JPS597545B2 - Consumable electrode arc welding method for steel - Google Patents

Consumable electrode arc welding method for steel

Info

Publication number
JPS597545B2
JPS597545B2 JP3225879A JP3225879A JPS597545B2 JP S597545 B2 JPS597545 B2 JP S597545B2 JP 3225879 A JP3225879 A JP 3225879A JP 3225879 A JP3225879 A JP 3225879A JP S597545 B2 JPS597545 B2 JP S597545B2
Authority
JP
Japan
Prior art keywords
welding
arc
current
welding method
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3225879A
Other languages
Japanese (ja)
Other versions
JPS55126384A (en
Inventor
康弘 萩原
直道 森
貞雄 都島
博志 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3225879A priority Critical patent/JPS597545B2/en
Publication of JPS55126384A publication Critical patent/JPS55126384A/en
Publication of JPS597545B2 publication Critical patent/JPS597545B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 本発明は鋼のガスシールド方式の消耗電極式アーク溶接
法法において、高能率で且つ在来の同種のガスシールド
アーク溶接方法に比して著しく欠陥の少ないものを提供
せるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a gas-shield consumable electrode arc welding method for steel that is highly efficient and has significantly fewer defects than similar conventional gas-shield arc welding methods. It is something that can be done.

従来から下向姿勢忙ゝける高能率のアーク溶接方法とし
てはサブマージアーク溶接方法が一般的に用いられてい
る。
Conventionally, a submerged arc welding method has been generally used as a high-efficiency arc welding method in a downward position.

特にこの溶接方法は多電極にすれば高速高能率化が可能
であわ、溶接欠陥の発生も少なく一般的な用途に対して
は優れたものである。しかしながら低温靭性が要求され
る場合、たとえば極低温用ラインパイプの造管溶接工程
に使用しようとすると入熱量が大きいため熱影響部の脆
化が問題になる。サブマージアーク溶接法において入熱
量を制限して多層盛の溶接を行なおうとすると、バス間
でのスラグ剥離の問題が生じ能率の著しい低下を招来す
る。その上欠陥発生が少ないというサプマージアーク溶
接法本来の利点も大いに失なわれスラグ巻込み等の溶接
欠陥も多くなる。前記のことから近年大電流で高速溶接
を行なうMIG溶接法、すなわち不活性ガスを用いた消
耗電極式アーク溶接方法が注目されてきた。
In particular, this welding method can achieve high speed and high efficiency by using multiple electrodes, and has fewer welding defects, making it excellent for general use. However, when low-temperature toughness is required, for example, when attempting to use it in the manufacturing and welding process of cryogenic line pipes, the heat input is large and embrittlement of the heat-affected zone becomes a problem. If an attempt is made to perform multilayer welding by limiting the amount of heat input in the submerged arc welding method, the problem of slag peeling between the buses will occur, resulting in a significant drop in efficiency. Moreover, the original advantage of the supmerged arc welding method, which is that it causes fewer defects, is largely lost, and welding defects such as slag entrainment increase. For the above reasons, in recent years, attention has been paid to the MIG welding method, which performs high-speed welding with a large current, that is, the consumable electrode type arc welding method using an inert gas.

たとえば特公昭53−9571号公報においては太径の
電極ワイヤを採用することにより電流密度を抑制してア
ーク電極圧力を適正化するという趣旨の提案がなされて
いる。一般にMIG溶接法ではアーク電磁圧力が強力な
ため第1図のビード断面図で示すようにビ・−ド1の先
端部が深く喰い込む、いわゆるフィンガー状の溶け込み
になク易くこの附近に融合不良欠陥2が発生することが
多い。この欠陥は一般の融合不良の欠陥とは概念的に異
なるものである。すなわち通常の融合不良では溶融金属
の熱量不足のため母材を溶融するに至らず、溶着金属が
いわば鋳型に鋳込んだ状態になるものである。しかるに
このMIG溶接法にみられる融合不良は母材がアークに
より掘わ下げられて生成された空間に溶接金属が良好に
充填されず欠陥となつたものである。したがつて一般の
融合不良では母材の溶融が促進されるように溶融金属の
保有熱を増大させることが対策になわ得るがこの欠陥で
はこの対策は効果がない。溶融池における溶融金属の対
流状況等複雑な要因が絡み合つているものと考えられ、
これの原因を追求した研究報告も発表されているが本質
は解明されるに至つていなιへただ溶け込みがフィンガ
ー状になれば欠陥発生率が著しく増大することは事実で
ある。しかし溶け込み状況を改善してもアークカによる
溶融池の動きが変ると欠陥発生をみることもあり、溶け
込み状況のみと完全に対応しているとはいえない面もあ
る。前記した特公昭53−9571号公報記載の技術に
おいては太径のワイヤを採用することによりアークカの
集中を避けてフインガ一状の溶け込みを防止しようとす
るものといえる。
For example, Japanese Patent Publication No. 53-9571 proposes to suppress the current density and optimize the arc electrode pressure by using a large diameter electrode wire. In general, in the MIG welding method, the arc electromagnetic pressure is strong, so the tip of bead 1 tends to bite deeply into so-called finger-shaped welding, as shown in the cross-sectional view of the bead in Figure 1, resulting in poor fusion in this area. Defect 2 often occurs. This defect is conceptually different from the general defect of fusion failure. In other words, in the case of normal fusion failure, the base metal is not melted due to insufficient heat of the molten metal, and the welded metal remains in a state of being cast into a mold. However, the poor fusion observed in this MIG welding method is caused by the weld metal not filling well into the space created when the base metal is dug down by the arc, resulting in a defect. Therefore, a countermeasure for general fusion defects is to increase the retained heat of the molten metal so as to promote melting of the base metal, but this countermeasure is ineffective for this defect. It is thought that complex factors such as the convection situation of molten metal in the molten pool are intertwined,
Although research reports investigating the cause of this have been published, the essence has not yet been elucidated.It is true that if the weld into ι becomes finger-like, the rate of defect occurrence will increase significantly. However, even if the welding condition is improved, defects may occur if the movement of the molten pool due to the arc force changes, so it cannot be said that it corresponds completely to the welding condition alone. In the technique described in Japanese Patent Publication No. 53-9571 mentioned above, it can be said that by employing a wire having a large diameter, the concentration of the arc force is avoided and the melting of the fingers is prevented.

