JPS6331305B2 - - Google Patents

Info

Publication number
JPS6331305B2
JPS6331305B2 JP15916479A JP15916479A JPS6331305B2 JP S6331305 B2 JPS6331305 B2 JP S6331305B2 JP 15916479 A JP15916479 A JP 15916479A JP 15916479 A JP15916479 A JP 15916479A JP S6331305 B2 JPS6331305 B2 JP S6331305B2
Authority
JP
Japan
Prior art keywords
electrode
welding
electrodes
filler wire
trailing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15916479A
Other languages
Japanese (ja)
Other versions
JPS5684172A (en
Inventor
Eiji Ashida
Masayasu Nihei
Fumio Taguchi
Satoshi Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15916479A priority Critical patent/JPS5684172A/en
Publication of JPS5684172A publication Critical patent/JPS5684172A/en
Publication of JPS6331305B2 publication Critical patent/JPS6331305B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は2電極TIG溶接方法に係り、特に溶接
電流を2電極に交互に切換えて流すことによりア
ークの磁気干渉を防止し、かつアーク熱によつて
形成される溶融プールが一体となるように2電極
間距離及び角度を規定した2電極TIG溶接方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-electrode TIG welding method, and in particular, the welding current is alternately switched to two electrodes to prevent magnetic interference of the arc, and to prevent melting formed by arc heat. This invention relates to a two-electrode TIG welding method in which the distance and angle between the two electrodes are defined so that the pool is integrated.

第1図は従来の2電極溶接方法を示すものであ
り、この図において1は先行トーチ、2は先行電
極、3は後行トーチ、4は後行電極、5はフイラ
ーワイヤ送給ノズル、6はフイラーワイヤ、7
a,7bはアーク、8a,8bは溶融プール、9
は被溶接材であり、矢印は溶接方向を示す。第1
図に示す従来の2電極溶接方向においては、フイ
ラーワイヤ6を先行電極2の溶接方向前方からフ
イラーワイヤ送給ノズル5経由で先行電極2のア
ーク7aおよび溶融プール8a中に送給していた
が、この方法は2電極溶接の特長である先行電極
の予熱作用および後行電極のビード形成作用を十
分に利用することができないという欠点があつ
た。また溶接速度の高速化を図るには一般に被溶
接材と電極先端間の距離(以下アーク長という)
を短かくする必要があるが、この方法ではアーク
長をワイヤ径以下に短かくするとワイヤに電極が
接触して溶接不能となるので、アーク長を短かく
することが困難で溶接速度の高速化が得られない
という欠点もあつた。
FIG. 1 shows a conventional two-electrode welding method, in which 1 is a leading torch, 2 is a leading electrode, 3 is a trailing torch, 4 is a trailing electrode, 5 is a filler wire feeding nozzle, and 6 is a trailing torch. is filler wire, 7
a, 7b are arcs, 8a, 8b are molten pools, 9
is the material to be welded, and the arrow indicates the welding direction. 1st
In the conventional two-electrode welding direction shown in the figure, the filler wire 6 is fed from the front of the preceding electrode 2 in the welding direction via the filler wire feeding nozzle 5 into the arc 7a and molten pool 8a of the preceding electrode 2. However, this method had the disadvantage that it was not possible to fully utilize the preheating effect of the leading electrode and the bead forming effect of the trailing electrode, which are the features of two-electrode welding. In addition, in order to increase the welding speed, the distance between the workpiece and the electrode tip (hereinafter referred to as arc length) is generally
However, with this method, if the arc length is shortened to less than the wire diameter, the electrode will come into contact with the wire and welding will not be possible, so it is difficult to shorten the arc length and increase the welding speed. It also had the disadvantage that it was not possible to obtain

