JPS6398959A - Sealed alkaline manganese secondary battery - Google Patents

Sealed alkaline manganese secondary battery

Info

Publication number
JPS6398959A
JPS6398959A JP61245715A JP24571586A JPS6398959A JP S6398959 A JPS6398959 A JP S6398959A JP 61245715 A JP61245715 A JP 61245715A JP 24571586 A JP24571586 A JP 24571586A JP S6398959 A JPS6398959 A JP S6398959A
Authority
JP
Japan
Prior art keywords
battery
silver powder
manganese dioxide
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61245715A
Other languages
Japanese (ja)
Inventor
Kenji Fuji
藤 建治
Kazuhiro Imazawa
計博 今澤
Masatsugu Kondo
近藤 正嗣
Tadashi Sawai
忠 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61245715A priority Critical patent/JPS6398959A/en
Publication of JPS6398959A publication Critical patent/JPS6398959A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a sealed alkaline manganese dioxide secondary battery in which pressure resistant performance and discharge performance are excellent and cost is economical by adding a specific amount of flake silver powder to manganese dioxide which is positive active material. CONSTITUTION:5-15 Pts.wt. flake silver powder is added to 100 Pts.wt. manganese dioxide. By adding the spacified amount of flake silver powder to manganese dioxide which is main active material, excellent charging performance, especially pressure resistant performance of silver controls a battery system, and the voltage of a battery is rapidly increased to a level specified in a pressure resistant test, and charging current is quickly decreased. As a result, since gas evolution is retarded, a sealed manganese secondary battery having excellent pressure resistant performance can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉型アルカリマンガン二次電池の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in sealed alkaline manganese secondary batteries.

従来の技術 従来まで、この種の密閉型二次電池で充放電サイクル特
性の向上については数多くの提案があるが、定電圧で長
時間充電された場合の討圧特性向上については、負極活
物質である亜鉛(で、酸化亜鉛を加えるなどわずかの提
案しかなされていない。
Conventional technology Until now, there have been many proposals for improving the charge-discharge cycle characteristics of this type of sealed secondary battery, but the negative electrode active material However, only a few proposals have been made, such as adding zinc oxide.

発明が解決しようとする問題点 この種の二次電池は一般に耐圧試験中に、電解液の水分
解が生じ、正極より酸素ガスが、また負極より水素ガス
が発生する。そのため電池膨張が生じ、ひどい時には電
池の破裂を生じる。前述したように負極から発生する水
素ガスに対しては、負極に酸化亜鉛を混入させる等の方
法によりかなりの改良がなされてきたがそれでも不充分
である。
Problems to be Solved by the Invention In this type of secondary battery, water decomposition of the electrolyte generally occurs during a pressure test, and oxygen gas is generated from the positive electrode and hydrogen gas is generated from the negative electrode. This causes the battery to expand and, in severe cases, cause the battery to explode. As mentioned above, considerable improvements have been made to the hydrogen gas generated from the negative electrode by methods such as mixing zinc oxide into the negative electrode, but these are still insufficient.

正極から発生する酸素ガスによる電池膨張もあり、これ
に対しては、生活物質である二酸化マンガンに銀粉末を
添加する方法が検討されているが、耐圧特性、放電特性
を満足するには、酸化銀粉末を20重3%以上加える必
要がある。従って、高価格な銀粉末を多量に使用すると
いう問題点がある。
There is also battery expansion due to oxygen gas generated from the positive electrode, and a method of adding silver powder to manganese dioxide, a living material, is being considered, but in order to satisfy the pressure resistance and discharge characteristics, oxidation It is necessary to add at least 20 weight 3% of silver powder. Therefore, there is a problem in that a large amount of expensive silver powder is used.

本発明は、従来のガス発生による電池膨張、破裂という
問題の解決と、放電特性の向上を図ることにより、優れ
た密閉型アルカリマンガン二次電池を提供することを目
的とするものである。
The present invention aims to provide an excellent sealed alkaline manganese secondary battery by solving the conventional problems of battery expansion and rupture due to gas generation and improving discharge characteristics.