しかしながら本発明者等の知見によると太径ワイヤの採
用による欠陥発生の防止効果は必ずしも有効でなく、溶
接電流が700A程度を超えると欠陥の発生が多くなる
。これは太径のワイヤを採用してもアーク内における電
流分布はそれに応じて均等に減少するものでなく、アー
ク自身のピンチカもあり中心部の電流密度はやはり高く
なることが原因の一つと考えられる。結局この溶接方法
では実行可能な対策としては不活性ガス中の炭酸ガス含
有量を”増すことが最も有効で、シールドガス中の炭酸
ガスが15%程度以下では欠陥の発生が多いが20%位
以上増加させれば顕著に減少する。しかしながら第2図
にシールドガス中の炭酸ガス含有量((f/))(残り
のアルゴン)と溶接金属中の酸素含有量((:f))の
関係についての例を示すごとく、炭酸ガス含有量の増加
に伴なつて溶接金属中の酸素含有量が増加する。これに
より第3図に試験温度とシヤルピ一試験衝撃値との関係
をシールドガス成分の相違に対応して示しているが、シ
ールドガス中の炭酸ガスが増加すると靭性が劣化してい
る。なおこの例は2%Ni−0.8%Cr−0.6%M
Oを含有する低合金鋼の溶接ワイヤにおけるものである
。このように炭酸ガス量の多いシールドガスでは溶接金
属の靭性低下が大きく、MIG溶接はサブマージアーク
溶接に比して一般的に溶接金属の靭性が優れているとい
う特徴も失なわれてしまう。溶け込みがフインガ一状に
なることの対策としては直流アークにおいて電極の極性
を変えることが考えられる。MIG溶接は当然直流電源
が使われるが、その中でも電極プラスで母材がマイナス
、すなわち逆極性がもつぱら採用されている。先に述べ
た特公昭53−9571号公報記載の溶接方法において
も電源極性に関する記載は無いが逆極性であるのが当然
である。電極がマイナス、すなわち正極性の場合は電子
流はワイヤから母材に向つて流れ、電子放出は酸化膜の
あるワイヤ表面からもなされるためアークが広がつてプ
ラス々気流が弱まり、ビード中央部が深く掘られないの
でフインガ一状になるのが軽減される。しかし一方ワイ
ヤ先端の溶滴に電磁的ピンチカが働きにくく、溶滴はド
ロツプ移行になリスパツタも多く、アークがふらついた
り不安定になり易い。特にシールドガス中の炭酸ガス、
酸素等の酸化性ガス含有量が少ない場合、ワイヤ先端の
溶滴が酸化されないので電子放出能が低下し、アークは
電子放出をすべき酸化物を追い求めて電極を這い上がり
パーツパックの恐れすらある。このような未解決の問題
があるため直流正極性によるMIG溶接法は試験結果等
は発表されているがほとんど実用化されていないのが現
状である。特にシールドガス中の炭酸ガスや酸素を多く
しないとアークが不安定になるということは先に述べた
様に溶接金属の靭性の点から不利であり、この点からも
本発明の目的としている高靭性の溶接継手を得ることと
相容れないものといわねばならない。本発明は前記のよ
うな従来法b問題点を解決するものであつて、その要旨
とする処は、直径dが3.2乃至6,4Trmの実体ワ
イヤに対して電極突出し長さd×4乃至d×15TWL
且つ電流密度40乃至150A/Mdの範囲内で、再点
弧手段を備えた交流電源により溶接電流600乃至20
00Aを供給しつつ15%以下の炭酸ガスか5%以下の
酸素の少なくとも一方を含有し、残部は不活性ガスから
なるシールドガス中で溶接することを特徴とする鋼の消
耗電極式アーク溶接方法にある。
However, according to the findings of the present inventors, the effect of preventing the occurrence of defects by using a large diameter wire is not necessarily effective, and when the welding current exceeds about 700 A, the occurrence of defects increases. One of the reasons for this is thought to be that even if a wire with a large diameter is used, the current distribution within the arc does not decrease evenly, and the current density at the center is still high due to the pinch of the arc itself. It will be done. In the end, with this welding method, the most effective measure that can be taken is to increase the carbon dioxide content in the inert gas, and if the carbon dioxide content in the shielding gas is less than 15%, defects often occur, but it is around 20%. If the increase is more than that, it will decrease significantly.However, Figure 2 shows the relationship between the carbon dioxide content ((f/)) in the shielding gas (remaining argon) and the oxygen content ((:f)) in the weld metal. As shown in the example above, the oxygen content in the weld metal increases as the carbon dioxide content increases.As a result, Figure 3 shows the relationship between the test temperature and the Shalpy test impact value for the shielding gas component. As shown in the figure corresponding to the difference, toughness deteriorates as carbon dioxide gas in the shielding gas increases.In addition, this example shows 2%Ni-0.8%Cr-0.6%M.
This is a welding wire of low alloy steel containing O. In this way, shielding gas with a large amount of carbon dioxide gas greatly reduces the toughness of the weld metal, and the characteristic that MIG welding generally has superior weld metal toughness compared to submerged arc welding is also lost. As a countermeasure to the problem of uniform welding, it is conceivable to change the polarity of the electrode in the DC arc. Of course, MIG welding uses a DC power source, but most of them use reverse polarity, with the electrode being positive and the base metal being negative. Even in the welding method described in Japanese Patent Publication No. 53-9571 mentioned above, there is no description regarding the polarity of the power source, but it is natural that the polarity is reversed. When the electrode is negative or positive, the electron current flows from the wire toward the base metal, and electrons are also emitted from the wire surface where there is an oxide film, so the arc spreads and the positive airflow weakens, causing the central part of the bead to emit electrons. Since the holes are not dug deeply, the fingers are less likely to become one. However, on the other hand, it is difficult for the electromagnetic pincher to act on the droplet at the tip of the wire, and the droplet migrates into a droplet, causing many respatter, and the arc tends to wander and become unstable. Especially carbon dioxide gas in shielding gas,
If the content of oxidizing gases such as oxygen is low, the droplets at the tip of the wire will not be oxidized, resulting in a decrease in electron emitting ability, and the arc may creep up the electrode in pursuit of the oxide that should emit electrons, potentially causing parts packs. . Due to such unresolved problems, the MIG welding method using direct current positive polarity has hardly been put into practical use, although test results and the like have been published. In particular, if the amount of carbon dioxide and oxygen in the shielding gas is not increased, the arc will become unstable, which is disadvantageous in terms of the toughness of the weld metal, as mentioned above. It must be said that this is incompatible with obtaining a tough welded joint. The present invention solves the problems of the conventional method b as described above, and its gist is that the electrode protrusion length d x 4 is ~d×15TWL
The welding current is 600 to 20 A/Md using an AC power source equipped with a restriking means within the current density range of 40 to 150 A/Md.
A consumable electrode type arc welding method for steel, characterized by welding in a shielding gas containing at least one of carbon dioxide gas of 15% or less or oxygen of 5% or less, and the remainder consisting of an inert gas while supplying 0.0A. It is in.

以下にその詳細を説明する。The details will be explained below.

本発明のまず特徴とする処は溶接電源として交流を用い
ることであ4サブマージアーク溶接、被覆アーク溶接、
ノンガス溶接等フラツクスを用いるアーク溶接において
は交流電源が極く普通に用いられている。
The first feature of the present invention is that alternating current is used as the welding power source.
AC power sources are very commonly used in arc welding using flux, such as non-gas welding.