第1図に示した従来の2電極溶接方法の欠点を
解消するため、第2図に示すような2電極溶接方
法が溶接学会講演概要集、第20巻、第160〜161頁
に開示されており、この方法によれば、曲りぐせ
を付与されたフイラーワイヤ6が先行トーチ1と
後行トーチ3の間に位置するフイラーワイヤ送給
ノズル5径由で後行電極4のアーク7bおよび溶
融プール8b中に送給される。第2図に示したこ
の方法は第1図の方法に比べ溶着量は増加する
が、従来の2電極溶接は電源に直流電源を利用し
ているため電極間距離が短かいとアークの磁気干
渉を生じ、干渉により吹き上げられたアークによ
つてフイラーワイヤが溶融され、ワイヤの溶融が
非常に不安定となるので、電極間隔はアークの干
渉を殆んど受けない15mm以上の距離に保つ必要が
あり、溶融プールを一体化することができなかつ
た。
In order to eliminate the drawbacks of the conventional two-electrode welding method shown in Fig. 1, a two-electrode welding method as shown in Fig. 2 was disclosed in the Abstracts of the Welding Society of Japan, Vol. 20, pp. 160-161. According to this method, the curved filler wire 6 passes through the filler wire feeding nozzle 5 located between the leading torch 1 and the trailing torch 3 to form an arc 7b of the trailing electrode 4 and a molten pool. 8b. This method shown in Figure 2 increases the amount of welding compared to the method shown in Figure 1, but since conventional two-electrode welding uses a DC power source, if the distance between the electrodes is short, there will be magnetic interference from the arc. The filler wire will be melted by the arc blown up due to interference, making the melting of the wire extremely unstable. Therefore, the electrode spacing must be kept at a distance of 15 mm or more, which will hardly receive any interference from the arc. However, the melt pool could not be integrated.

また電極間距離が長くなると先行電極の効果を
十分に生かすことができないばかりではなく、ワ
イヤの曲りぐせを利用しているためワイヤの溶融
先端部が一定せず、電極に溶融金属が付着し汚れ
をを生ずる等の欠点があつた。
In addition, if the distance between the electrodes becomes too long, not only will the effect of the leading electrode not be fully utilized, but since the wire is bent, the melting tip of the wire will not be consistent, and molten metal will adhere to the electrode, causing it to become dirty. There were disadvantages such as causing

本発明の目的は、このような事情に基づいてな
されたものであり、溶融プールを一体化し、アー
クの磁気干渉を防止するとともに、良好な溶接ビ
ートを形成することのできる2電極TIG溶接方法
を提供するにある。
The purpose of the present invention was to provide a two-electrode TIG welding method that can integrate the molten pool, prevent magnetic interference of the arc, and form a good welding beat. It is on offer.

このような目的を達成するため、本発明は、先
行電極と後行電極を構成する2電極に電流を流
し、各電極に発生するアーク熱によつて形成され
る溶融プールが一体となるようにした2電極TIG
溶接において、前記2電極間距離が電極の先端部
で12mm以下、かつその電極間角度が15〜40度で配
置させるとともに、前記各電極間に位置する溶融
プール中にフイラーワイヤを送給し、前記各電極
に溶接電流をその各電流の配分を等しくして交互
に流すようにして溶接することを特徴とするもの
である。
In order to achieve such an object, the present invention applies a current to two electrodes that constitute a leading electrode and a trailing electrode so that the molten pool formed by the arc heat generated in each electrode becomes one. 2-electrode TIG
In welding, the distance between the two electrodes is 12 mm or less at the tip of the electrode, and the angle between the electrodes is 15 to 40 degrees, and a filler wire is fed into the molten pool located between the electrodes, The present invention is characterized in that welding is performed by alternately passing a welding current to each of the electrodes with equal distribution of each current.

第3図は電極間角度が15度、25度、40度で、溶
接速度が30cm/minの場合において、溶融プール
が一体になる電極間距離を全溶接電流(先行電流
と後行電流の和)との関係で示したグラフであ
る。同図中、は溶融プールが一体となる領域、
は溶融プールが分離する領域、曲線aは電極間
角度が15度、同bは同25度、及び同cは同40度の
各場合における領域ととの境界線を示す。
尚、曲線dは電極間角度が10度の場合を示す。次
に第4図は、電極間距離8mm、12mm、13mmで、溶
接速度30cm/minの場合において、溶融プールが
一体となる電極間角度を全溶接電流との関係で示
したグラフである。尚、第4図は第3図と座標の
横軸の変数を入れ替えた関係にあり、グラフ全体
の意味するところは、両図ともに全溶接電流と電
極間距離と電極間角度との相互の関連性を示して
いる点で同じものである。第4図で曲線e,f,
gは各々電極間距離が8mm、12mm、13mmの場合に
おける、溶融プールが一体となる領域と溶融プ
ールが分離する領域の境界線である。すなわ
ち、各境界線より上の領域が溶融プールが一体と
なる領域である。
Figure 3 shows the total welding current (the sum of the leading current and trailing current) when the interelectrode angle is 15 degrees, 25 degrees, and 40 degrees, and the welding speed is 30 cm/min. ) is a graph shown in relation to In the figure, indicates the area where the melt pool is integrated;
Curve 1 shows the boundary line between the area where the molten pool separates, and the area where the inter-electrode angle is 15 degrees for curve a, 25 degrees for curve b, and 40 degrees for curve c.
Note that curve d shows the case where the inter-electrode angle is 10 degrees. Next, FIG. 4 is a graph showing the angle between the electrodes at which the molten pool becomes one in relation to the total welding current when the distances between the electrodes are 8 mm, 12 mm, and 13 mm and the welding speed is 30 cm/min. In addition, Figure 4 has a relationship with Figure 3 by swapping the variables on the horizontal axis of coordinates, and the meaning of the entire graph is that both figures show the mutual relationship between the total welding current, the distance between the electrodes, and the angle between the electrodes. They are the same in that they indicate gender. In Figure 4, curves e, f,
g is the boundary line between the area where the molten pool is integrated and the area where the molten pool is separated when the distance between the electrodes is 8 mm, 12 mm, and 13 mm, respectively. That is, the area above each boundary line is the area where the molten pool is integrated.

