JPS63993A - Manufacture of arc melting electrode - Google Patents

Manufacture of arc melting electrode

Info

Publication number
JPS63993A
JPS63993A JP14167886A JP14167886A JPS63993A JP S63993 A JPS63993 A JP S63993A JP 14167886 A JP14167886 A JP 14167886A JP 14167886 A JP14167886 A JP 14167886A JP S63993 A JPS63993 A JP S63993A
Authority
JP
Japan
Prior art keywords
welding
electrode
titanium
arc
arc melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14167886A
Other languages
Japanese (ja)
Inventor
英司 高橋
一雄 田中
井土 周平
福原 義浩
奥山 義勝
三井 貴之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14167886A priority Critical patent/JPS63993A/en
Publication of JPS63993A publication Critical patent/JPS63993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、スポンジチタン成形体同士をアーク溶接する
ことによってアーク溶解用電極を製造する方法に関し、
詳細にはアーク溶接の電極としてチタン製消耗電極を用
いることにより高品質のアーク溶解用電極を効率良く製
造することに成功したアーク溶解用電極の製造方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing an electrode for arc melting by arc welding sponge titanium molded bodies together.
Specifically, the present invention relates to a method for manufacturing an arc melting electrode that successfully produces a high quality arc melting electrode efficiently by using a titanium consumable electrode as an electrode for arc welding.

[従来の技術] スポンジチタン成形体をアーク溶接してアーク溶解用電
極を製造するに当たっては、−般にTIG溶接法やプラ
ズマ溶接法等の様に非消耗性電極を用いる方法が採用さ
れている。
[Prior Art] In manufacturing an electrode for arc melting by arc welding a sponge titanium molded body, a method using a non-consumable electrode such as TIG welding or plasma welding is generally adopted. .

ところで上記スポンジチタン成形体には、原料事情によ
って塩素や低沸点金属(NaやMg等)等の不純物が混
入しており、しかも上記スポンジチタン成形体自身が多
孔性であり気泡を内蔵しているところから、溶接時にス
パッタが発生し易いということが確認されている。また
該スパッタの発生は、非消耗性電極を用いるTIG溶接
やプラズマ溶接等において特に箸じるしいことが経験さ
れている。この理由の1つは、これらの溶接は比較的低
電流条件で施工され溶融プールが小さいため、硬直アー
クが母材表面上に直接形成されるからであると考えられ
ており、またスポンジチタン中の低沸点金属(NaやM
g等)がアークによって急激に加熱され爆発的な膨張を
来たし、これによって溶融金属が吹き飛ばされるからで
あると考えられる。
By the way, impurities such as chlorine and low boiling point metals (Na, Mg, etc.) are mixed into the titanium sponge molded body due to raw material conditions, and furthermore, the titanium sponge molded body itself is porous and contains air bubbles. Therefore, it has been confirmed that spatter is likely to occur during welding. Furthermore, it has been experienced that the generation of spatter is particularly troublesome in TIG welding, plasma welding, etc. that use non-consumable electrodes. One of the reasons for this is thought to be that these welds are performed under relatively low current conditions and the molten pool is small, resulting in a rigid arc being formed directly on the base metal surface, and also because the rigid arc is formed directly on the base metal surface. Low boiling point metals (Na and M
This is thought to be due to the fact that the molten metal (g, etc.) is rapidly heated by the arc and undergoes explosive expansion, which causes the molten metal to be blown away.

TIG溶接を実施した場合においてこの様に大量のスパ
ッタが発生すると、タングステン電極にスパッタが付着
して該電極の損耗を早め極端な場合にはタングステン電
極の溶損を招き、溶融タングステンが溶融プール中に落
下し、チタン鋳塊の品質を低下させる恐れすらあった。
When such a large amount of spatter is generated when performing TIG welding, the spatter adheres to the tungsten electrode, which accelerates wear and tear of the electrode. In extreme cases, the tungsten electrode may melt, causing molten tungsten to flow into the molten pool. There was even a risk that the titanium ingot would fall and deteriorate the quality of the titanium ingot.

