは非金
属化合物又はグラフアイト若しくはグラフアイト
組成物を生成する方法の提供を目的とする。反応
出発原材料は、固体の粉粒体、固体微粉粒を所要
の気体中に混合しもしくは浮游させたもの、固体
を液体中に混合もしくは溶解したもの、アルコキ
シド化したものなどが用いられる。
BACKGROUND OF THE INVENTION Mixing or mutually adding starting materials and reacting them under desired conditions has been proposed and commonly used as a method for forming various compounds or compositions. It has been proposed to react solid powders or solid particles suspended in a gas as a starting material in an electromagnetic field maintained under the required conditions, but this is still only applicable in special cases. . This is probably because a simple method that corresponds to the desired product is not known or an economical method has not yet been achieved. Furthermore, there is no method available for producing uniform products of high quality. In view of these current circumstances, the present invention aims to carry out a continuous reaction by ejecting starting material powder or dispersion or alkoxide into a reaction gas controlled at the required pressure in the form of fine powder from a nozzle and irradiating the required energy. The object of the present invention is to provide a method for producing metal or non-metallic compounds or graphite or graphite compositions. As the starting raw material for the reaction, solid particles, fine solid particles mixed or suspended in a required gas, solids mixed or dissolved in a liquid, alkoxides, etc. are used.

これらの出発原材料に照射する反応エネルギー
としては、例えば炭酸ガスレーザーを照射し、ま
たは高周波の電磁波を加えて、反応をさせ、この
反応を所定の気圧に加圧制御し維持した反応ガス
もしくは媒体室内でおこさせ、室内の温度とを一
定にし、生成量を得るための所要の室内充填反応
気体の圧力を一定にするように制御し、室内充填
をする所要気体を室内に供給する原材料気体の混
合または供給方法を調整して、さらにレーザー照
射量を調整しながら出発原材料の噴出量を定めて
反応物を生成する。
The reaction energy irradiated to these starting materials includes, for example, irradiation with a carbon dioxide laser or application of high-frequency electromagnetic waves to cause a reaction, and the reaction is controlled and maintained at a predetermined pressure in the reaction gas or medium chamber. Mixing of raw material gases to supply the necessary gases to be filled indoors by controlling the pressure of the reaction gas required to be filled indoors to obtain the production amount and keeping the indoor temperature constant. Alternatively, the reactant is generated by adjusting the supply method and determining the ejection amount of the starting raw material while adjusting the laser irradiation amount.

次に、一実施例を挙げて本発明を説明する。 Next, the present invention will be explained by giving an example.

第1図は容器10内反応室に噴出させた原材料
粉8と所定の気体にレーザー4を照射するモデル
を示す側面図。第2図は噴出口の例示図。第3図
は窒化ボロンを製造した時の、また第4図はその
他の同様の反応を生じた時の室内気圧と生成量の
関係を示す曲線1Aと曲線22を表わす。
FIG. 1 is a side view showing a model in which a laser 4 is irradiated onto a raw material powder 8 and a predetermined gas ejected into a reaction chamber in a container 10. FIG. 2 is an illustration of the spout. FIG. 3 shows a curve 1A and a curve 22 showing the relationship between the indoor pressure and the amount produced when boron nitride is produced, and FIG. 4 shows the relationship between the indoor pressure and the amount produced when other similar reactions occur.