これら第3図及び第4図から、電極間距離が大
きくなるにつれて全溶接電流が必然的に大きくな
つている。しかし、2電極TIG溶接において、電
極間距離を大きくすることは実質的に1電極溶接
に近ずくことになり、これを全溶接電流の増加に
よつて補填する方法は、溶融プールの溶融効率が
低下することになる。この溶融効率は低い溶接電
流で溶融プールが一体となる方が高いものである
からである。この溶接効率の点から全溶接電流は
200A以下とするのが望ましい。そこで、第4図
に基づいて電極間距離を12mm以下とする。
From these FIGS. 3 and 4, as the distance between the electrodes increases, the total welding current inevitably increases. However, in two-electrode TIG welding, increasing the distance between the electrodes effectively approaches one-electrode welding, and the method of compensating for this by increasing the total welding current reduces the melting efficiency of the weld pool. This will result in a decline. This is because the melting efficiency is higher when the welding pool is integrated with a lower welding current. From this welding efficiency point of view, the total welding current is
It is desirable to set it to 200A or less. Therefore, based on FIG. 4, the distance between the electrodes is set to 12 mm or less.

また、第4図より電極間距離が12mmであつても
電極間角度が15度以下及び40度以上の範囲では溶
接電流が200Aを越え、溶接効率が低下する。そ
こで、電極間角度は15〜40度とする。この電極間
角度を前記範囲に規定する他の理由も挙げられ
る。先ず、40度以上になると、2電極のうちの後
行電極のアークによるアーク力が溶融プールを後
方より前方に向つて浮上させる量が体くなり、該
プールが不安定化して不揃いの溶接ビードが形成
されやすくなる。従つて良好な溶接ビードが得ら
れないので、電極間角度は40度以下とする。ま
た、電極間角度が15度以下では、先行電極と後行
電極の両アークのアーク力が孤別化して分散して
しまうため、特に高速溶接の際に、溶融プールが
後方に引きずられ、アーク値下の溶融量が相対的
に少なくなりハンピングビードが生じやすくなる
問題がある。そこで15度以上とする。
Further, as shown in FIG. 4, even if the distance between the electrodes is 12 mm, the welding current exceeds 200 A when the angle between the electrodes is less than 15 degrees and more than 40 degrees, and the welding efficiency decreases. Therefore, the angle between the electrodes is set to 15 to 40 degrees. There are other reasons for defining this inter-electrode angle within the above range. First, when the temperature exceeds 40 degrees, the arc force caused by the arc of the trailing electrode of the two electrodes causes the molten pool to float from the rear to the front, making the pool unstable and causing uneven weld beads. is more likely to form. Therefore, a good weld bead cannot be obtained, so the angle between the electrodes should be 40 degrees or less. In addition, if the angle between the electrodes is less than 15 degrees, the arc forces of both the leading and trailing electrodes become isolated and dispersed, which causes the molten pool to be dragged backwards and the arc There is a problem that the amount of melting at lower temperatures is relatively small and humping beads are more likely to occur. Therefore, the temperature should be 15 degrees or higher.