交流アークにおいては半サイクル毎にアーク電流が零に
なつてアークが消滅し、これを再点弧させる必要がある
が、フラツクスを用いた溶接においてはフラツクスより
発生したイオンにより電流零になつた時でも電気伝導度
の良いプラズマが残存し容易にアークを再生し得る。と
ころがフラツクスを用いないアーク溶接、すなわちソリ
ツドワイヤを用いるMIG溶接やTIG溶接ではただ交
流電源に接続しただけでは再点弧が困難でアークを持続
し得ない。TIG溶接にち・いては限られた用途、すな
わちアルミニウムの溶接に卦いて酸化物の除去に有効な
ため交流電源が用いられている。この場合アークの持続
のため高圧の高周波を重畳して電極、母材間に火花放電
を !発生させている。このような手段を講ずればMI
G溶接でも交流電源を用いることが可能である。ただ今
日まで実用化されていないのは前記のアルミニウムのT
IG溶接に訃ける如き利点が格別に見出されなかつた為
、特別な手段を講じてま lで交流溶接をする意味がな
かつたと考えられる。ところが本発明者等は電極ワイヤ
径、これの電流密度等の各種条件を特定の範囲において
交流電源を大電流のMIG溶接に適用すると極めて顕著
な効果を発揮することを見出したのである。第4図は本
発明の溶接方法に適用する場合に特に好ましい再点弧手
段を示すものである。
In an AC arc, the arc current drops to zero every half cycle and the arc is extinguished, and it must be re-ignited, but in welding using flux, when the current drops to zero due to ions generated by the flux. However, plasma with good electrical conductivity remains and the arc can be easily regenerated. However, in arc welding that does not use flux, ie, MIG welding or TIG welding that uses solid wire, it is difficult to re-ignite the weld simply by connecting it to an AC power source, and the arc cannot be sustained. In TIG welding, an AC power source is used for limited purposes, namely aluminum welding, because it is effective in removing oxides. In this case, in order to sustain the arc, high voltage and high frequency waves are superimposed to create a spark discharge between the electrode and the base metal! It is occurring. If such measures are taken, MI
It is also possible to use an AC power source for G welding. However, the aluminum T that has not been put into practical use until now is
Since no particular advantage over IG welding was found, it is thought that there was no point in taking special measures to perform AC welding. However, the inventors of the present invention have discovered that when an AC power source is applied to high-current MIG welding under certain conditions such as the diameter of the electrode wire and its current density, a very remarkable effect can be obtained. FIG. 4 shows a particularly preferred restriking means when applied to the welding method of the present invention.

母材3、電極ワイヤ5を通した溶接トーチ4との間に溶
接電源変圧器7により交流が供給される。一方、一次電
源6からは溶接電源変圧器7に供給されたのと同期した
交流がパルス発生装置8に供給されている。変流器9に
より溶接電流が検出され、これの零附近に卦いてパルス
発生装置8からパルス電圧が発生される。このパルス電
圧は抵抗器10を通じて溶接トーチ4、母材3間に供給
される。第5図はこの装置の動作を説明する図であつて
溶接電流はほゾ正弦波状に流れて訃り、これに対し溶接
電圧は方形波状になつている。正負の極性の変化の立上
りで高い電圧になつて訃り、これの尖頭値が再点弧電圧
である。これに対しパルス電圧はパルス発生装置出力端
子における電圧を示し、溶接電流が零附近においてのみ
電圧を発生する。この電圧は再点弧電圧の最大値よジも
高い必要がありたとえば尖頭値が300Vといつた値で
あつて、これによりアークが消滅することなく持続させ
られる。本発明の溶接方法に卦ける溶接条件範囲内に訃
いては電極マイナス側の再点弧電圧は比較的低く、溶接
電源変圧器7の無負荷電圧が充分高ければパルスの供給
を省略することもでき得る。しかし電極プラス側におい
ては少なくとも安全上容認できる無負荷電圧の範囲内で
は再点弧は不能でパルスの供給は不可欠である。このよ
うなパルス発生装置による再点弧手段は先に述べた高周
波発生装置による再点弧手段に比して幾つかの利点を有
する。すなわち高周波と異なり電波障害の恐れがほとん
ど無いこと、また高周波の方法では本発明の溶接のよう
に大電流の場合これを流すようなコイルは大掛りになり
、溶接電源変圧器への高周波の流入を阻止するのが難か
しく、これを省くと3000Vといつた高圧のため絶縁
破壊の恐れがあるが、一方先にも述べたような300V
程度のパルス電圧ではその恐れが全くないことなどであ
る。本発明のさらに特徴とする処は上記のような再点弧
手段を備えた交流電源を採用することに加えて直径3.
2乃至6.4mmの太径の実体ワイヤを使用し、これに
電流密度40乃至150A/MJの範囲で600乃至2
000Aの溶接電流を流すことである。高能率高速の溶
接を行なうためには溶接電流は600A以上の大電流を
用いなければならないが、このような大電流に対して溶
接ワイヤの電流密度を40乃至150A/〒の範囲にす
る必要がある。直流電源を用いる通常のMIG溶接では
200A/MJ程度の電流密度が採用されるが、交流電
源を用いる本発明の溶接方法においては通電チツプから
突き出たワイヤの部分での電圧降下が大き過ぎるとアー
クが不安定になるので150A/〒以下にする必要があ
る。一方電流密度が40A/〒より小さくなると溶け込
みが浅くなり高速溶接の目的に対して不利になるだけで
なくやはりアークが不安定になる。本発明溶接法におい
てはフインガ一状の溶け込みになるのを避ける目的で電
流密度を下げるという必要は全くない。先に述べた直流
電源を用いる大電流MIG溶接法においては、本発明溶
接法の範囲よりもかなり低電流密度の溶接条件が採用さ
れてフインガ一状の溶け込みになるのを極力防止してい
るが、本発明の溶接方法に卦いては交流電源の採用等の
効果によつてフインガー状の溶け込みには全くならず、
いたずらに電流密度を下げることはアークの不安定を招
いたりして無益である。溶接電流は高能率高速溶接のた
めには大きい程有利であるが2000Aを超えるとビー
ドに乱れを生ずるいわゆるパツカリングが発生し易くな
る。電極ワイヤは実体ワイヤを用いるがその径は先に述
べた電流密度の関係等から3.2乃至6.6WrfLが
適当であり、これより細くなるとアーク長の変動が大き
くなつてアークの安定が損なわれ、太くなると作業に困
難を来たすだけで、電流密度を特に低下させる必要もな
い本発明溶接法においては何等利益がない。また本発明
溶接法においては通電チツプからの電極突出し長さを、
電極ワイヤの直径DTvnに対してd×4乃至d×15
Tmの範囲にする必要がある。