第1図の一例示について説明する。反応容器1
0の室内を所定の圧力に維持する。容器10下方
部中央には出発原材料の噴出ノズル7を備え、容
器10の下方部一端には反応ガスまたは媒体ガス
Cを供給するガス供給装置12を備え、上方部一
端には容器10内部の生成気体と製品生成時の微
粉を含む気固混合生成体Gを導出しながら分離を
する分離装置11、例えばサイクロンとバグフイ
ルターとから成るものと連結ダクト9を備える。
2はレーザー発振器で、容器10の窓を通してレ
ーザー光を導入し、レンズ3により集光4してノ
ズル7から微粉状に噴出した出発原材料8に対し
適正な照射をすることができる所要の位置に調整
可能に設ける。
An example of FIG. 1 will be explained. Reaction vessel 1
0 chamber at a predetermined pressure. The center of the lower part of the container 10 is equipped with a jetting nozzle 7 for the starting raw material, one end of the lower part of the container 10 is equipped with a gas supply device 12 for supplying a reaction gas or medium gas C, and one end of the upper part is equipped with a gas supply device 12 for supplying the reaction gas or medium gas C. A separation device 11 for separating a gas-solid mixture product G containing gas and fine powder during product production while extracting it, for example, includes a cyclone and a bag filter, and a connecting duct 9 are provided.
Reference numeral 2 denotes a laser oscillator, which introduces a laser beam through a window of a container 10, focuses it 4 with a lens 3, and places it at a required position where it can appropriately irradiate the starting raw material 8 spouted in fine powder form from a nozzle 7. Provided to be adjustable.

噴出ノズル7には、出発原材料Bの導入管5と
噴出を加勢する流体Aの噴流導路管6を設ける。
この噴出ノズル7は、必要に応じ、第2図に示す
ような他の構造例のものを用いる。13は超音波
振動子でノズル7に振動を与えることによつて出
発原料Bの噴出粉化を行なわせる。次に実施物に
ついて例示して説明する。
The ejection nozzle 7 is provided with an introduction pipe 5 for the starting raw material B and a jet flow conduit pipe 6 for the fluid A that enhances the ejection.
As the ejection nozzle 7, another structural example as shown in FIG. 2 may be used as necessary. Reference numeral 13 denotes an ultrasonic vibrator that vibrates the nozzle 7 to eject and powder the starting material B. Next, examples of implementation will be explained.

実施例 1 出発原材料としてチタンアルコキシドTi
(OMe)2を管5導入路に供給し噴出ノズル7から
微粉状に噴出する。この場合、噴出用ガスとして
炭化水素ガスを用い管6から吹込む。容器10内
には吹込ガスと同じ炭化水素ガスを供給口12よ
り供給し所要の圧力をもつて充填する。噴出粉粒
とメチレン、エチレンまたはスチレンのような炭
化水素ガスに第1図に示すように500Wの炭酸ガ
スレーザー4を照射する。こうして炭化チタン
TiC粒を生成する。分離装置11で気体と固体と
を分離し固体中からTiCを集収する。
Example 1 Titanium alkoxide Ti as starting material
(OMe) 2 is supplied to the pipe 5 introduction path and is ejected from the ejection nozzle 7 in the form of fine powder. In this case, hydrocarbon gas is used as the blowout gas and is blown in from the pipe 6. The same hydrocarbon gas as the blown gas is supplied into the container 10 from the supply port 12 and filled with the required pressure. The ejected powder particles and a hydrocarbon gas such as methylene, ethylene or styrene are irradiated with a 500W carbon dioxide laser 4 as shown in FIG. Thus titanium carbide
Generate TiC grains. A separation device 11 separates gas and solid, and collects TiC from the solid.

この種の一連の試験から、第4図の曲線22に
示すように容器10内の気体圧力と反応生成化合
物生成量とが一定の関係曲線をもつて示す関係で
あることが認められた。
From a series of tests of this type, it has been found that the gas pressure within the container 10 and the amount of reaction product produced are in a constant relationship curve, as shown by curve 22 in FIG.