第5図は本発明の方法を実施するに好適な装置
のブロツク図である。この図において溶接電源1
0の陰極がトランジスタ11により構成されるス
イツチング装置12を通して先行電極2および後
行電極4に接続され、溶接電源10の陽極が被溶
接材9に接続されている。先行電極2、後行電極
4と被溶接材9の間にアーク7a,7bを発生さ
せ、溶融プール13が形成される。スイツチング
制御装置14によつて制御されたスイツチング装
置12によつて溶接電流を先行電極2、後行電極
4に交互に切換えて流すことによりアークの磁気
干渉が防止された。なお切換周波数は250Hzであ
つた。フイラーワイヤ6は先行電極2と後行電極
4の間に位置するフイラーワイヤ送給ノズル5を
通して一体の溶融プール13中に送給される。フ
イラーワイヤ送給装置15はフイラーワイヤ送給
制御装置16によつて制御された。
FIG. 5 is a block diagram of an apparatus suitable for carrying out the method of the present invention. In this figure, welding power source 1
The cathode of the welding power source 10 is connected to the leading electrode 2 and the trailing electrode 4 through a switching device 12 constituted by a transistor 11, and the anode of the welding power source 10 is connected to the workpiece 9. Arcs 7a and 7b are generated between the leading electrode 2, the trailing electrode 4, and the workpiece to be welded 9, and a molten pool 13 is formed. Magnetic interference of the arc was prevented by alternately switching the welding current to the leading electrode 2 and the trailing electrode 4 by a switching device 12 controlled by a switching control device 14. The switching frequency was 250Hz. The filler wire 6 is fed into the integral melt pool 13 through a filler wire feed nozzle 5 located between the leading electrode 2 and the trailing electrode 4 . The filler wire feeding device 15 was controlled by a filler wire feeding control device 16.

第6図は、上記実施例で使用した溶接トーチの
部分断面図であり、この溶接トーチは先行トーチ
1、後行トーチ3、フイラーワイヤ送給ノズル5
およびシールドノズル18から主として構成され
ている。先行トーチ1には先行電極2がコレツト
19およびコレツト押え20によつて取り付けら
れている。後行トーチ3も先行トーチ1と同様な
構造をしており、後行電極4が取り付けられてい
る。先行電極2と後行電極4の電極間角度は30度
である。また先行電極2と後行電極4の電極先端
部の電極間距離は10mmに設定された。フイラーワ
イヤ6は、上記2本の電極の中間より、ノズル止
め21によつて固定されたフイラーワイヤ送給ノ
ズル5を通して送給される。すなわち、各電極
2,4とフイラーワイヤ送給ノズル5のなす角度
は15度である。先行トーチ1および後行トーチ3
は水冷され、各トーチおよびノズル間は絶縁され
ている。各トーチはシールドガスにより電極をシ
ールドするように構成されている。シールドガス
はシールドガス18を通つて溶接部に送られ、溶
接部をシールドする。電極は3.2φの2%トリウム
入りタングステン電極を使用した。
FIG. 6 is a partial sectional view of the welding torch used in the above embodiment, and this welding torch includes a leading torch 1, a trailing torch 3, and a filler wire feeding nozzle 5.
and a shield nozzle 18. A leading electrode 2 is attached to the leading torch 1 by a collet 19 and a collet holder 20. The trailing torch 3 also has a similar structure to the leading torch 1, and has a trailing electrode 4 attached thereto. The angle between the leading electrode 2 and the trailing electrode 4 is 30 degrees. Further, the distance between the electrode tips of the leading electrode 2 and the trailing electrode 4 was set to 10 mm. The filler wire 6 is fed through the filler wire feed nozzle 5 fixed by a nozzle stop 21 from the middle of the two electrodes. That is, the angle between each electrode 2, 4 and the filler wire feeding nozzle 5 is 15 degrees. Leading torch 1 and trailing torch 3
is water-cooled and has insulation between each torch and nozzle. Each torch is configured to shield the electrodes with a shielding gas. The shielding gas is passed through shielding gas 18 to the weld to shield the weld. The electrode used was a 3.2φ tungsten electrode containing 2% thorium.

溶接は被溶接材にSUS304、フイラーワイ
ヤに共金ワイヤ308(ワイヤ径1.2mm)を使用
した。またシールドガスにArガスを使用し、各
電極に流す気流配分は1:1とした。第7図は全
溶接電流と溶着速度の関係を示すグラフであり、
図中Cは本発明の方法を実施した場合の結果を示
し、Dは第2図記載の従来方法を実施した場合の
結果を示す。この図より明らかなように本発明の
方法は第2図記載の従来方法に比べ2倍以上の溶
着速度が得られる。またフイラーワイヤの溶融も
非常に安定しており、良好な溶接を行なうことが
できた。
For welding, SUS304 was used as the material to be welded, and cometal wire 308 (wire diameter 1.2 mm) was used as the filler wire. Furthermore, Ar gas was used as the shielding gas, and the airflow distribution to each electrode was set at 1:1. Figure 7 is a graph showing the relationship between total welding current and welding speed.
In the figure, C shows the results when the method of the present invention is implemented, and D shows the results when the conventional method shown in FIG. 2 is implemented. As is clear from this figure, the method of the present invention can achieve a welding speed more than twice that of the conventional method shown in FIG. Furthermore, the melting of the filler wire was very stable, and good welding could be performed.