An alternating current is supplied by a welding power source transformer 7 between the base material 3 and the welding torch 4 through which the electrode wire 5 is passed. On the other hand, from the primary power source 6, alternating current is supplied to the pulse generator 8 in synchronization with that supplied to the welding power source transformer 7. The welding current is detected by the current transformer 9, and a pulse voltage is generated from the pulse generator 8 when the welding current is near zero. This pulse voltage is supplied between the welding torch 4 and the base material 3 through the resistor 10. FIG. 5 is a diagram illustrating the operation of this device, in which the welding current flows in a sinusoidal waveform, whereas the welding voltage has a square waveform. The voltage rises to a high level at the rising edge of the positive/negative polarity change, and the peak value of this is the restriking voltage. On the other hand, the pulse voltage indicates the voltage at the output terminal of the pulse generator, and a voltage is generated only when the welding current is near zero. This voltage must be higher than the maximum value of the restriking voltage, for example, with a peak value of 300 V, so that the arc can be sustained without being extinguished. If the welding conditions are within the range of the welding conditions of the welding method of the present invention, the re-ignition voltage on the negative side of the electrode will be relatively low, and if the no-load voltage of the welding power source transformer 7 is sufficiently high, the supply of pulses may be omitted. It can be done. However, on the positive side of the electrode, re-ignition is impossible, at least within the safe no-load voltage range, and pulse supply is essential. Such a restriking means using a pulse generator has several advantages over the above-mentioned restriking means using a high frequency generator. In other words, unlike high-frequency welding, there is almost no risk of radio interference, and in the case of high-frequency welding, as in the case of the present invention, the coils used to carry the current are large and there is no risk of high-frequency waves flowing into the welding power transformer. It is difficult to prevent this, and if this is omitted, there is a risk of insulation breakdown due to the high voltage of 3000V.
There is no fear of this at all with a pulse voltage of about 100 mL. A further feature of the present invention is that, in addition to employing an AC power source equipped with the above-mentioned restriking means, the present invention has a diameter of 3.
A solid wire with a large diameter of 2 to 6.4 mm is used, and a current density of 600 to 2
000A of welding current is applied. In order to perform high-efficiency and high-speed welding, a large welding current of 600A or more must be used, but for such a large current, the current density of the welding wire must be in the range of 40 to 150A/〒. be. Normal MIG welding using a DC power source uses a current density of about 200 A/MJ, but in the welding method of the present invention using an AC power source, if the voltage drop at the part of the wire protruding from the current-carrying tip is too large, arcing may occur. Since it becomes unstable, it is necessary to keep it below 150A/〒. On the other hand, if the current density is less than 40 A/〒, the penetration becomes shallow, which is not only disadvantageous for the purpose of high-speed welding, but also makes the arc unstable. In the welding method of the present invention, there is no need to lower the current density in order to avoid finger-like welding. In the high-current MIG welding method using a DC power source mentioned above, welding conditions with a current density much lower than that of the welding method of the present invention are adopted to prevent finger-like penetration as much as possible. The welding method of the present invention does not result in finger-like welding at all due to the adoption of an AC power source, etc.
Unnecessarily lowering the current density may lead to instability of the arc and is useless. A larger welding current is advantageous for high-efficiency, high-speed welding, but if it exceeds 2000 A, so-called puckering, which causes bead disturbance, tends to occur. A solid wire is used as the electrode wire, and the appropriate diameter is 3.2 to 6.6 WrfL from the relationship with the current density mentioned above; if it is thinner than this, the fluctuation of the arc length will increase and the stability of the arc will be impaired. If the welding process becomes thicker, it will only make the work more difficult, and there will be no benefit in the welding method of the present invention, which does not require any particular reduction in current density. In addition, in the welding method of the present invention, the length of the electrode protruding from the current-carrying tip is
d×4 to d×15 for the electrode wire diameter DTvn
It is necessary to keep it within the range of Tm.