いずれにせよこうしてタングステン電極の損耗が激しく
なってくると、該電極の交換をひんばんに行なう必要が
生じ、溶接作業を再三中断せざるを得す、もともとTI
G溶接が低溶接電流(200〜300A)、低溶接速度
(15〜20cm/分)であり溶接能率の低いものであ
ったという欠点が一層目立ってくる。−方プラズマ溶接
法においては、スパッタがオリフィスボディ先端部に付
着することによって該先端部の目詰りを招くところから
付着スパッタの除去作業に難渋することになる。不幸に
して該先端部に目詰りを起こしてしまった場合には、先
端部4品の交換が必要であり、やはり溶接作業の中断、
能率低下、該交換部品に対するコスト高という不都合を
甘受せざるを得ない。
In any case, when the wear and tear of the tungsten electrode becomes severe, it becomes necessary to replace the electrode frequently, and welding work has to be interrupted repeatedly.
The disadvantages of G welding, such as low welding current (200 to 300 A) and low welding speed (15 to 20 cm/min), resulting in low welding efficiency, become even more noticeable. In the plasma welding method, spatter adheres to the tip of the orifice body, causing clogging of the tip, making it difficult to remove the adhering spatter. In the unfortunate event that the tip becomes clogged, it will be necessary to replace the four tip parts, resulting in interruption of welding work and
They have no choice but to accept the inconvenience of reduced efficiency and increased costs for replacement parts.

また上述の如くスパッタが多量に発生すると、不活性ガ
ス(Arガス等)によるシールド効果が損なわれ、その
為酸素や窒素等の不純物が溶接金属中に多量に混入しア
ーク溶解用電極の品質を下げるという弊害も招く。
Furthermore, when a large amount of spatter occurs as mentioned above, the shielding effect of the inert gas (Ar gas, etc.) is impaired, and as a result, a large amount of impurities such as oxygen and nitrogen are mixed into the weld metal, impairing the quality of the electrode for arc melting. It also causes the negative effect of lowering the amount.

[発明が解決しようとする問題点] 本発明は、こうした事情を憂慮してなされたものであっ
て、溶接作業の中断を招くことなく高速溶接を行なうこ
とができ、しかも溶接部の不純物量を可及的に少なくす
ることのできるアーク溶解用電極の製造方法を提供しよ
うとするものである。
[Problems to be Solved by the Invention] The present invention has been developed in consideration of these circumstances, and allows high-speed welding to be performed without interrupting the welding operation, while reducing the amount of impurities in the welded part. It is an object of the present invention to provide a method of manufacturing an electrode for arc melting that can reduce the number of electrodes as much as possible.

[問題点を解決する為の手段] 本発明に係るアーク溶解用電極の製造方法とは、スポン
ジチタン成形体同士をチタン製消耗電極を用いて溶接し
アーク溶解用電極を製造するところにその要旨が存在す
るものである。
[Means for Solving the Problems] The gist of the method for manufacturing an electrode for arc melting according to the present invention is that the electrode for arc melting is manufactured by welding sponge titanium molded bodies together using a titanium consumable electrode. exists.

[作用] 本発明は、上述の如く構成されたものであるが、要はス
ポンジチタン成形体同士を溶接してアーク溶解用電極を
製造するに当たり、チタン製消耗電極を用いて溶接する
様にした点に本質的特徴が存在するものである。
[Function] The present invention is constructed as described above, but the point is that when producing an electrode for arc melting by welding sponge titanium molded bodies together, welding is performed using a titanium consumable electrode. An essential characteristic exists at a point.

チタン製消耗電極を用いてアーク溶接を行なった場合に
スパッタの発生が抑制される理由については次の様に考
えることができる。
The reason why spatter is suppressed when arc welding is performed using a titanium consumable electrode can be considered as follows.

即ちチタン性消耗電極の場合には、TIG溶接法、プラ
ズマ溶接法の様に母材の直接的な加熱を行なうのではな
く、溶融池を介して母材を加熱するのであるから、Na
やMg等の様な低沸点金属の気化が比較的緩やかに進行
する為であると考えられる。
In other words, in the case of titanium consumable electrodes, the base metal is heated via a molten pool rather than directly heated as in TIG welding and plasma welding, so Na
This is thought to be because the vaporization of low-boiling metals such as Mg and Mg progresses relatively slowly.