問題点を解決するための手段 この問題点を解決するため本発明は、正極活物質である
二酸化マンガン100重量部に対して、フレーク状の銀
粉末を5〜15重量部添加したものである。
Means for Solving the Problem In order to solve this problem, the present invention adds 5 to 15 parts by weight of flaky silver powder to 100 parts by weight of manganese dioxide, which is the positive electrode active material.

作  用 この範囲の量のフレーク状の銀粉末を主正極活物質であ
る二酸化マンガンに添加することにより、銀の浸れた充
電特性、中でも浸れた耐圧特性が電池系を支配し、耐圧
試験の電圧まで急激に電池電圧が上昇し、電池に流れる
充電電流が急激に減少する。従って従来のように正極が
二酸化マンガンのみで構成された電池のように耐圧テス
トの電圧まで電池電圧が徐々に上昇し、その耐圧電圧ま
で長時間かかって達し、その間に電池に電流が流れ続け
ることにより、結果としてガス発生が多くなるというこ
とがなくなり、耐圧特性の優れた密閉型アルカリマンガ
ン二次電池を得ることができる。
Effect By adding flaky silver powder in an amount in this range to manganese dioxide, which is the main positive electrode active material, the immersed charge characteristics of silver, especially the immersed voltage resistance characteristics, dominate the battery system, and the voltage in the voltage test The battery voltage rises rapidly until the battery reaches 100%, and the charging current flowing to the battery rapidly decreases. Therefore, as with conventional batteries in which the positive electrode is composed only of manganese dioxide, the battery voltage gradually rises to the withstand voltage test voltage, and it takes a long time to reach that withstand voltage, during which current continues to flow through the battery. As a result, gas generation does not increase, and a sealed alkaline manganese secondary battery with excellent pressure resistance characteristics can be obtained.

又、正極の電導助剤として、フレーク状の銀粉末を用い
ることにより、従来の球状銀粉末に比べて、少量で電池
特性として重要な電導性を満足できる。
Furthermore, by using flaky silver powder as a conductive additive for the positive electrode, it is possible to satisfy the electrical conductivity, which is important as a battery characteristic, with a smaller amount than conventional spherical silver powder.

これは、球状銀粉末に比べ、フレーク状銀粉末は、表面
積が大きく顆粒状酸化銀粉末間に薄くはいり込んだ状態
で電導性を保たせることができるからである。
This is because, compared to spherical silver powder, flaky silver powder has a larger surface area and can maintain electrical conductivity even when thinly inserted between granular silver oxide powders.

実施例 以下第1図を用いて、本発明の一実施例を説明する。第
1図は本発明のボタン型アルカリマンガン二次電池の断
面図である。本実施例ではサイズとして直径11.6m
m、高さ3,0聰の電池を用いた。
EXAMPLE An example of the present invention will be described below with reference to FIG. FIG. 1 is a sectional view of a button-type alkaline manganese secondary battery of the present invention. In this example, the size is 11.6 m in diameter.
A battery with a height of 3.0 m and a height of 3.0 m was used.

第1図において、1は鉄にニッケルメッキした正極ケー
ス、2は本発明による正極、3は鉄にニッケルメッキし
た正極リング、4はポリエチレンのグラフト重合膜から
なるセパレータ、6はセルロースからなる含浸材、6は
ナイロンよりなる封口リング、7は亜鉛を主体とし添加
物として酸化亜鉛を含んだ負極活物質、8はニッケルー
ステンレス鋼−鋼の三層クラツド材よりなる負極端子を
兼ねた封口板である。
In FIG. 1, 1 is a positive electrode case made of nickel-plated iron, 2 is a positive electrode according to the present invention, 3 is a positive electrode ring made of nickel-plated iron, 4 is a separator made of a polyethylene graft polymer film, and 6 is an impregnated material made of cellulose. , 6 is a sealing ring made of nylon, 7 is a negative electrode active material mainly composed of zinc and containing zinc oxide as an additive, and 8 is a sealing plate which also serves as a negative electrode terminal and is made of a three-layer cladding material of nickel-stainless steel-steel. be.