先に述べたように電流密度40乃至150A/MJの範
囲内で、上記のような電極突出し長さにすることにより
、ワイヤ先端は電気抵抗により適度に加熱され溶滴移行
状態が良好になつてアークが安定になる。ワイヤ突出し
長さがd×157mより長くなるとビードの形状が幅が
狭く中央部が盛り上がる凸型になり好ましくない。また
アーク長の変動が起き易くアークが不安定になる。また
DX4mmより小さくなると電極の溶融速度が低下し能
率上不利になる。また本発明溶接法ではシールドガス成
分に特徴を有する。
As mentioned earlier, by setting the electrode protrusion length as above within the current density range of 40 to 150 A/MJ, the wire tip is moderately heated due to electrical resistance, and the droplet transfer state is improved. The arc becomes stable. If the wire protrusion length is longer than d×157 m, the shape of the bead becomes convex with a narrow width and a raised center, which is not preferable. Further, fluctuations in arc length tend to occur, making the arc unstable. Moreover, if the DX is smaller than 4 mm, the melting rate of the electrode will decrease, resulting in a disadvantage in terms of efficiency. Furthermore, the welding method of the present invention is characterized by the shielding gas component.

一般にTIG溶接法ではアルゴン、ヘリウム等の純粋な
不活性ガスが用いられるのに対し、MIG溶接法におい
ては炭酸ガス、酸素等を添加した不活性ガスが用いられ
る。これらのガス添加によつてアークの電位傾度を調節
し得る等の理由もあるが、本質的な理由はこれら酸化性
のガスによつて電子放出の容易な酸化物を溶融池に生じ
させて陰極点を広く分布させ、フインガ一状の溶け込み
になるのを防止するのとにある。TIG溶接に卦いては
電極がマイナスであり、電子放出を助けるためタングス
テン電極にトリウムを添加しているのは周知の通りであ
る。アーク柱は陽極側では広がりを持つているため、T
IG溶接や電極マイナス即ち正極性のMIG溶接では溶
け込みがフインガ一状になることは少ないのである。と
ころで本発明溶接法に}いても不活性ガスを主成分とし
たシールドガスが用いられるが、炭酸ガス、酸素等の酸
化性ガスの添加は少量で良い。先にも述べたように直流
の大電流MIG溶接法においてはアルゴン中の炭酸ガス
含有景が20(f)程度以上ないと融合不良に類する欠
陥が多発し実用にならない。しかるに本発明の溶接法に
おいては酸化性ガスの添加量が少ないと他の条件が同一
の場合溶け込みがや\浅くはなるが、全くフインガ一状
にならず、また欠陥の発生も多くならない。純粋の不活
性ガス中ですらアークは溶接ワイヤの先端だけでなくか
なり上方からも出るようになるものの、正常に溶接作業
が行なうことができ欠陥の発生もない。電極がマイナス
の正極性の溶接の場合、酸化性ガスの添加量が少ないと
アークがワイヤ表面を這い上がり、正常な溶接ができな
くなることは先に述べたが、交流の場合電極がマイナス
の間にアークが這い上がつてきても、次の瞬間に極性が
反転すれば再び先端部分に戻るので、結局ある平衡状態
になつて障害になる程はアークの這い上がりが起きない
ものと考えられる。また炭酸ガスをたとえば1%程度で
も添加するとアークの這い上がりは非常に少なくなり、
炭酸ガスを5%といつた量添加した場合とさ程違わなく
なる。このように不活性ガスへの酸化性ガスの添加量が
低くできることは溶接金属中の酸素含有量を低下させる
ことができ、高靭性の溶接金属を得ることができる。な
お炭酸ガスの場合の添加量は15%以下、好ましくは1
0%以下が適当である。15%を超えると再点弧電圧が
非常に上がり、再点弧手段を備えた交流電源を使用して
いても再点弧失敗によるアーク切れの恐れが多くなり、
またスパツタの発生も多くなる。
Generally, in TIG welding, pure inert gas such as argon or helium is used, whereas in MIG welding, inert gas to which carbon dioxide, oxygen, etc. are added is used. There is a reason for this, such as the ability to adjust the potential gradient of the arc by adding these gases, but the essential reason is that these oxidizing gases cause oxides that easily emit electrons to be generated in the molten pool, and the cathode The purpose is to distribute the dots widely and prevent the fingers from melting into one shape. As is well known, in TIG welding, the electrode is negative, and thorium is added to the tungsten electrode to help emit electrons. Since the arc column has a widening on the anode side, T
In IG welding or MIG welding with a negative electrode, that is, positive polarity, the penetration is rarely in the form of a single finger. By the way, even in the welding method of the present invention, a shielding gas containing an inert gas as a main component is used, but the addition of oxidizing gases such as carbon dioxide and oxygen may be carried out in small amounts. As mentioned earlier, in the DC high current MIG welding method, unless the carbon dioxide content in the argon is about 20 (f) or more, defects similar to poor fusion occur frequently and it is not practical. However, in the welding method of the present invention, if the amount of oxidizing gas added is small, the penetration will be slightly shallower if other conditions are the same, but the fingers will not be in the same shape at all, and the number of defects will not increase. Even in pure inert gas, the arc will come out not only from the tip of the welding wire but also from quite a bit above, but the welding work can be performed normally and no defects will occur. In the case of positive polarity welding where the electrode is negative, if the amount of oxidizing gas added is small, the arc will creep up the wire surface and normal welding will not be possible. Even if the arc creeps up, it will return to the tip again if the polarity reverses at the next moment, so it is thought that eventually it will reach a certain equilibrium state and the arc will not creep up enough to cause a disturbance. . Also, if you add even 1% carbon dioxide gas, the creeping up of the arc will be greatly reduced.
It is not much different from when carbon dioxide gas is added in an amount of 5%. By reducing the amount of oxidizing gas added to the inert gas in this way, the oxygen content in the weld metal can be reduced, and a weld metal with high toughness can be obtained. In addition, in the case of carbon dioxide gas, the amount added is 15% or less, preferably 1
0% or less is appropriate. When it exceeds 15%, the restriking voltage becomes extremely high, and even if an AC power supply equipped with a restriking means is used, there is a high risk of arc breakage due to restriking failure.
Also, the occurrence of spatter increases.

大電流MIG溶接法に限らず直流のMIG溶接の場合ア
ルゴンに20%炭酸ガス添加のシールドガスが最も一般
的であつて、この程度の炭酸ガス含有量ではスパツタも
格別に多くはないが、本発明溶接法ではこのようなシー
ルドガスは不適当である。また酸素の場合は溶接金属の
酸化の点から50t)以下が適当であつて、この量は再
点弧電圧の上昇やスパツタ発生の限界値よりはずつと低
い。このため炭酸ガスが15%以下ζ酸素が5Cf)以
下であれば両方のガスを添加しても差支えない。なお不
活性ガネ上してはアルゴンの他にヘリウムも当然用いら
れ得る。7本発明溶接法に}いて溶接速度は状況じ応じ
て広い範囲で変え得る。
Not only for high-current MIG welding, but also for DC MIG welding, the most common shielding gas is argon with 20% carbon dioxide added, and with this level of carbon dioxide content, there are not particularly many spatters. Such shielding gases are inappropriate for the inventive welding process. In the case of oxygen, from the viewpoint of oxidation of the weld metal, it is appropriate to use 50 t) or less, and this amount is slightly lower than the limit value for increasing the restriking voltage and generating spatter. Therefore, as long as the carbon dioxide content is 15% and the ζ oxygen content is 5Cf or less, there is no problem in adding both gases. Naturally, helium can be used in addition to argon for the inert glass. 7. In the welding method of the present invention, the welding speed can be varied within a wide range depending on the situation.

大電流で低入熱の溶接を行なうので当然速度は大きいこ
とが望まれるが単電極の場合150cm/分位以上にな
るとビードにアンダカツトを生ずるようになりこれによ
)制限を受ける。一方、本発明溶接法では溶接電流の下
限が600Aであるから、溶接速度が30cm/分より
小さくなると溶融金属の先行、ビードのオーバーラツプ
による欠陥の発生のおそれがあり、また入熱も大きくな
るので好ましくない。さらに、2電極以上を並べて同時
に走行させるタンデム溶接にすると先行電極の予熱効果
のため高速でもアンダーカツトの発生が抑えられ、3m
/分といつた速度の溶接も可能である。
Since welding is carried out with a large current and low heat input, it is naturally desired that the speed be high, but in the case of a single electrode, if the speed exceeds about 150 cm/min, undercuts will occur in the bead, which is a limitation. On the other hand, in the welding method of the present invention, the lower limit of the welding current is 600 A, so if the welding speed is less than 30 cm/min, there is a risk of the molten metal leading and the occurrence of defects due to bead overlap, and the heat input will also increase. Undesirable. Furthermore, when using tandem welding, in which two or more electrodes are lined up and run simultaneously, the occurrence of undercuts can be suppressed even at high speeds due to the preheating effect of the preceding electrode, and the
Welding speeds of up to 1/min are also possible.

