JPS639964A - Manufacture of semiconductor storage element - Google Patents

Manufacture of semiconductor storage element

Info

Publication number
JPS639964A
JPS639964A JP61154374A JP15437486A JPS639964A JP S639964 A JPS639964 A JP S639964A JP 61154374 A JP61154374 A JP 61154374A JP 15437486 A JP15437486 A JP 15437486A JP S639964 A JPS639964 A JP S639964A
Authority
JP
Japan
Prior art keywords
type silicon
silicon substrate
silicon layer
information storage
storage capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61154374A
Other languages
Japanese (ja)
Inventor
Masakazu Kimura
正和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61154374A priority Critical patent/JPS639964A/en
Publication of JPS639964A publication Critical patent/JPS639964A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To avoid the generation of a crystal defect often viewed after forming an element by selecting the direction of the sidewall of a capacitance groove and the direction of the pattern of the element in the direction equivalent to <100>. CONSTITUTION:The boundaries of element regions 1 and field oxide regions 3 for isolating the element regions 1 and the direction of the boundaries, the direction of the patterns of the elements, are selected in the direction equivalent to <100>. The directions vertical to the sidewall surfaces of capacitance grooves 2 are also directed in the direction equivalent to <100>. A wafer in which a P-type silicon layer 4 having 2mum thickness and 10OMEGA.cm resistivity is shaped onto a boron-doped (100)P++ type silicon substrate 5 having 0.005OMEGA.cm resistivity and an orientation flat in the direction equivalent to <100> is prepared, thus forming a desired storage element. Accordingly, no crystal defect is generated on the interface of the P-type silicon layer 4 and the P++ type silicon substrate 5, thus also lengthening the memory holding time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 一本発明は半導体記憶素子製造法に関し、−特に絶縁ゲ
ート電界効果トランジスタを用いてなる半導体記憶素子
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor memory element, and particularly to a method for manufacturing a semiconductor memory element using an insulated gate field effect transistor.

〔従来の技術〕[Conventional technology]

シリコン半導体基板に搭載してなる半導体記憶装置の大
容量化・高密度化は、新規な回路構成、半導体基板嵌置
の微細加工技術の発展と共に急速な進展をしている。こ
の様な情況下において、現在、情報蓄積部が1個のMO
Sトランジスタと1個の情報蓄積容量部で構成され次半
導体記憶素子が最も高密度化に適したものと考えられ、
情報蓄積容量部をシリコン基板表面に形成され几深さ数
ミクロンの溝の側壁部に形成し、高密度化を計る方法が
とられている。
BACKGROUND ART The increase in capacity and density of semiconductor memory devices mounted on silicon semiconductor substrates is rapidly progressing with the development of new circuit configurations and microfabrication technology for mounting semiconductor substrates. Under these circumstances, the information storage department is currently limited to one MO
The next semiconductor memory element, which is composed of an S transistor and one information storage capacitor, is considered to be the most suitable for high density storage.
A method has been adopted in which the information storage capacitor is formed on the side wall of a groove several microns deep on the surface of a silicon substrate to increase the density.

第2図お工び第4図は、この−例を示したものでめる。Figure 2 and Figure 4 show an example of this.

第4図は、記憶素子製造後の(100)基板平面図で、
素子領域l、容量1!12 e 74−ルド醒化領域3
のみを示してろる。記憶素子は、第4図に示すように、
(011)、(011>方向のパターンエツジを有する
素子領域1に形成される。情報蓄積容量部は容量溝2の
側壁部に形成されている。素子領域1はフィールド酸化
領域3にニジ互いに分離されている。第4図のB B’
断面での素子構造の一例を第2図に示す。第2図におい
て、情報電荷は、溝側壁部に形成された誘電体膜7の内
側に蓄積される。誘電体膜7の内側のポリシリコンa8
は例えばN型の不純物を含み、容量電極となっている。
FIG. 4 is a plan view of the (100) substrate after manufacturing the memory element.
Element area l, capacitance 1!12 e 74-Led awakening area 3
I'll show you only. As shown in FIG. 4, the memory element is
It is formed in a device region 1 having pattern edges in the (011) and (011> directions.The information storage capacitor portion is formed on the side wall portion of the capacitance trench 2.The device region 1 is separated from the field oxidation region 3. BB' in Figure 4.
An example of the device structure in cross section is shown in FIG. In FIG. 2, information charges are accumulated inside the dielectric film 7 formed on the sidewalls of the trench. Polysilicon a8 inside dielectric film 7
contains, for example, an N-type impurity and serves as a capacitive electrode.

