JPS6398827A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPS6398827A
JPS6398827A JP24492786A JP24492786A JPS6398827A JP S6398827 A JPS6398827 A JP S6398827A JP 24492786 A JP24492786 A JP 24492786A JP 24492786 A JP24492786 A JP 24492786A JP S6398827 A JPS6398827 A JP S6398827A
Authority
JP
Japan
Prior art keywords
layer
oxide layer
recording medium
magnetic
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24492786A
Other languages
Japanese (ja)
Other versions
JPH0823929B2 (en
Inventor
Hiroshi Uchiyama
浩 内山
Naoki Honda
直樹 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61244927A priority Critical patent/JPH0823929B2/en
Publication of JPS6398827A publication Critical patent/JPS6398827A/en
Publication of JPH0823929B2 publication Critical patent/JPH0823929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prevent an increase in the coercive force of a high permeability magnetic layer and to increase the reproduction output of a recording medium by providing a nonmagnetic Co-Cr oxide layer between the high permeability magnetic layer and perpendicularly magnetized Co-Cr layer. CONSTITUTION:The high permeability magnetic layer (e.g.: 'Permalloy(R)' layer), the nonmagnetic Co-Cr oxide layer and the perpendicularly magnetized Co-Cr layer are successively laminated on a nonmagnetic base. The nonmagnetic oxide layer can be formed by using the same material as the material of a target used for preparing the perpendicularly magnetized layer and incorporating oxygen during sputtering. The coercive force of the high permeability magnetic layer can be decreased without increasing a spacing loss if the above-mentioned oxide layer is provided as an intermediate film. The recording medium having the high reproduction output is eventually obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、記録媒体磁性面に対して垂直方向の残留磁化
を用いて信号の記録を行う、いわゆる垂直磁化記録方式
において使用される垂直磁気記録媒体に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to perpendicular magnetism used in the so-called perpendicular magnetization recording method, in which signals are recorded using residual magnetization perpendicular to the magnetic surface of a recording medium. It is related to recording media.

(発明の概要) 本発明は、二層構造垂直磁気記録媒体において、高i!
iTi $磁性層とCo−Cr系垂直磁化層の間に中間
膜としてCo −(:r系非磁性酸化物層を設けること
により、 高透磁率磁性層の抗磁力の増加を防ぎ、再生出力の高い
垂直磁気記録媒体を実現しようとするものである。
(Summary of the Invention) The present invention provides a two-layer perpendicular magnetic recording medium with high i!
By providing a Co-(:r-based non-magnetic oxide layer as an intermediate film between the iTi $ magnetic layer and the Co-Cr-based perpendicular magnetic layer), the coercive force of the high permeability magnetic layer is prevented from increasing, and the reproduction output is improved. This is an attempt to realize a highly perpendicular magnetic recording medium.

〔従来の技術〕[Conventional technology]

磁気記録媒体の記録層の厚さ方向の磁化により記録再生
を行う垂直磁化記録方式では、記録密度が高くなるにし
たがい減磁界が小さくなり、したがって特に短波長記録
、高密度記録において面内方向磁化による記録よりも有
利であることから、実用化に向けて開発が進められてい
る。
In the perpendicular magnetization recording method, which performs recording and reproduction by magnetizing the recording layer in the thickness direction of a magnetic recording medium, as the recording density increases, the demagnetizing field becomes smaller. Since this method is more advantageous than the recording method, development is progressing toward practical application.

特に、Fe−Ni系合金よりなる高透磁率磁性層−にに
Co −Cr系合金よりなる垂直磁化層を重ねた。いわ
ゆる二層構造の垂直磁化記録方式は、記録効率や再生効
率等に優れ、垂直磁気記録に最適のものと考えられてい
る。
In particular, a perpendicular magnetization layer made of a Co-Cr alloy was superimposed on a high permeability magnetic layer made of a Fe-Ni alloy. The so-called two-layer structure perpendicular magnetization recording system has excellent recording efficiency, reproduction efficiency, etc., and is considered to be optimal for perpendicular magnetic recording.

ところで、この二層構造の垂直磁気記録媒体においては
、面内磁化層である高透磁率磁性層のGi’x気特性が
重要で、特にその抗ぢ5力が大きいと蜆気+1(抗が増
し7て記録効率や再生効率の低下を招来する。
By the way, in this two-layer perpendicular magnetic recording medium, the Gi'x characteristic of the high permeability magnetic layer, which is the in-plane magnetization layer, is important. In addition, this results in a decrease in recording efficiency and reproduction efficiency.