実施例 2 出発原材料として、コークス粉を管5から噴出
ノズル7に導入する。加熱タールをコークス粉に
混合した粒状体を加熱炭化水素ガスとともに管6
から吹込み、ノズル7から噴出霧化する。容器1
0内に所要の圧力を維持するようにし、噴出物8
にレーザー4を照射し反応をおこさせる。分離装
置11で固体を分離しグラフアイトを得る。
Example 2 As starting material, coke powder is introduced through the tube 5 into the jet nozzle 7. A granular mixture of heated tar and coke powder is passed through tube 6 along with heated hydrocarbon gas.
It is blown in from the nozzle 7 and atomized. container 1
Try to maintain the required pressure within 0, ejecta 8
is irradiated with laser 4 to cause a reaction. A separator 11 separates the solid to obtain graphite.

実施例 3 第1図に示した噴出部に代えて第2図に示した
噴出部を装置し、超音波噴出させた場合、実施例
2の出発原材料と室内圧力を加えた場合には、良
好なグラフアイト化が得られた。
Example 3 When the ejection part shown in Fig. 2 was replaced with the ejection part shown in Fig. 1 and ultrasonic waves were ejected, when the starting raw material of Example 2 and indoor pressure were applied, the results were good. A graphite structure was obtained.

実施例 4 実施例3と同様に、第2図の噴出部を設ける。
活性窒素ガスとホウ素微粉を管5に供給し噴出ノ
ズル7に超音波噴出をさせながらレーザー4によ
る噴出物8へ照射を行なつた。容器10内には供
給口12から活性窒素ガスを供給して所要圧力を
維持し、圧力を変化させて窒化ホウ素生成量との
関係を求めたとき、曲線1Aを第3図に示したよ
うに得られた。
Example 4 As in Example 3, the ejection part shown in FIG. 2 is provided.
Activated nitrogen gas and fine boron powder were supplied to the tube 5, and the ejected material 8 was irradiated with the laser 4 while the ejecting nozzle 7 was ejecting ultrasonic waves. Activated nitrogen gas was supplied into the container 10 from the supply port 12 to maintain the required pressure, and when the pressure was varied and the relationship with the amount of boron nitride produced was determined, the curve 1A was as shown in FIG. Obtained.

実施例 5 実施例4と同様に、管5からケイ素粉粒と活性
窒素で噴出ノズル7に導入し、室内に噴射しレー
ザー4を噴射物に照射する。活性窒素ガスを供給
口12から容器10に所要の圧力を維持するよう
に供給する。室内の生成物を分離装置11を導入
し固体窒化ケイ素が得られる。
Example 5 In the same manner as in Example 4, silicon powder and activated nitrogen are introduced into the jet nozzle 7 through the tube 5, and are jetted into the room, and the laser 4 is irradiated onto the jet. Activated nitrogen gas is supplied from the supply port 12 to the container 10 so as to maintain a required pressure. The product in the chamber is introduced into a separation device 11 to obtain solid silicon nitride.

実施例 6 実施例5の窒素に代えて炭化水素ガスを用いて
同様に行い、炭化ケイ素を得た。実施例4と5と
6とを併せると、これらの一連の試験の結果は、
第4図に示す室内圧力と反応生成物との関係曲線
22が得られる。
Example 6 The same procedure as in Example 5 was carried out using hydrocarbon gas instead of nitrogen to obtain silicon carbide. Combining Examples 4, 5, and 6, the results of these series of tests are:
A relationship curve 22 between indoor pressure and reaction products shown in FIG. 4 is obtained.

実施例 7 ホウ素を炭化水素液中に分散し管5から噴出ノ
ズル7に導入し、容器10に炭化水素を所要の圧
力に維持し、2568MHzのマイクロウエーブを照射
し反応させたとき、第4図に示すと同様な傾向が
示された。
Example 7 When boron was dispersed in a hydrocarbon liquid and introduced into the jet nozzle 7 from the pipe 5, the hydrocarbon was maintained at the required pressure in the container 10, and 2568 MHz microwave was irradiated to cause a reaction. A similar trend was shown.