本発明の実施例の電池と、従来の電池の比較を以下に示
す。第1表に示す銀量を添加した正極を用いた電池を用
いて試験を行った。
A comparison between a battery according to an embodiment of the present invention and a conventional battery is shown below. A test was conducted using a battery using a positive electrode to which the amount of silver shown in Table 1 was added.

第1表 ここで電池Aは従来の銀を含まない電池である。Table 1 Here, battery A is a conventional silver-free battery.

これらの電池を用いて耐圧テストを行った。第2表はそ
の結果であり、電池の膨張量を調単位で表わしたもので
ある。
A pressure test was conducted using these batteries. Table 2 shows the results, and shows the expansion amount of the battery in units of tonality.

第2表より明らかなように電池の膨張は耐圧テストの電
圧に依存するが、一般にこの種の二次電池で必要とされ
ている耐圧テス)1.75V〜1.90■で200o時
間の基準で判断する時、電池AおよびDでは200o時
間以内で電池の膨張が認められる。−刃鋼の添加量が5
重量部以上である電池B、C,E、F、G、Hでは膨張
は認められなかった。この原因について解析してみると
、第2図に示すように耐圧テスト中の電圧と電流の変化
が従来の電池Aと本発明の電池Eとで明らかな差が認め
られた。すなわち、従来の電池Aでは耐圧テスト電圧に
電池電圧が達するのに長い時間が必要であり、電池に流
れる電流値も高くこの間にガス発生が認められた。−力
木発明の実施例の電池Eではある一定時間後急激に電池
電圧が上昇して耐圧テスト電圧に達し、電流値も急激に
減少する。
As is clear from Table 2, the expansion of the battery depends on the voltage of the withstand voltage test, but the standard for the withstand voltage test (200o hours at 1.75 V to 1.90 ■) is generally required for this type of secondary battery. When judged by , battery expansion was observed within 200 o hours for batteries A and D. -Additional amount of blade steel is 5
No expansion was observed in batteries B, C, E, F, G, and H, which contained parts by weight or more. When the cause of this was analyzed, as shown in FIG. 2, there was a clear difference in the changes in voltage and current during the withstand voltage test between the conventional battery A and the battery E of the present invention. That is, in the conventional battery A, it took a long time for the battery voltage to reach the withstand voltage test voltage, and the current value flowing through the battery was also high, and gas generation was observed during this time. - In the battery E according to the embodiment of Rikiki's invention, the battery voltage increases rapidly after a certain period of time and reaches the withstand voltage test voltage, and the current value also decreases rapidly.

この電池では電圧の急上昇まではガス発生は認められず
、正極ではAq −A(J 20− AcrOナル反応
7>:、負極ではZn0−Znになる反応に使われてい
るものと思われる。また電圧上昇後は電流が極めて小さ
いため、耐圧テストの所定期間2000時間内ではガス
発生は極めて小さく電池膨張に至らないことがわかった
In this battery, no gas generation was observed until the voltage suddenly increased, and it is thought that the reaction to form Aq-A (J 20-AcrOnal reaction 7:) at the positive electrode and Zn0-Zn at the negative electrode. Since the current is extremely small after the voltage rises, it was found that within the predetermined period of 2000 hours of the withstand voltage test, gas generation was extremely small and the battery did not expand.

又A−Hの電池の製造後の電圧、内部抵抗の値と、定抵
抗16KQで連続放電した際の1.30V力ツト時の放
電時間を第3表に示す。
Further, Table 3 shows the voltages and internal resistance values of the batteries A-H after manufacture, and the discharge time at 1.30V when continuously discharging at a constant resistance of 16KQ.