複数の電極を一定の距離を置いて並べるタンデム溶接は
継手の靭性向上にも特に有効であり、母材が急冷されて
硬化して脆化するのを先行した電極の予熱効果、後行電
極の焼戻効果により防止できる。このため靭性を低下さ
せないで単電極よりずつと高速で高能率の溶接を行なう
ことが可能になる。このようなタンデム溶接において本
発明の溶接方法は極めて有利である。先に述べた従来の
直流の大電流MIG溶接法では、タンデム溶接の場合磁
気誘導のためアークが干渉し合い不安定になる。本発明
者等の実験によれば2電極の溶接に訃いて極間距離が3
0cmあつてもアークは強く干渉し合う。2電極のとき
溶接開始時は先行電極のみアークが発生し、電極間距離
だけ溶接が進行してから後行のトーチのアークが発生す
ることになるが、この途端に先行のアークが乱れて消滅
してしまうことがしばしば起きた。
Tandem welding, in which multiple electrodes are arranged at a certain distance, is particularly effective in improving the toughness of joints. This can be prevented by the tempering effect. Therefore, it is possible to perform welding at higher speeds and with higher efficiency than with a single electrode without reducing toughness. The welding method of the present invention is extremely advantageous in such tandem welding. In the conventional high-current DC MIG welding method described above, in the case of tandem welding, the arcs interfere with each other due to magnetic induction and become unstable. According to experiments conducted by the inventors, when welding two electrodes, the distance between the electrodes is 3.
Even if the distance is 0 cm, the arcs strongly interfere with each other. When welding with two electrodes, when welding starts, an arc is generated only on the leading electrode, and after welding has progressed by the distance between the electrodes, an arc is generated from the trailing torch, but as soon as this happens, the leading arc is disturbed. It often disappeared.

2電極ともアークが発生している状態でも、何等かの原
因で一方のアークが乱れると他方に波及し、さらにこれ
が先に乱れた方のアークが直りかけたのを再び乱し、シ
ーソーの如く交互にアークが乱れるといつた現象さえ起
きた。
Even if arcs are generated on both electrodes, if one arc is disturbed for some reason, it will spread to the other, and this will disturb the arc that was about to recover again, like a seesaw. There was even a phenomenon where the arcs were disturbed alternately.

交流電源を用いる本発明の溶接方法においては電源の位
相を90るずらすスコツト結線を行なうことによつてア
ークの干渉を防止でき、このような問題は起きない。磁
気によるアークの乱れ、すなわち磁気吹きの問題は上述
のようなタンデム溶接の場合のみならず大きな問題であ
つて、本発明溶接法は直流電源を用いる大電流MIG溶
接法等の従来のMIG溶接法に比して本質的に優れてい
る。特にパイプの内面の縦シームの溶接ではトーチへの
給電ケーブルに対してパイプ自体が開先を磁極とする磁
路を形成し、強い磁気吹きのため従来のMIG溶接法は
適用できない。本発明の溶接法はこのような用途にも適
用可能である。以下、本発明の実施例を示す。実施例
1 本発明の溶接法と直流の大電流MIG溶接とを鋼板のビ
ード・オン・プレートでの欠陥発生状況で比較した。
In the welding method of the present invention using an AC power source, arc interference can be prevented by performing a spot connection in which the phase of the power source is shifted by 90 degrees, and this problem does not occur. The problem of arc disturbance due to magnetism, that is, magnetic blowing, is a big problem not only in tandem welding as described above, but the welding method of the present invention is different from conventional MIG welding methods such as high current MIG welding method using a DC power source. It is essentially superior to . In particular, when welding vertical seams on the inner surface of a pipe, the pipe itself forms a magnetic path with the groove as the magnetic pole for the power supply cable to the torch, and the conventional MIG welding method cannot be applied due to the strong magnetic blow. The welding method of the present invention is also applicable to such uses. Examples of the present invention will be shown below. Example
1. The welding method of the present invention and DC high current MIG welding were compared in terms of defect occurrence in bead-on-plate steel sheets.

本発明の溶接法ではパルスによる再点弧装置を備えた交
流電源を用いた。また直流電源は垂下特性のもので通常
のMIG溶接法と同じ逆極性(電極プラス)で用いた。
この他の溶接条件は以下の通シである。溶接ワイヤリソ
リツデワイヤ直径4.07m2%Ni−1.2%Mn−
0.3%MOの低合金鋼溶接電圧:30V溶接電流:8
00A(電流密度63A/M7l)電極突出し長さ:3
0wmシールドガスリアルゴン中の炭酸ガスを2f)、
5%, 10%, 20%と変えた。
The welding method of the present invention utilized an AC power source equipped with a pulsed restriking device. Further, the DC power source had a drooping characteristic and was used with the same reverse polarity (electrode positive) as in the normal MIG welding method.
Other welding conditions are as follows. Welding wire lithography wire diameter 4.07m2%Ni-1.2%Mn-
0.3% MO low alloy steel Welding voltage: 30V Welding current: 8
00A (current density 63A/M7l) electrode protrusion length: 3
0wm shield gas carbon dioxide in realgon 2f),
I changed it to 5%, 10%, and 20%.

流量は同心円状2重ノズルに対し内側50υ分外側25
t/分で合計75t/分。
The flow rate is 50υ on the inside and 25υ on the outside for the concentric double nozzle.
t/min, total 75t/min.

溶接速度:50cm/分、70cm/分,90cm/分
と変えた。
Welding speed: changed to 50 cm/min, 70 cm/min, and 90 cm/min.

これらの溶接条件で置いたビードの断面を各溶接条件に
つき約10個調べて融合不良欠陥の発生状況をまとめた
のが第1表である。
Table 1 summarizes the occurrence of poor fusion defects by examining about 10 cross-sections of beads placed under these welding conditions for each welding condition.

これの欄内の数字は(欠陥発生断面数/検査断面数)を
表示している。な卦、この表では簡単にするため融合不
良欠陥の大小は無関係に表示している。このように本発
明の溶接方法は全く欠陥の発生が無く画期的といえるも
のである。
The numbers in this column indicate (number of defective sections/number of inspected sections). However, in this table, for simplicity, the size of the fusion defect is shown regardless of the size of the defect. As described above, the welding method of the present invention is completely free of defects and can be said to be revolutionary.

一方直流の大電流MIG溶接法では炭酸ガス添加量が2
001)以外は欠陥の発生が著しい。欠陥の発生状況は
溶け込み形状と大体対応がつき直流大電流MIG溶接法
で2001)炭酸ガスでも溶接速度が50cm/分では
1/10ながら欠陥が出ているのは溶け込みが深くなつ
てや\フインガ一状になつているからであり、一方10
%炭酸ガスでも90cm/分では欠陥が少ないのは溶け
込みそのものが浅くなつてさ程フインガ一状が著しくな
い為である。なお本発明の溶接方法では炭酸ガスは15
%以下とされているにもか\わらず本実施例では20%
の条件で溶接が行なわれているが、溶接そのものは可能
であり、たゾスパツタが多くまた再点弧失敗が起き易い
ので推奨できないのである。実施例 2 板厚20wn(7)KT5OQ鋼で開先角度45ルート
フエース4Tm0V開先に対して本発明の溶接方法によ
り溶接を行なつた。
On the other hand, in the DC high current MIG welding method, the amount of carbon dioxide added is 2
001), the occurrence of defects is significant. The occurrence of defects roughly corresponds to the shape of the welding, and when welding using DC high current MIG welding (2001), welding speed was 1/10 even with carbon dioxide at a welding speed of 50cm/min, but the reason defects appeared was because the penetration was deep. This is because they are in one state, and on the other hand, 10
% carbon dioxide gas, there are fewer defects at 90 cm/min because the melt itself becomes shallower and the finger uniformity is not so pronounced. In addition, in the welding method of the present invention, carbon dioxide gas is 15
% or less, but in this example it is 20%
Although welding is possible, it is not recommended because there are many spatters and restriking failures are likely to occur. Example 2 Welding was performed using the welding method of the present invention on a plate thickness of 20wn (7) KT5OQ steel with a groove angle of 45 root face 4Tm0V groove.