以上のように本発明は、金属若しくは非金属化
合物又はグラフアイト若しくはグラフアイト組成
物の製造に当り、出発原材料に金属若しくは非金
属元素又は炭素含有物質の粉粒体又は分散体若し
くはアルコキシドを利用し、該出発原材料を反応
ガス若しくは媒体ガスの供給により所要に気圧調
整した反応室にノズルから微粒状に噴出しながら
該噴霧原材料にレーザ若しくはマイクロウエーブ
の反応エネルギを照射して反応物を生成するよう
にしたから、原材料に対する反応エネルギの照射
効果が向上し、反応効果が高能率に行なわれ、全
体に均一な反応を行なわせることができる。これ
により目的反応物の金属若しくは非金属化合物又
はグラフアイト若しくはグラフアイト組成物を容
易に高能率に生成することができる。
As described above, the present invention utilizes granules, dispersions, or alkoxides of metal or nonmetal elements or carbon-containing substances as starting raw materials in the production of metal or nonmetal compounds, graphite, or graphite compositions. , the starting raw material is sprayed in the form of fine particles from a nozzle into a reaction chamber whose pressure is adjusted as required by supplying a reaction gas or medium gas, and the sprayed raw material is irradiated with reaction energy of a laser or microwave to generate a reactant. Because of this, the effect of irradiating the reaction energy on the raw materials is improved, the reaction effect is carried out with high efficiency, and the reaction can be carried out uniformly throughout. Thereby, the desired reactant metal or nonmetal compound, graphite, or graphite composition can be easily produced with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いるモデル側面図。
第2図は他の噴射部例側面図。第3図と第4図は
反応室圧力と生成量の関係図。 10…容器、11…分離装置、12…ガス供給
部、2…レーザー発振器、3…レンズ、4…レー
ザー、5,6…導管、7…噴出ノズル、8…噴出
物、13…超音波振動子、1A,22…圧力と反
応生成物との関係曲線、A…反応ガスもしくは媒
体気体、B…出発原材料、C…反応ガスもしくは
媒体気体。
FIG. 1 is a side view of a model used in the method of the present invention.
FIG. 2 is a side view of another example of the injection section. Figures 3 and 4 are diagrams showing the relationship between reaction chamber pressure and production amount. DESCRIPTION OF SYMBOLS 10... Container, 11... Separation device, 12... Gas supply part, 2... Laser oscillator, 3... Lens, 4... Laser, 5, 6... Conduit, 7... Ejection nozzle, 8... Ejected material, 13... Ultrasonic vibrator , 1A, 22...Relationship curve between pressure and reaction product, A...Reaction gas or medium gas, B...Starting raw material, C...Reaction gas or medium gas.

Claims (1)

【特許請求の範囲】[Claims] 1 化学反応室を形成する容器を設け、該容器内
反応室に反応ガス若しくは媒体ガスを供給して反
応室内圧力を所要の気圧に維持するガス供給装置
と、前記反応室内に開口するノズルから出発材料
を噴出導入する原材料供給装置と、前記ノズルか
ら噴出導入される原材料に対してレーザ若しくは
マイクロウエーブの反応エネルギを照射するエネ
ルギ照射装置と、前記反応室の反応生成物を導出
して製品分離する分離装置とを備えた装置により
製品を生成するものに於て、出発原材料として金
属若しくは非金属元素又は炭素含有物質の粉粒体
又は分散体若しくはアルコキシドを利用し、該出
発原材料を反応ガス若しくは媒体ガスの供給によ
り所要に気圧調整した前記反応室に前記ノズルか
ら微粉状に噴出しながら該噴霧原材料に前記のエ
ネルギを照射して反応物を生成し、該生成反応物
を室外の分離装置に導出して所要の金属若しくは
非金属化合物又はグラフアイト若しくはグラフア
イト組成物を分離するようにしたことを特徴とす
る金属若しくは非金属化合物又はグラフアイト若
しくはグラフアイト組成物の製造方法。
1 A container forming a chemical reaction chamber is provided, a gas supply device supplies a reaction gas or a medium gas to the reaction chamber in the container to maintain the pressure of the reaction chamber at a required pressure, and a nozzle opens into the reaction chamber. A raw material supply device that jets and introduces the material, an energy irradiation device that irradiates the raw material that is jetted and introduced from the nozzle with reaction energy of a laser or microwave, and a reaction product in the reaction chamber that is extracted and separated into products. In products that are produced by an apparatus equipped with a separation device, particles or dispersions or alkoxides of metal or nonmetallic elements or carbon-containing substances are used as starting materials, and the starting materials are combined with a reaction gas or medium. While spraying fine powder from the nozzle into the reaction chamber whose pressure has been adjusted to the required pressure by supplying gas, the sprayed raw material is irradiated with the energy to generate a reactant, and the generated reactant is led to an outdoor separation device. 1. A method for producing a metal or nonmetal compound, graphite, or graphite composition, characterized in that a required metal or nonmetal compound, graphite, or graphite composition is separated.
JP58224255A 1983-11-30 1983-11-30 Preparation of metal compound or carbon composition Granted JPS60118234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224255A JPS60118234A (en) 1983-11-30 1983-11-30 Preparation of metal compound or carbon composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224255A JPS60118234A (en) 1983-11-30 1983-11-30 Preparation of metal compound or carbon composition