そしてこのポリシリコン膜8は、マ童のソースおよびコ
ンタクト領域9と電気的に接続され、ドレイン領域lO
,ゲート酸化膜11、ゲート電極12.ソース領域9か
らなるMOSトランジスタに1って情報が出し入れされ
る。
This polysilicon film 8 is electrically connected to the source and contact regions 9 of the Mado, and is connected to the drain region lO
, gate oxide film 11, gate electrode 12. Information 1 is input/output to/from the MOS transistor consisting of the source region 9.

このような記憶素子は、例えば学術専門誌インターナシ
嘗ナル・エレクトロン・テハイス・ミーティング・テク
ニカル・ダイジェスト1985年、710ページ(IE
L)M、 ’l’ech、 i)ig、 、 1985
. Pp−710−713)に報告されている。
Such a memory element is described, for example, in the academic journal International Electron Technology Meeting Technical Digest, 1985, page 710 (IE
L)M, 'l'ech, i)ig, , 1985
.. Pp-710-713).

〔発明が解決しょうとする問題点〕 第2図に示す工うな素子構造の素子を製造する場合には
、P型シリコン基板とr型シリコン基板5との界面近傍
に結晶欠陥が生じやすく、ソースおよびコンタクト領域
9からr型シリコン基板5方向へ情報電荷がリークしや
すいという欠点が存在する。第2図に示した記憶素子で
は、P+′型シリコン基板5は情報蓄積容量部の対向電
極の役目をしておシ、できるだけ低抵抗であることが望
まれる。然しなから、低抵抗化即ち不純物を高濃度に入
れると、P 型シリコン基板5の格子定数が本来のシリ
コンの格子定数からずれる。この友め、P 型シリコン
基板上にP型シリコン層をエピタキシャル成長させ次場
合、P型シリコン層4とP 型シリコン基板5との界面
に結晶欠陥が発生する。従って、通常は、エピタキシャ
ル成長しても結晶欠陥が発生しない程度の不純物濃度が
選ばれている。然しなから、半導体記憶素子の高集積化
に伴い、第2図に示す工うな複雑な素子構造になると、
素子を完成するまでには数多くのプロセスを経なければ
ならない。この定め、素子構造プロセス前に、結晶欠陥
が発生していなくても。
[Problems to be Solved by the Invention] When manufacturing a device having the unique device structure shown in FIG. 2, crystal defects are likely to occur near the interface between the P-type silicon substrate and the R-type silicon substrate 5, and Another drawback is that information charges tend to leak from the contact region 9 toward the r-type silicon substrate 5. In the memory element shown in FIG. 2, the P+' type silicon substrate 5 serves as a counter electrode of the information storage capacitor section, and is desired to have as low a resistance as possible. However, when the resistance is lowered, that is, when impurities are added at a high concentration, the lattice constant of the P type silicon substrate 5 deviates from the original lattice constant of silicon. When a P-type silicon layer is epitaxially grown on a P-type silicon substrate, crystal defects occur at the interface between the P-type silicon layer 4 and the P-type silicon substrate 5. Therefore, an impurity concentration is usually selected that does not cause crystal defects even during epitaxial growth. However, as semiconductor memory devices become more highly integrated, the device structure becomes more complex, such as the one shown in Figure 2.
Numerous processes must be completed before a device is completed. This rule applies even if no crystal defects occur before the device structure process.

素子製造プロセス後に結晶欠陥が導入されやすい。Crystal defects are likely to be introduced after the device manufacturing process.