この様に本発明の構成を採用することによってスパッタ
の発生を減らすことができるので、溶接中のシールド効
果を確保することができ、従って溶接部に対する酸素や
窒素の混入を防ぐことができアーク溶解用電極の品質を
向上させることができる。また本発明においては、消耗
性電極を用いた場合の様に、タングステン電極の溶融落
下に伴うチタン鋳塊の品質低下という問題もないところ
から、高電流溶接を行なうことができ、従って溶接速度
を満足のいくものとすることができる。
As described above, by adopting the configuration of the present invention, it is possible to reduce the occurrence of spatter, thereby ensuring a shielding effect during welding, and therefore preventing oxygen and nitrogen from entering the welding area, and arc melting. It is possible to improve the quality of the electrode for use. Furthermore, in the present invention, high current welding can be performed without the problem of quality deterioration of the titanium ingot due to melting and falling of the tungsten electrode, which is the case when consumable electrodes are used, and therefore the welding speed can be reduced. It can be done satisfactorily.

本発明は火路上述の如く構成されたものであって、溶接
条件やチタン製消耗電極の形状等を特定するものではな
いが、溶接作業性をより向上させるには、上記チタン製
消耗電極として帯状のものを用いることが推奨される。
The present invention is constructed as described above, and does not specify the welding conditions or the shape of the titanium consumable electrode, but in order to further improve welding workability, it is necessary to It is recommended to use a strip.

該帯状チタン製消耗電極を、その幅方向が溶接線と直交
する様に設定して送給し溶接を実施していくと、アーク
は帯状!極に沿った形で発生するのでウィービング操作
を行なわなくとも広幅のビードが得られる。従って開先
は広幅であっても良く、溶接施工上の条件許容幅が広く
なる。従って開先ギャップや開先ねらい位置の許容度が
増す。とりわけ複数個の圧縮成形体を溶接によって連結
する場合に有効である。また高級な開先ならい装置等も
不必要である。
When the strip-shaped titanium consumable electrode is fed so that its width direction is perpendicular to the welding line and welding is carried out, the arc becomes strip-shaped! Since the bead is generated along the poles, a wide bead can be obtained without performing a weaving operation. Therefore, the groove may be wide, and the allowable range of welding conditions becomes wider. Therefore, the tolerance of the groove gap and groove target position increases. This is particularly effective when connecting a plurality of compression molded bodies by welding. Further, there is no need for a high-grade groove tracing device or the like.

尚上記帯状電極は広幅のチタンコイル等を切断加工すれ
ば容易に得られ、成形性の劣るチタンを丸線に加工する
のに比べ効率的である。即ち溶接用ワイヤ(丸線)は、
−般にチタン棒(例えば6〜9mmφ)を塑性加工(例
えば1.8 mmφ程度)することによフて製造されて
いる。しかしチタンは冷間で成形性が劣る金属であり、
しかも高々400℃程度の温度であっても酸化されてし
まう為真空焼鈍が必要となる。従ってチタン棒を塑性加
工して溶接棒を得るに当たっては、連続工程下で行なう
ことができず、極めて多くの工程を独立のものとして経
る必要があり、これに伴なってコストもかさむこととな
る。
The above-mentioned strip-shaped electrode can be easily obtained by cutting a wide titanium coil or the like, and is more efficient than processing titanium, which has poor formability, into a round wire. In other words, the welding wire (round wire) is
- Generally, it is manufactured by plastic working (for example, about 1.8 mmφ) a titanium rod (for example, 6 to 9 mmφ). However, titanium is a metal with poor formability in cold conditions.
Moreover, vacuum annealing is required because it is oxidized even at a temperature of about 400° C. at most. Therefore, when obtaining a welding rod by plastic working a titanium rod, it cannot be carried out in a continuous process, and it is necessary to go through an extremely large number of independent processes, which increases costs. .

ところが帯状電極(棒状電極ではない)の場合には、広
幅のチタンコイルを車に切断するだけで製造できるので
あるから、上記棒状電極の様な問題点は生じない。しか
も残材やスクラップも利用することができるので、極め
て経済的である。
However, in the case of a band-shaped electrode (not a rod-shaped electrode), it can be manufactured by simply cutting a wide titanium coil into strips, so the problems like the above-mentioned rod-shaped electrode do not occur. Furthermore, it is extremely economical because leftover materials and scraps can also be used.