第3表より明らかなように、電池の1.3■力ツト時で
の放電特性は、二酸化マンガンの充填量と電池の内部抵
抗に依存するが、二酸化マンガンでのみ構成された電池
A、フレーク状銀粉末と同一添加量の電池Bでは、内部
抵抗が高く、放電時間が短い。
As is clear from Table 3, the discharge characteristics of a battery at a power of 1.3 cm depend on the amount of manganese dioxide filled and the internal resistance of the battery. Battery B containing the same amount of silver powder had a high internal resistance and a short discharge time.

従って球状銀粉末で、フレーク状銀粉末と同等の内部抵
抗値をだすには、添加量が20重量係以上必要であるが
、銀粉末の添加量が多い分、正極活物質の二酸化マンガ
ンが充填できず、電池Cは放電時間が短くなる。
Therefore, in order to produce an internal resistance value equivalent to that of flaky silver powder with spherical silver powder, the amount added must be 20% by weight or more, but the greater the amount of silver powder added, the more manganese dioxide, the positive electrode active material, is filled. However, battery C has a shorter discharge time.

フレーク状銀粉末を用いた電池D−Hでは、添加量が5
〜15重量部の範囲内で、内部抵抗値も低く、放電特性
においても優れた電池が得られた。
In the battery D-H using flaky silver powder, the amount added was 5
Within the range of ~15 parts by weight, batteries with low internal resistance and excellent discharge characteristics were obtained.

又、上記実験では、厚み0.11tm 、粒子径5μm
のフレーク状銀粉末を用いたが、0.05μm以下の厚
みでは粒子が壊れ易く製造が難しい。逆に0.6μm以
上であれば1Q重量部添加時に電池の内部抵抗が25Ω
以上となり、放電特性が悪くなる。
In addition, in the above experiment, the thickness was 0.11 tm and the particle diameter was 5 μm.
flaky silver powder was used, but if the thickness is less than 0.05 μm, the particles are easily broken and manufacturing is difficult. Conversely, if it is 0.6μm or more, the internal resistance of the battery will be 25Ω when 1Q part by weight is added.
As a result, the discharge characteristics deteriorate.

又、粒子径が1μm以下、301rm以上の場合でも、
添加量15重u%以下では、内部抵抗値が高く、満足で
きる放電特性は得られなかった。
In addition, even if the particle size is 1 μm or less and 301 rm or more,
When the addition amount was 15% by weight or less, the internal resistance value was high and satisfactory discharge characteristics could not be obtained.

これは、二酸化マンガンにフレーク状銀粉末を混合した
場合、粒子径が30μm以上のフレーク状銀粉末では不
均一な混合状態になるからである。
This is because when flaky silver powder is mixed with manganese dioxide, flaky silver powder with a particle size of 30 μm or more will result in an uneven mixed state.

また、粒子径が1μm以下の微粒の場合は、二次粒子を
作り易く、均一混合ができないからである。
Further, in the case of fine particles having a particle size of 1 μm or less, secondary particles are easily formed and uniform mixing cannot be achieved.

以上のように、フレーク状の銀粉末の添加量を5〜15
重量部とすることで、耐圧特性、放電特性に浸れた電池
が得られた。
As mentioned above, the amount of flaky silver powder added is 5 to 15%.
By using parts by weight, a battery with excellent pressure resistance and discharge characteristics was obtained.