このような結晶欠陥の発生は表面にP型シリコン層を有
するP 型シリコン基板の場合だけに限らず、例えば1
0 原子/備 のアンチ七ン(sb)がドーピングされ
たマ量シリコン基板上にN型シリコンエピタキシャル膜
を有するような場合でも同様である。このtめ、不純物
#度が基板と大きく異なるようなシリコン層を表面に有
するようなウェーハを用いて、第2図に示すような半導
体記憶素子を形成しても結晶欠陥が生じない工うな記憶
素子製造法が必要とされる。
The occurrence of such crystal defects is not limited to only P-type silicon substrates having a P-type silicon layer on the surface;
The same applies to the case where an N-type silicon epitaxial film is formed on a silicon substrate doped with 0 atoms/byte of anti-sb. For this reason, even if a semiconductor memory element as shown in Fig. 2 is formed using a wafer having a silicon layer on its surface with an impurity concentration significantly different from that of the substrate, no crystal defects will occur. A device manufacturing method is required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、素子製造プロセスを経友のちでも結晶欠陥
の発生を抑える之めに、容量溝の9111壁方向および
素子のパターン方向を従来の<110>に等価な方向で
はなく、(100)に等価な方向に選ぶ。
In the present invention, in order to suppress the occurrence of crystal defects even after the device manufacturing process has been completed, the direction of the 9111 wall of the capacitive groove and the pattern direction of the device are set to (100) instead of the conventional direction equivalent to <110>. Choose an equivalent direction.

本発明の半導体記憶素子製造法は、情報蓄積容量部が低
濃度シリコン層およびこの低11度シリコン層と導電型
が同じ高a度シリコン基板に形匠され、情報伝達部の絶
縁ゲート電界効果トランジスタのソース領域がこの情報
蓄積容量部と電気的に接続されている半導体記憶素子を
(Zoo)又は(110)の面方位を有するシリコン基
板に形成する半導体記憶素子製造法において、情報蓄積
量部の溝のl++壁面の垂直方向および情報蓄積容量部
と情報伝達部とからなる素子領域を互いに分離するため
のフィールド酸化膜のパターンエツジ方向をく100〉
と等価な方向にすることを特徴とする0 〔実施例〕 次に、本発明について図面を用いて説明する。
In the method for manufacturing a semiconductor memory element of the present invention, an information storage capacitor section is formed in a low concentration silicon layer and a high a degree silicon substrate having the same conductivity type as this low 11 degree silicon layer, and an insulated gate field effect transistor of an information transmission section is formed. In a method for manufacturing a semiconductor memory element in which a semiconductor memory element whose source region is electrically connected to the information storage capacity part is formed on a silicon substrate having a (Zoo) or (110) plane orientation, the information storage capacity part is electrically connected to the information storage capacity part. The vertical direction of the l++ wall surface of the groove and the pattern edge direction of the field oxide film for separating the device region consisting of the information storage capacitor section and the information transmission section from each other are examined 100>
0 [Example] Next, the present invention will be described with reference to the drawings.

第1図乃至第3図は、本発明の第1の実施例を説明する
ためのものである。第1図は基板平面図で。
1 to 3 are for explaining a first embodiment of the present invention. Figure 1 is a plan view of the board.

素子領域1と該素子領域間を分離するためのフィールド
酸化領域3の境界、方向即ち素子のパターン方向が(1
00>に等価な方向に選はれている。
The boundary of the device region 1 and the field oxidation region 3 for separating the device regions, that is, the pattern direction of the device is (1
00> is selected in the direction equivalent to 00>.

又、容!l:溝2の側壁面に垂直方向も(100)に等
価な方向となっている。基板面方位は(100)である
。なお図中には素子領域1.容t442.フィールド酸
化領域3のみを示しである。第2図は、第1図における
八に断面構造の一部に相当している。
Again, Yong! l: The direction perpendicular to the side wall surface of the groove 2 is also a direction equivalent to (100). The substrate plane orientation is (100). Note that in the figure, element region 1. t442. Only field oxide region 3 is shown. FIG. 2 corresponds to a part of the cross-sectional structure at 8 in FIG. 1.

第3図は第2図に示す素子の製造工程を示す縦断面図で
ある。(100)と等価な方向にオリエンテーションフ
ラットを有する。ボロンドープ。
FIG. 3 is a longitudinal sectional view showing the manufacturing process of the element shown in FIG. 2. It has an orientation flat in a direction equivalent to (100). boron dope.