[実施例] 実施例1 第1図は本発明方法に用いられる装置を示す説明図であ
って、1は被溶接材であるスポンジチタン成形体、2は
チタン性消耗電極、3は通電チップ、4はガスシールド
ノズル、5はシールドガス供給口、6は電極送給ローラ
である。
[Example] Example 1 Fig. 1 is an explanatory diagram showing an apparatus used in the method of the present invention, in which 1 is a sponge titanium molded material that is a material to be welded, 2 is a titanium consumable electrode, 3 is a current-carrying tip, 4 is a gas shield nozzle, 5 is a shield gas supply port, and 6 is an electrode feeding roller.

チタン製消耗電極2を電極送給ローラ6で送給すると共
にシールドガス供給口5からシールドガス(Arガス)
を流入させ、通電チップ3を介してチタン製消耗電極2
にアーク電流を流しスポンジチタン成形体1との間にア
ークを発生させ、溶接を行なう。
The titanium consumable electrode 2 is fed by the electrode feeding roller 6, and shielding gas (Ar gas) is supplied from the shielding gas supply port 5.
is introduced into the titanium consumable electrode 2 through the current-carrying tip 3.
An arc current is applied to the titanium sponge molded body 1 to generate an arc between the titanium sponge molded body 1 and welding is performed.

この様にして溶接を行なった結果の一例を溶接条件と共
に第1表に示す。
An example of the results of welding in this manner is shown in Table 1 together with the welding conditions.

尚第2表は比較例を示したものである。Note that Table 2 shows comparative examples.

本発明方法を用いた場合においては、比較例に比べて溶
接速度が大であり且つ溶接中断回数が少ないことが分か
る。従って全溶接時間が短く、溶接能率が優れている。
It can be seen that when the method of the present invention is used, the welding speed is higher and the number of welding interruptions is smaller than in the comparative example. Therefore, the total welding time is short and welding efficiency is excellent.

また溶接金属中の酸素量及び窒素量も減少しており、不
純物の低下を達成することができた。
Furthermore, the amount of oxygen and nitrogen in the weld metal was also reduced, making it possible to reduce the amount of impurities.

実施例2 チタン製消耗電極として、厚さと幅を種々変化させた帯
状電極を採用し、第1図と同様の装置を用いて下記条件
下で溶接を行ない、その結果を第3表の如くまとめた。
Example 2 As a titanium consumable electrode, band-shaped electrodes with various thicknesses and widths were used, and welding was carried out under the following conditions using the same equipment as in Fig. 1, and the results are summarized as shown in Table 3. Ta.

被溶接材    スポンジチタン 開先形状    30’V、深さ10mmシールドガス
  Ar  100J2/分溶接機     直流定電
圧電源 極性      ワイヤ(+) 溶接電流    400〜100OA (尚4(IOAl、:満たないとスプ レー状のアークが得られな い。1000Aをこえるとス バッタが多くなる。) アーク電圧   25〜40V (尚25Aに満たないと短絡 する。40Vをこえると アークが不安定となる。) 溶接速度    40 cm/分 ¥S3表 ◎:f!めて良好  O:良好  △:可能即ち、電極
の厚さが0.4mm以下では、電極の座屈が起こり易く
アークが不安定であった。−方1.3 mm以上では、
電流密度が低下し100OAもの大電流を流したときで
も安定したスプレー状のアークは得られなかった。また
コイル状に巻き取ることも困難であり実用的ではない。
Material to be welded Sponge titanium Bevel shape 30'V, depth 10mm Shielding gas Ar 100J2/min Welding machine DC constant voltage power supply polarity Wire (+) Welding current 400-100OA An arc cannot be obtained. If it exceeds 1000 A, there will be a lot of spatter.) Arc voltage 25 to 40 V (If it is less than 25 A, a short circuit will occur. If it exceeds 40 V, the arc will become unstable.) Welding speed 40 cm/min ¥ Table S3 ◎: f! Very good O: Good △: Possible, that is, when the electrode thickness was 0.4 mm or less, buckling of the electrode easily occurred and the arc was unstable. - When the thickness was 1.3 mm or more So,
Even when the current density was reduced and a large current of 100 OA was passed, a stable spray-like arc could not be obtained. Further, it is difficult to wind it into a coil shape, which is not practical.