発明の効果 以上の説明から明らかなように、生活物質である二酸化
マンガン100重量部に対して、フレーク状の銀粉末を
5〜15重量部を添加することにより耐圧特性、放電特
性に優れ、かつ経済的な密閉型アルカリマンガン二次電
池を得ることができる。
Effects of the Invention As is clear from the above explanation, by adding 5 to 15 parts by weight of flaky silver powder to 100 parts by weight of manganese dioxide, which is a living substance, excellent pressure resistance characteristics and discharge characteristics can be obtained. An economical sealed alkaline manganese secondary battery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における密閉型アルカリマンガ
ン二次電池の縦断面図、第2図は25℃1.90V耐圧
テストにおける電圧電流曲、線である。 1・・・・・・正極ケース、2・・・・・正極、3・・
・・・・正極リング、4・・・・・・セパレータ、5・
・・・・・含浸材、6・・・・・・封口リング、7・・
・・・・負極、8・・・・・・封口板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1泡沫 
            塚 新痔Uミ   m+l:II
FIG. 1 is a longitudinal cross-sectional view of a sealed alkaline manganese secondary battery in an example of the present invention, and FIG. 2 is a voltage-current curve and line in a 1.90V withstand voltage test at 25°C. 1...Positive electrode case, 2...Positive electrode, 3...
... Positive electrode ring, 4... Separator, 5.
...Impregnating material, 6...Sealing ring, 7...
...Negative electrode, 8... Sealing plate. Name of agent: Patent attorney Toshio Nakao and 1 other person
Tsuka new hemorrhoid Umi m+l:II

Claims (2)

【特許請求の範囲】[Claims] (1)二酸化マンガンを主正極活物質、亜鉛を主負極活
物質、アルカリ水溶液を電解液とした密閉型電池であっ
て、正極活物質は二酸化マンガン100重量部に対して
、フレーク状の銀粉末を5〜15重量部添加したことを
特徴とする密閉型アルカリマンガン二次電池。
(1) A sealed battery with manganese dioxide as the main positive electrode active material, zinc as the main negative electrode active material, and an alkaline aqueous solution as the electrolyte, in which the positive electrode active material is flaky silver powder based on 100 parts by weight of manganese dioxide. A sealed alkaline manganese secondary battery, characterized in that 5 to 15 parts by weight of is added.
(2)フレーク状銀粉末は、その厚みが0.05〜0.
5μm、粒子径が1〜30μmである特許請求の範囲第
1項記載の密閉型アルカリマンガン二次電池。
(2) The flaky silver powder has a thickness of 0.05-0.
The sealed alkaline manganese secondary battery according to claim 1, which has a particle size of 5 μm and a particle size of 1 to 30 μm.
JP61245715A 1986-10-16 1986-10-16 Sealed alkaline manganese secondary battery Pending JPS6398959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61245715A JPS6398959A (en) 1986-10-16 1986-10-16 Sealed alkaline manganese secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61245715A JPS6398959A (en) 1986-10-16 1986-10-16 Sealed alkaline manganese secondary battery

Publications (1)

Publication Number Publication Date
JPS6398959A true JPS6398959A (en) 1988-04-30

Family

ID=17137722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61245715A Pending JPS6398959A (en) 1986-10-16 1986-10-16 Sealed alkaline manganese secondary battery

Country Status (1)

Country Link
JP (1) JPS6398959A (en)

Similar Documents

Publication Publication Date Title
EP0477461B1 (en) Nickel/hydrogen storage battery and method of manufacturing the same
JP3215448B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPS6398959A (en) Sealed alkaline manganese secondary battery
JPH0357577B2 (en)
JPH01128367A (en) Sealed type lead storage battery
JPH05159798A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JPH0212762A (en) Silver oxide battery
US3600226A (en) Method for making cadmium electrodes for nickel-cadmium cells
JPH028419B2 (en)
JPS5832362A (en) Alkaline zinc secondary battery
JPH04162353A (en) Seal alkaline secondary battery
JPS58201271A (en) Sealed type alkaline storage battery
JPH0888003A (en) Manufacture of hydrogen storage alloy electrode
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPH06243850A (en) Retainer type sealed lead-acid battery
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JPH03272563A (en) Alkali zinc storage battery
JPS617566A (en) Manufacture of paste type cadmium negative electrode
JPH11176467A (en) Sealed alkaline zinc storage battery
JPS5832359A (en) Alkaline zinc secondary battery
JPS60258855A (en) Method of manufacturing paste type cadmium negative pole
JPH0652857A (en) Activating method of alkaline storage battery