比抵抗0.005Ω・αの(100) P  型シリコ
ン基板5上に厚さ2μm、比抵抗10Ω・αのP型シリ
コン層4が形成されtウェーハを用意する(第3図(a
))。次に2通常の反応性イオンエツチング技術お:び
選沢陵化技術を用いて第3図(b)に示すように容量溝
15お工び素子分離領域(フィールド酸化領域〕6を形
成する。次に、第3図(C)に示す工うに容量溝15の
側壁お工ひP型シリコン層4、素子分離領域60表面を
被覆するように厚さ200A程度の薄い酸化膜からなる
誘電体膜7を形成する。ここで、コンタクト部16の誘
電体膜は通常の蝕刻技術にニジ除去する。次に、第3図
(d)に示す二うに、容量溝15を埋め込むエリにN型
不純物、例えばリンを1×10 原子/crIL含むポ
リシリコン膜8を形成する。この工程でポリシリコン膜
8に含有させたN型不純物はコンタクト部16に拡散し
、当領域に虻−P接合が形成される。然るのち、ポリシ
リコン膜8の表面を熱酸化して絶縁酸化膜17を形成す
る。次に、第3図telに示すように、ゲート酸化膜1
1.ゲート電極12を形成しtのち、N型不純物6例え
ばリン原子をイオン注入法に工りP型シリコン層4の表
面に導入シ、ドレイン領域10.お工びコンタクト領域
とを電気的に導通状態となる工うにソース領域9を形成
し、液抜に層間絶縁膜13お工び電極配線14を形成し
て所望の記憶素子が形成される。
A P-type silicon layer 4 with a thickness of 2 μm and a resistivity of 10Ω·α is formed on a (100) P-type silicon substrate 5 with a resistivity of 0.005Ω·α, and a t-wafer is prepared (see FIG. 3(a).
)). Next, a capacitive groove 15 and an element isolation region (field oxidation region) 6 are formed using a conventional reactive ion etching technique and a selective etching technique, as shown in FIG. 3(b). Next, as shown in FIG. 3C, a dielectric film made of a thin oxide film of about 200 Å thick is formed on the sidewalls of the capacitance trench 15 to cover the P-type silicon layer 4 and the surface of the element isolation region 60. 7. Here, the dielectric film of the contact portion 16 is removed using a normal etching technique.Next, as shown in FIG. 3(d), an N-type impurity, For example, a polysilicon film 8 containing phosphorus at 1×10 atoms/crIL is formed.The N-type impurity contained in the polysilicon film 8 in this step diffuses into the contact region 16, and a dovetail-P junction is formed in this region. Thereafter, the surface of the polysilicon film 8 is thermally oxidized to form an insulating oxide film 17. Next, as shown in FIG.
1. After forming the gate electrode 12, an N-type impurity 6, for example, phosphorus atoms, is introduced into the surface of the P-type silicon layer 4 by ion implantation, and then the drain region 10. A source region 9 is formed to be electrically connected to the contact region, and an interlayer insulating film 13 and electrode wiring 14 are formed to drain the liquid, thereby forming a desired memory element.

この工すにして多数の記憶素子が形成場れ友ウェーハを
X線トポグラフに工す調べた結果、P型シリコン層4と
P 型シリコン基板5の界面には一緒晶欠陥の発生は見
られず、従来の方法で製造し几場合に比べて5〜10倍
長い記憶保持時間が得られ友。
A large number of memory elements are formed using this process.As a result of examining the wafer using X-ray topography, no co-crystalline defects were observed at the interface between the P-type silicon layer 4 and the P-type silicon substrate 5. , the memory retention time is 5 to 10 times longer than when manufactured using conventional methods.