単電極で2パスの溶接で継手を製作した。溶接電源は実
施例1と同様で溶接条件は各パスとも下記の通りである
。溶接ワイヤリソリツドワイヤ直径3.2wm1.6%
Mn−0.2%MO−0.1%Ti−0.008(Ff
)Bの合金成分を有する。溶接電圧32 溶接電流850A(電流密度105A/MJ)電極突出
し長さ25Trmシールドガスリアルゴン中酸素1% 流量:内側50L/分、外側25t/分 合計75t/分 溶接速度80cm/分 この溶接条件で得られた溶接金属の化学成分は第2表の
通りでシールドガス中の酸化性ガスが少ないので酸素量
が0.016(f)と低い。
The joint was fabricated by two-pass welding with a single electrode. The welding power source was the same as in Example 1, and the welding conditions for each pass were as follows. Welding wire Resolid wire diameter 3.2wm 1.6%
Mn-0.2%MO-0.1%Ti-0.008(Ff
) has an alloy component of B. Welding voltage: 32 Welding current: 850 A (current density: 105 A/MJ) Electrode protrusion length: 25 Trm Shielding gas: Oxygen 1% in Realgon Flow rate: Inside 50 L/min, outside 25 t/min Total 75 t/min Welding speed 80 cm/min Under these welding conditions The chemical composition of the obtained weld metal is as shown in Table 2, and since there is little oxidizing gas in the shielding gas, the oxygen content is as low as 0.016 (f).

Ar−20%CO2のシールドガスによる直流の大電流
MIG溶接やTiO2系溶融型フラツクスを使用したサ
ブマージアーク溶接の場合、類似した溶接条件のとき酸
素量は0.03(f)程度になる。また本実施例で−6
0℃での衝撃値は溶接金属が11.2kf−m1母材熱
影響部が10.6蛇−mで良好な靭性を有する。実施例
3 板厚257m<7>X65鋼を開先角度50を、ルート
フエース5wIn<7)X開先とし、2電極のタンデム
溶接により、裏表各1パスずつで溶接を行なつた。
In the case of DC high-current MIG welding using Ar-20% CO2 shielding gas or submerged arc welding using TiO2-based molten flux, the oxygen amount is approximately 0.03 (f) under similar welding conditions. In this example, -6
The impact value at 0°C is 11.2 kf-m for the weld metal and 10.6 kf-m for the base metal heat-affected zone, indicating good toughness. Example 3 A 257 m<7>X65 steel plate with a groove angle of 50 and a root face of 5wIn<7)X groove was welded by two-electrode tandem welding with one pass on each of the front and back surfaces.

溶接電流は先の実施例と同様なものであり、溶接条件は
下記の通りである。溶接ワイヤリソリツドワイヤ4.8
― 3.5%Ni−201:f)Mn−0.3%MOを合金
成分とするもの。
The welding current was the same as in the previous example, and the welding conditions were as follows. Welding wire Resolid wire 4.8
- 3.5%Ni-201:f) Mn-0.3%MO as an alloy component.

溶接電圧:先行32V,後行31V 溶接電流:先行1200A(電流密度66A/m小後行
1000A(電流密度55A/71J)電極突出し長さ
:先行,後行とも35ff1FF!電極間距離:50c
mシールドガスリアルゴン中炭酸ガス5% 流量:各トーチとも内側50t/分,外側25t/分,
合計75t/分溶接速度:1m/分 この溶接によつて得られた溶接金属の化学成分は第3表
の通りであつて、酸素量は0.012(f)と低い。
Welding voltage: Leading 32V, Trailing 31V Welding current: Leading 1200A (current density 66A/m Small trailing 1000A (current density 55A/71J) Electrode protrusion length: Both leading and trailing 35ff1FF! Distance between electrodes: 50c
5% carbon dioxide gas in shield gas Rialgon Flow rate: 50 t/min inside for each torch, 25 t/min outside,
Total 75 t/min Welding speed: 1 m/min The chemical composition of the weld metal obtained by this welding is as shown in Table 3, and the oxygen content is as low as 0.012 (f).