ところで電極の幅が4mm以下では、幅方向への広がり
が少なく広幅のビードが得られない。−方幅が25mm
を超えるとアークの広がりが過大となり、ビード形状が
若干不良であった。
However, if the width of the electrode is 4 mm or less, the spread in the width direction is small and a wide bead cannot be obtained. - Width is 25mm
When the value exceeded 100%, the arc spread too much and the bead shape was slightly poor.

以上の結果より、帯状電極としては、厚さ0.5〜1.
2mm 、幅5〜25mmのものを採用することが推奨
される。
From the above results, it is found that the strip electrode has a thickness of 0.5 to 1.
It is recommended to use one with a diameter of 2 mm and a width of 5 to 25 mm.

[発明の効果] 本発明は上述の如く構成されているので、スポンジチタ
ン成形体をアーク溶接してアーク溶接用電極を製造する
に当たり、溶接作業の中断を招くことなく高速溶接を行
なうことがてき、しかも溶接部の不純物量を可及的に低
下させることが可能となった。
[Effects of the Invention] Since the present invention is configured as described above, high-speed welding can be performed without interrupting the welding operation when manufacturing an electrode for arc welding by arc welding a titanium sponge molded body. Furthermore, it has become possible to reduce the amount of impurities in the welded area as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法が実施される装置の例を示す断面説
明図である。 1・・・スポンジチタン成形体 2・・・チタン製消耗電極
FIG. 1 is an explanatory cross-sectional view showing an example of an apparatus in which the method of the present invention is implemented. 1... Sponge titanium molded body 2... Titanium consumable electrode

Claims (1)

【特許請求の範囲】[Claims] スポンジチタン成形体同士をチタン製消耗電極を用いて
溶接しアーク溶解用電極を製造することを特徴とするア
ーク溶解用電極の製造方法。
A method for manufacturing an electrode for arc melting, characterized in that the electrode for arc melting is manufactured by welding sponge titanium molded bodies together using a titanium consumable electrode.
JP14167886A 1986-06-18 1986-06-18 Manufacture of arc melting electrode Pending JPS63993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14167886A JPS63993A (en) 1986-06-18 1986-06-18 Manufacture of arc melting electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14167886A JPS63993A (en) 1986-06-18 1986-06-18 Manufacture of arc melting electrode

Publications (1)

Publication Number Publication Date
JPS63993A true JPS63993A (en) 1988-01-05

Family

ID=15297657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14167886A Pending JPS63993A (en) 1986-06-18 1986-06-18 Manufacture of arc melting electrode

Country Status (1)

Country Link
JP (1) JPS63993A (en)

Similar Documents

Publication Publication Date Title
EP1762324B2 (en) Flux system to reduce copper cracking
US3825712A (en) Welding process
EP3323546B1 (en) A consumable metal-cored welding wire, a method of metal arc welding and a system therefore
EP2402106A1 (en) Complex method of welding incombination of gas-shield ark welding with submerged ark welding
US3239648A (en) Apparatus for arc welding
US4162389A (en) Welding apparatus
US4721837A (en) Cored tubular electrode and method for the electric-arc cutting of metals
US3163743A (en) Electric arc working with hot wire addition
CN109348706B (en) High current pulse arc welding method and flux cored wire
JP4538520B2 (en) Gas shield arc brazing method for steel sheet
JPH0370584B2 (en)
JP2007260684A (en) Multiple electrode submerged arc welding method of thick steel plate
JP6273177B2 (en) Pulse arc welding method
US4161645A (en) Arc welding apparatus and method
JP2003053545A (en) Tandem arc welding method
JPS63993A (en) Manufacture of arc melting electrode
JP6980729B2 (en) Welding member manufacturing method
JP7364357B2 (en) Welding electrode wire with alkaline earth metals
JPH0736958B2 (en) Double gas shield metal arc welding method
CA1071715A (en) Method of high speed gas shielded arc welding
JP3820179B2 (en) Titanium alloy welding wire for MIG welding and welding method
JP3881588B2 (en) Welding method of titanium alloy for MIG welding
JP3948767B2 (en) High frequency AC TIG welding machine
JPS6331305B2 (en)
JP3881587B2 (en) MIG welding method of titanium or titanium alloy with excellent arc stability