次に、本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

本実施例では基板面方位として(110)を用いた。(
100)と等価な方向にオリエンテーションフラットを
有する。比抵抗0.0050・α、ボロンドープのP 
型シリコン基板を用意し、該P 型シリコン基板上に厚
さ2μm、比抵抗10Ω・aのP型シリコン層をエピタ
キシャル成長にニジ形成し友。このような基板を用いて
、第2図に示したのと同じ構造を有する記憶素子を、容
量溝の側壁方向および素子のパターン方向が(100)
と等価な方向になるように形成した。素子製造プロセス
は第1の実施例で述べたと全く同様な方法を用いた。そ
の結果、第1の実施例で示した(100)基板の場合と
同様、P型シリコン層とP 型シリコン基板界面近傍に
は結晶欠陥の発生は見られず。
In this example, (110) was used as the substrate surface orientation. (
100) has an orientation flat in a direction equivalent to 100). Specific resistance 0.0050・α, boron-doped P
A P-type silicon substrate was prepared, and a P-type silicon layer with a thickness of 2 μm and a specific resistance of 10 Ω·a was epitaxially grown on the P-type silicon substrate. Using such a substrate, a memory element having the same structure as shown in FIG.
It was formed so that the direction is equivalent to that of the The device manufacturing process used exactly the same method as described in the first example. As a result, as in the case of the (100) substrate shown in the first example, no crystal defects were observed near the interface between the P-type silicon layer and the P-type silicon substrate.

容量溝側壁方向および素子パターン方向を(10〉と等
価な方向とし友従来法に比べて5倍8腿長い記憶保持時
間が得られ友。
By setting the direction of the side wall of the capacitor groove and the direction of the element pattern to be equivalent to (10), a memory retention time that is 5 times 8 times longer than that of the conventional method can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した工うに9本発明では、不純物一度が基板と
大きく異なるようなシリコン層を表面に有する工うな(
100)又は(110)ウェーハに記憶素子を製造する
場合、容量溝側壁方向および素子のパターン方向を(1
00)と等価な方向に選ぶことにより、これらの方向を
(110)と等価な方向とする従来の方法に比べて、素
子製造後にしばしば見られ友結晶欠陥の発生全回避でき
る。
In the above-described method, the present invention does not include a silicon layer on the surface of which the impurity content is significantly different from that of the substrate.
When manufacturing memory elements on 100) or (110) wafers, the capacitive groove sidewall direction and the element pattern direction are set to (1
By selecting a direction equivalent to (00), it is possible to completely avoid generation of friend crystal defects, which are often found after device manufacturing, compared to the conventional method of making these directions equivalent to (110).

このことにより、情報電荷のリークを少なくでき、従来
に比べて5〜10倍長い記憶保持時間を得ることができ
る。
As a result, leakage of information charges can be reduced, and a memory retention time that is 5 to 10 times longer than that of the conventional method can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における記憶素子形成後
の基板平面図、第2図は第1図の八−に線断面お工ひ第
4図のB −B’線断面を示す断面図、第3図は第2図
に示す素子の製造プロセスを示す工程断面図、第4図は
従来法によって素子形成をおこなった場合の基板平面図
である。 1・・・素子領域、2,15・・・容量溝、3・・・フ
ィールド酸化領域、4・・・P型シリコン層、5・・・
P 型シリコン基板、6・・・素子分離領域、7・・・
誘電体膜、8・・・ポリシリコン喚、9・・・ソースお
よびコンタクト領域、10・−・ドレイン領域、11・
・・ゲート酸化膜、12・・・ゲート電極、13・・・
層間絶縁膜、14・・・電極配線、16・・・コンタク
ト部、17・・・絶縁酸化膜。 代理人 弁理士  内 原   XIJL 、’ 、’
−,’ : を日   「・。 (。 く、−1二、′ 墳ちイ図 拓 こ 凹
FIG. 1 is a plan view of the substrate after forming a memory element in the first embodiment of the present invention, and FIG. 2 is a cross section taken along the line 8-- in FIG. 1 and taken along the line B-B' in FIG. 4. 3 is a process sectional view showing the manufacturing process of the device shown in FIG. 2, and FIG. 4 is a plan view of the substrate when the device is formed by a conventional method. DESCRIPTION OF SYMBOLS 1... Element region, 2, 15... Capacitive trench, 3... Field oxidation region, 4... P-type silicon layer, 5...
P type silicon substrate, 6... element isolation region, 7...
dielectric film, 8... polysilicon layer, 9... source and contact region, 10... drain region, 11...
...Gate oxide film, 12...Gate electrode, 13...
Interlayer insulating film, 14... Electrode wiring, 16... Contact portion, 17... Insulating oxide film. Agent Patent Attorney Uchihara XIJL ,','
−,' : を日 ``・. (。 ku, -12, ′ Tumulus Chii drawing ko concave