衝撃値も−60℃で溶接金属が8.5kg−M,母材熱
影響が12.3k1−mと優れている。以上述べたよう
に本発明の消耗電極式アーク溶接方法によれば高靭性を
要求される入熱量の制限のある材料の溶接に際して、従
来から一般に実施されて来たサブマージアーク溶接に比
して高能率に靭性の優れた継手が得られる。のみならず
、サブマージアーク溶接に代るものとして先に提案?れ
た大電流MIG溶接法の問題点である融合不良欠陥の発
生率が高いという欠点が全く無く、また溶接金属の低酸
素化により前記いずれの溶接法よりも高い溶接金属の靭
性が得られる。また本発明溶接法は前記大電流MIG溶
接法の問題点である磁気吹きの影響を受け易くまたこれ
がためタンデム溶接が困難であるという欠点も本質的に
有しないものであつて、工業的に適用が容易で優れてい
る。また、シールドガス中の酸化性ガス含有量が少なく
ても良好な溶接を行なえることは、成分の酸化が特に問
題となるステンレス鋼等の高合金鋼の溶接に於ても極め
て適している。また先行を本発明溶接法で行ない、後行
をサブマージアーク溶接法で行なうタンデム溶接法も先
行ビードのスラグ剥離の必要性がないため容易に行なう
ことができ、仕上げビードの表面が美麗になるという特
長を有する。
The impact value is also excellent, with a weld metal of 8.5 kg-M at -60°C and a base metal thermal effect of 12.3 k1-m. As described above, the consumable electrode arc welding method of the present invention has a higher welding rate than the conventional submerged arc welding method when welding materials that require high toughness and have a limited heat input. A joint with excellent efficiency and toughness can be obtained. Not only that, but also proposed as an alternative to submerged arc welding? This method does not have the disadvantage of a high incidence of poor fusion defects, which is a problem with the conventional high-current MIG welding method, and also provides a higher toughness of the weld metal than any of the above welding methods due to the low oxygen content of the weld metal. Furthermore, the welding method of the present invention does not essentially have the drawbacks of being easily affected by magnetic blowing, which is a problem with the high-current MIG welding method, and therefore making tandem welding difficult. is easy and excellent. Furthermore, the ability to perform good welding even with a small content of oxidizing gas in the shielding gas is extremely suitable for welding high alloy steels such as stainless steel, where oxidation of components is particularly problematic. In addition, the tandem welding method, in which the welding method of the present invention is used in advance and the submerged arc welding method is used in the subsequent welding process, can be easily performed because there is no need to remove slag from the leading bead, and the surface of the finished bead is said to be beautiful. It has characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は融合不良を示す溶接ビード断面図、第2図はシ
ールドガス中の炭酸ガス量(残部はアルゴン)と溶接金
属中の酸素含有量との関係を示す/グラフ、第3図は溶
接金属の衝撃値のシールドガス成分による相違をあられ
すグラフ、第4図は本発明の溶接方法に用いられる再点
弧手段の一例を示す図、第5図はこれの動作を説明する
図である。 1・・・ビード、2・・・融合不良欠陥、3・・・母材
、4・・・溶接、トーチ、5・・・電極ワイヤ、6−,
・・一次電源、7・・・溶接電源変圧器、8・・・パル
ス発生装置、9・・・変流器、10・・・抵抗器。
Figure 1 is a cross-sectional view of a weld bead showing poor fusion, Figure 2 is a graph showing the relationship between the amount of carbon dioxide in the shielding gas (the remainder is argon) and the oxygen content in the weld metal, and Figure 3 is a welding bead. A graph showing the difference in the impact value of metal depending on the shielding gas component, FIG. 4 is a diagram showing an example of the restriking means used in the welding method of the present invention, and FIG. 5 is a diagram explaining the operation of this. . DESCRIPTION OF SYMBOLS 1... Bead, 2... Poor fusion defect, 3... Base metal, 4... Welding, torch, 5... Electrode wire, 6-,
...Primary power source, 7... Welding power source transformer, 8... Pulse generator, 9... Current transformer, 10... Resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 直径dが3.2乃至6.4mmの実体ワイヤに対し
て電極突出し長さd×4乃至d×15mm且つ電流密度
40乃至150A/mm^2の範囲内で、再点弧手段を
備れた交流電源により溶接電流600乃至2000Aを
供給しつつ15%以下の炭酸ガス5%以下の酸素の少な
くとも一方を含有し、残部は不活性ガスからなるシール
ドガス中で溶接することを特徴とする鋼の消耗電極式ア
ーク溶接方法。
1. Equipped with restriking means within the range of electrode protrusion length d x 4 to d x 15 mm and current density 40 to 150 A/mm^2 for a solid wire with a diameter d of 3.2 to 6.4 mm. The steel is characterized in that it is welded in a shielding gas containing at least one of 15% or less carbon dioxide and 5% or less oxygen, the remainder being an inert gas while supplying a welding current of 600 to 2000A using an AC power supply. consumable electrode arc welding method.
JP3225879A 1979-03-22 1979-03-22 Consumable electrode arc welding method for steel Expired JPS597545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225879A JPS597545B2 (en) 1979-03-22 1979-03-22 Consumable electrode arc welding method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225879A JPS597545B2 (en) 1979-03-22 1979-03-22 Consumable electrode arc welding method for steel

Publications (2)

Publication Number Publication Date
JPS55126384A JPS55126384A (en) 1980-09-30
JPS597545B2 true JPS597545B2 (en) 1984-02-18

Family

ID=12353978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225879A Expired JPS597545B2 (en) 1979-03-22 1979-03-22 Consumable electrode arc welding method for steel

Country Status (1)

Country Link
JP (1) JPS597545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200092356A (en) 2018-03-27 2020-08-03 니혼라이프라인 가부시키가이샤 Ablation device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131080A (en) * 1980-03-19 1981-10-14 Mitsubishi Electric Corp Gas shielded arc welding method on consumable electrode system
US4463243A (en) * 1981-02-17 1984-07-31 T.I.M.E. Welding Gas Corporation Welding system
JPS57202981A (en) * 1981-06-05 1982-12-13 Nippon Steel Corp Highly tenacious ac mig welding method
JPS6487072A (en) * 1987-09-29 1989-03-31 Nippon Steel Corp Gas shielded ac twin arc welding method
CN102699487B (en) * 2012-05-24 2014-07-30 南京理工大学 Method for measuring current density distribution of electric arc
JP6025627B2 (en) * 2013-03-19 2016-11-16 株式会社神戸製鋼所 Tandem gas shielded arc welding method
CN103862141B (en) * 2014-03-11 2016-06-22 中国化学工程第六建设有限公司 A kind of chemical industry composite steel tube welding procedure
CN112719532A (en) * 2021-01-27 2021-04-30 中国水电四局(兰州)机械装备有限公司 Gas shielded welding method for magnetic high-strength alloy steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200092356A (en) 2018-03-27 2020-08-03 니혼라이프라인 가부시키가이샤 Ablation device

Also Published As

Publication number Publication date
JPS55126384A (en) 1980-09-30

Similar Documents

Publication Publication Date Title
Houldcroft Welding process technology
US2756311A (en) High-speed tandem arc working
JP5570473B2 (en) Two-electrode welding method
JP2006519103A (en) System for welding and method of use thereof
WO2012017913A1 (en) Complex weld method and welding torch for complex welds
JP6137053B2 (en) Narrow groove gas shielded arc welding method
GB2046158A (en) Welding thick steel pipe of large diameter
CN108453351B (en) Aluminum pipe welding method
AU2017362454B2 (en) Method of cleaning a workpiece after a thermal joining process with cathodic cleaning; cleaning device and processing gas
JPS597545B2 (en) Consumable electrode arc welding method for steel
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
US2475357A (en) Argon-gas-blanketed alternating electric current arc welding aluminum and the alloysthereof with a tungsten electrode and superimposed high-frequency high-voltage electric current
US3344256A (en) Method for producing arcs
KR101092774B1 (en) Manual gas tungsten Arc welding torch structure for narrow gap joint
Otani Titanium welding technology
US3242309A (en) High-speed multi-arc seam welding and apparatus
WO2017141760A1 (en) Multi-electrode submerged arc welding method
US6884963B1 (en) Apparatus and method for welding duplex stainless steel
US2906857A (en) Gas shielded arc cleaning
JP3948767B2 (en) High frequency AC TIG welding machine
JP3566863B2 (en) High-speed plasma welding pipe making method for small diameter steel pipes.
KR20010000805U (en) Contact tip structure for submerged arc welding by using multiple welding torches
JP2003170273A (en) Arc welding method using hollow electrode
JP7388969B2 (en) Tandem gas shielded arc welding method and welding equipment
JPS5937716B2 (en) Low gas shield door