第8図はハンピングビードを生じない限界溶接
速度と全溶接電流の関係を示すグラフであり、図
中Eは本発明の方法を実施した場合の結果を示
し、Fは第2図記載の従来方法を実施した場合の
結果を示す。本発明の方法はフイラーワイヤに関
係なくアーク長を短かくすることができるので、
フイラーワイヤ送給溶接においても限界溶接速度
を著るしく向上させることができ、第2図記載の
従来方法に比べ2.5倍以上の限界溶接速度が得ら
れることが明らかとなつた。またワイヤの溶融が
安定なため、非常にきれいな溶接ビードが得られ
た。さらにフイラーワイヤの接触等による電極の
汚れも従来方法に比べ非常に少なかつた。
FIG. 8 is a graph showing the relationship between the limit welding speed that does not produce a humping bead and the total welding current. The results of implementing the method are shown. Since the method of the present invention can shorten the arc length regardless of the filler wire,
It has become clear that the limit welding speed can be significantly improved even in filler wire feed welding, and a limit welding speed 2.5 times or more can be obtained compared to the conventional method shown in FIG. Also, because the wire melted stably, a very clean weld bead was obtained. Furthermore, there was much less contamination of the electrodes due to contact with filler wires, etc., than in the conventional method.

以上述べたように本発明によれば、フイラーワ
イヤに影響されることなくアーク長を短かくする
ことができるとともに、電極の汚れも少なく、ワ
イヤの溶融も安定しているため、2電極溶接の効
果がフイラーワイヤ送給溶接においても十分得ら
れ、溶着速度および溶接速度の高速化が達成され
た。また電極先端を被溶接材の表面以下に突込み
溶接するうもれアーク溶接も行なうことができ
る。
As described above, according to the present invention, the arc length can be shortened without being affected by the filler wire, the electrode is less contaminated, and the wire melting is stable, so two-electrode welding is possible. The effect was sufficiently obtained in filler wire feed welding, and the welding speed and welding speed were increased. It is also possible to carry out hidden arc welding in which the tip of the electrode is plunged below the surface of the material to be welded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は先行電極にフイラーワイヤを送給する
従来方法の説明図、第2図は後行電極にフイラー
ワイヤを送給する従来方法の説明図、第3図は溶
融プールが一体となる電極間距離と全溶接電流の
関係を示すグラフ、第4図は溶融プールが一体と
なる電極間角度と全溶接電流の関係を示すグラ
フ、第5図は本発明の方法を実施するに好適な装
置のブロツク図、第6図は本発明の方法を実施す
るに際して使用される溶接トーチの部分断面図、
第7図は全溶接電流と溶着速度の関係を示すグラ
フ、第8図は全溶接電流と限界溶接速度の関係を
示すグラフである。 1…先行トーチ、2…先行電極、3…後行トー
チ、4…後行電極、5…フイラーワイヤ送給ノズ
ル、6…フイラーワイヤ、7a,7b…アーク、
8a,8b…溶融プール、9…被溶接材、10…
溶接電源、11…トランジスタ、12…スイツチ
ング装置、13…溶融プール、14…スイツチン
グ制御装置、15…フイラーワイヤ送給装置、1
6…フイラーワイヤ送給制御装置、17…トーチ
ボデイ、18…シールドノズル、19…コレツ
ト、20…コレツト押え、21…ノズル止め。
Figure 1 is an explanatory diagram of the conventional method of feeding filler wire to the leading electrode, Figure 2 is an explanatory diagram of the conventional method of feeding filler wire to the trailing electrode, and Figure 3 is an illustration of the electrode in which the molten pool is integrated. FIG. 4 is a graph showing the relationship between the interelectrode angle at which the molten pool is integrated and the total welding current. FIG. 5 is a graph showing the relationship between the electrode distance and the total welding current. FIG. 6 is a partial sectional view of a welding torch used in carrying out the method of the present invention,
FIG. 7 is a graph showing the relationship between total welding current and welding speed, and FIG. 8 is a graph showing the relationship between total welding current and limit welding speed. DESCRIPTION OF SYMBOLS 1... Leading torch, 2... Leading electrode, 3... Trailing torch, 4... Trailing electrode, 5... Filler wire feeding nozzle, 6... Filler wire, 7a, 7b... Arc,
8a, 8b... molten pool, 9... material to be welded, 10...
Welding power source, 11... Transistor, 12... Switching device, 13... Molten pool, 14... Switching control device, 15... Filler wire feeding device, 1
6... Filler wire feed control device, 17... Torch body, 18... Shield nozzle, 19... Collet, 20... Collet holder, 21... Nozzle stop.