Claims (1)

【特許請求の範囲】[Claims] 情報蓄積容量部が、低濃度シリコン層および該低濃度シ
リコン層と導電型が同じ高濃度シリコン基板の溝部に形
成され、情報伝達部の絶縁ゲート電界効果トランジスタ
のソース領域が該情報蓄積容量部と電気的に接続されて
いる半導体記憶素子を(100)又は(110)の面方
位を有するシリコン基板に形成する半導体記憶素子製造
法において、前記情報蓄積容量部の溝の側壁面の垂直方
向、および前記情報蓄積容量部と情報伝達部とからなる
素子領域を互いに分離するためのフィールド酸化膜のパ
ターンエッジ方向を<100>と等価な方向にすること
を特徴とする半導体記憶素子製造法。
An information storage capacitor section is formed in a groove of a low concentration silicon layer and a high concentration silicon substrate having the same conductivity type as the low concentration silicon layer, and a source region of an insulated gate field effect transistor of the information transmission section is connected to the information storage capacitor section. In a method for manufacturing a semiconductor memory element in which an electrically connected semiconductor memory element is formed on a silicon substrate having a (100) or (110) plane orientation, the vertical direction of the side wall surface of the groove of the information storage capacitor section, and A method for manufacturing a semiconductor memory device, characterized in that a pattern edge direction of a field oxide film for separating the device region consisting of the information storage capacitor section and the information transmission section from each other is set in a direction equivalent to <100>.
JP61154374A 1986-06-30 1986-06-30 Manufacture of semiconductor storage element Pending JPS639964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154374A JPS639964A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154374A JPS639964A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor storage element

Publications (1)

Publication Number Publication Date
JPS639964A true JPS639964A (en) 1988-01-16

Family

ID=15582759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154374A Pending JPS639964A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor storage element

Country Status (1)

Country Link
JP (1) JPS639964A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971926A (en) * 1984-08-28 1990-11-20 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device
US6313494B1 (en) 1997-12-03 2001-11-06 Nec Corporation Semiconductor device having a selectively-grown contact pad
JP2015516941A (en) * 2012-04-30 2015-06-18 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass granules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971926A (en) * 1984-08-28 1990-11-20 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device
US6313494B1 (en) 1997-12-03 2001-11-06 Nec Corporation Semiconductor device having a selectively-grown contact pad
JP2015516941A (en) * 2012-04-30 2015-06-18 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass granules

Similar Documents

Publication Publication Date Title
US4074300A (en) Insulated gate type field effect transistors
US4971926A (en) Method of manufacturing a semiconductor device
KR19990023196A (en) Trench insulating structure forming method and semiconductor device and manufacturing method thereof
JPH0644603B2 (en) Semiconductor device and its manufacturing method
US3461360A (en) Semiconductor devices with cup-shaped regions
GB2148591A (en) Semiconductor device isolation grooves
US3764413A (en) Method of producing insulated gate field effect transistors
JPH06252359A (en) Manufacture of semiconductor device
US4322881A (en) Method for manufacturing semiconductor memory devices
JP2701902B2 (en) Semiconductor structure having porous strained layer and method of manufacturing SOI semiconductor structure
US4825281A (en) Bipolar transistor with sidewall bare contact structure
JPH06125054A (en) Memory cell and its manufacture
US4335505A (en) Method of manufacturing semiconductor memory device having memory cell elements composed of a transistor and a capacitor
KR100321889B1 (en) A semiconductor device and a method of manufacturing the same
JPS6015944A (en) Semiconductor device
US4942448A (en) Structure for isolating semiconductor components on an integrated circuit and a method of manufacturing therefor
JPS639964A (en) Manufacture of semiconductor storage element
JPS6123360A (en) Semiconductor memory and manufacture of the same
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
US3776786A (en) Method of producing high speed transistors and resistors simultaneously
KR930006144B1 (en) Semiconductor device and manufacturing method thereof
JPS59977B2 (en) Insulated gate integrated circuit
KR0171000B1 (en) Bjt structure of self defined base electrode
JPH0298939A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device