Publications (2)

Publication Number Publication Date
JPS60118234A JPS60118234A (en) 1985-06-25
JPS6410258B2 true JPS6410258B2 (en) 1989-02-21

Family

ID=16810909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224255A Granted JPS60118234A (en) 1983-11-30 1983-11-30 Preparation of metal compound or carbon composition

Country Status (1)

Country Link
JP (1) JPS60118234A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770126A (en) * 1995-09-07 1998-06-23 The Penn State Research Foundation High producing rate of nano particles by laser liquid interaction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1107680A (en) * 1977-04-25 1981-08-25 Sam L. Leach Powerful energy transfer technique
US4260649A (en) * 1979-05-07 1981-04-07 The Perkin-Elmer Corporation Laser induced dissociative chemical gas phase processing of workpieces

Also Published As

Publication number Publication date
JPS60118234A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
JP3228934B2 (en) Method and apparatus for minimizing sediment in a drying room
JPS6141954B2 (en)
EP0530297A1 (en) A process and an apparatus for the surface treatment of powder particles.
JPS61221310A (en) Method and apparatus for producing pulverous powder of metal or alloy or the like
US5816509A (en) Apparatus for continuously supplying fine powder in minute and quantitative amounts
US5278384A (en) Apparatus and process for the treatment of powder particles for modifying the surface properties of the individual particles
EP0424049A3 (en) Method and equipment for the preparation of a carrier of a polymerization catalyst
RU2347166C1 (en) Fluidised bed dryer with inert nozzle
JPS6410258B2 (en)
RU2343385C1 (en) Device for spray drying and granulating pulse-6 type particulates
US3715076A (en) Method and apparatus for spraying powdered thermoplastic substances
US4578876A (en) Process and apparatus for spraying a powder with liquid
CA1255974A (en) Particle injection device for thermal spraying
RU2343384C1 (en) Device for spray drying and granulating particulates
EP0122112A2 (en) Improvements in or relating to a process and apparatus for spraying a powder with liquid
JP2001519419A5 (en)
JPH10216499A (en) Improved method of pelletizing and pelletizer
JPH0357126B2 (en)
US2535227A (en) Apparatus for generating acetylene gas
CA1251600A (en) Preparation of chlorinated polyolefins
RU2007225C1 (en) Method and device for spraying powder
JP2541019B2 (en) Method for producing silicon nitride powder
JPS5485157A (en) Method and apparatus for preparing solder powder
JPH05208127A (en) Fine particle coating method and apparatus therefor and spray nozzle
JPH0649911B2 (en) Method and apparatus for producing metal compound particle-dispersed metal composite material