Claims (1)

【特許請求の範囲】[Claims] 1 先行電極と後行電極を構成する2電極に電流
を流し、各電極に発生するアーク熱によつて形成
される溶融プールが一体となるようにした2電極
TIG溶接において、前記2電極は、その電極間距
離が電極の先端部で12mm以下、かつその電極間角
度が15〜40度で配置させるとともに、前記各電極
間に位置する溶融プール中にフイラーワイヤを送
給し、前記各電極に溶接電流をその各電流の配分
を等しくして交互に流すようにして溶接すること
を特徴とする2電極TIG溶接方法。
1 Two electrodes in which a current is passed through the two electrodes that make up the leading electrode and the trailing electrode, so that the molten pool formed by the arc heat generated in each electrode becomes one.
In TIG welding, the two electrodes are arranged with a distance of 12 mm or less at the tip of the electrode and an angle of 15 to 40 degrees, and a filler wire is placed in the molten pool located between each electrode. A two-electrode TIG welding method, characterized in that the welding is carried out by supplying a welding current to each of the electrodes and alternately flowing the welding current to each electrode with the distribution of the current being equal.
JP15916479A 1979-12-10 1979-12-10 2-electrode tig welding method Granted JPS5684172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15916479A JPS5684172A (en) 1979-12-10 1979-12-10 2-electrode tig welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15916479A JPS5684172A (en) 1979-12-10 1979-12-10 2-electrode tig welding method

Publications (2)

Publication Number Publication Date
JPS5684172A JPS5684172A (en) 1981-07-09
JPS6331305B2 true JPS6331305B2 (en) 1988-06-23

Family

ID=15687663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15916479A Granted JPS5684172A (en) 1979-12-10 1979-12-10 2-electrode tig welding method

Country Status (1)

Country Link
JP (1) JPS5684172A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001538A (en) * 2000-06-21 2002-01-08 Ishikawajima Harima Heavy Ind Co Ltd Method and device for welding of multielectrode
JP5225962B2 (en) * 2008-12-02 2013-07-03 株式会社神戸製鋼所 Multi-electrode gas shielded arc welding method
CN106825870A (en) * 2015-12-07 2017-06-13 天津大学 Flux-cored wire welding with filler wire method and its device
CN108237308A (en) * 2016-12-23 2018-07-03 天津大学 Integral type flux-cored wire TIG welds welding gun and realizes the method for stablizing Welding Molten Drop transition
CN108544058B (en) * 2018-03-08 2020-06-02 上海交通大学 Efficient welding process for titanium and titanium alloy sheets

Also Published As

Publication number Publication date
JPS5684172A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
JP5570473B2 (en) Two-electrode welding method
US2756311A (en) High-speed tandem arc working
US3274371A (en) Method of depositing metal
US3825712A (en) Welding process
US3007033A (en) Inert gas shielded metal arc welding
KR20000065086A (en) Gas tungsten arc welding apparatus and method
US3336460A (en) Method and apparatus for sweeping electric arcs
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
JPS6331305B2 (en)
JP2011177741A (en) Plasma welding method, plasma torch assembled body, and plasma welding device
US4035605A (en) Narrow groove welding method, and welding apparatus for practicing the method
JP2003053545A (en) Tandem arc welding method
US3242309A (en) High-speed multi-arc seam welding and apparatus
JPH0221911B2 (en)
JPS597545B2 (en) Consumable electrode arc welding method for steel
JP2013252523A (en) Two-electrode type hot wire mag welding method
JP2897063B2 (en) TIG arc welding torch and welding equipment
US3610868A (en) Submerged-welding method
US4100389A (en) Method of high speed gas shielded arc welding
JPH10225771A (en) Shield structure of welding torch
US2983808A (en) Electric arc welding
JPS60118386A (en) Submerged arc welding method
JPS6317588Y2 (en)
JP2012130934A (en) Plasma welding system
JPS6317587Y2 (en)