しかしながら、かかる二層構造の媒体では、その二層(
14造化故にpq  Ni系合金よりなる高透磁率磁性
層の抗磁力の増加が起こることがわかってぎた。
However, in such a two-layered medium, the two layers (
It has been found that the coercive force of a high permeability magnetic layer made of a pq Ni-based alloy increases due to the 14-layer structure.

このため、この抗磁力の増加を抑えるために、Co−C
r系垂直磁化層の飽和磁化を小さくすることが提案され
ている。ところが、(:o−Cr系垂直磁化層の飽和磁
化をあまり小さくすると、やはり再生出力が低下する。
Therefore, in order to suppress the increase in coercive force, Co-C
It has been proposed to reduce the saturation magnetization of the r-based perpendicular magnetization layer. However, if the saturation magnetization of the (:o-Cr-based perpendicular magnetic layer) is made too small, the reproduction output will still decrease.

一方、生産性の点から二層構造の垂直磁気記録媒体の連
続作製を効率良く行うためには、高透磁率磁性層を被着
するための真空状態を解除しないで続けてCo−Cr系
垂直磁化層を被着形成することが好ましい。
On the other hand, in order to efficiently continuously fabricate two-layer perpendicular magnetic recording media from the viewpoint of productivity, it is necessary to continuously manufacture vertical Co-Cr-based magnetic recording media without releasing the vacuum state for depositing the high permeability magnetic layer. Preferably, the magnetization layer is deposited.

しかしながら、高透磁率磁性層を被着した後、真空状L
Qを破らずにCo −Cr系垂直磁化層を形成した場合
には、高透磁率磁性層作製後一時真空状態を破ってCo
 −Cr系垂直磁化層を形成した場合に比べて、二層構
造化による高透磁率磁性層の抗磁力の増加が大きいこと
が明らかになった。
However, after depositing the high permeability magnetic layer, the vacuum L
When a Co-Cr perpendicular magnetic layer is formed without breaking the Q, the vacuum state is temporarily broken after forming the high permeability magnetic layer and the Co
It has been revealed that the coercive force of the high permeability magnetic layer increases significantly due to the two-layer structure compared to the case where a -Cr-based perpendicular magnetic layer is formed.

そこで、この対策として高透磁率磁性層とCo −Cr
系垂直磁化層の間に中間層を設けることが考えられる。
Therefore, as a countermeasure to this problem, a high permeability magnetic layer and a Co-Cr
It is conceivable to provide an intermediate layer between the perpendicular magnetization layers.

従来、高透磁率磁性層とCo −Cr系垂直磁化層の間
に中間層を設けた例は、例えば特開昭58−16933
4号公報、特開昭61−110329号公報等に記載さ
れるように数多く存在するが、これらはその目的の違い
から次のような欠点を有している。
Conventionally, an example in which an intermediate layer is provided between a high permeability magnetic layer and a Co--Cr perpendicular magnetic layer is disclosed in, for example, JP-A-58-16933.
Although there are many such methods as described in Japanese Patent Application Laid-open No. 4 and Japanese Patent Application Laid-open No. 110329/1989, they have the following drawbacks due to their different purposes.

すなわち、従来の目的のほとんどが高透磁率磁性層の抗
磁力の増加を防ぐことよりも、Co −Cr系垂直磁化
層に対する高13(i率磁性層の結晶配向の影響を無く
し、Co −Cr系垂直磁化層の結晶配向を良くするこ
とにある。このため、比較的膜厚の大きな中間層が用い
られているが、中間層がスペーシングロスの原因となる
ため、却って再生出力が低下するという現象が見られる
。また、中間層を設けるためには、蒸発tA(ターゲッ
ト)あるいは装置の新設を必要とし、設備投資や生産性
等の点で不利である。
In other words, most conventional objectives have been to eliminate the influence of the crystal orientation of the high 13 (i-index magnetic layer) on the Co-Cr perpendicular magnetic layer, rather than to prevent the coercive force of the high-permeability magnetic layer from increasing. The objective is to improve the crystal orientation of the perpendicular magnetic layer.For this reason, a relatively thick intermediate layer is used, but since the intermediate layer causes spacing loss, the reproduction output actually decreases. Furthermore, in order to provide an intermediate layer, it is necessary to install a new evaporation tA (target) or equipment, which is disadvantageous in terms of equipment investment and productivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、高透磁率磁性層の抗磁力の増加による再
生出力の低下に対しての検討は未だ不十分で、その解消
が課題となっている。
As mentioned above, studies on the reduction in reproduction output due to an increase in the coercive force of the high permeability magnetic layer have not yet been sufficiently investigated, and resolving this issue is an issue.

そこで本発明は、かかる実情に鑑みて提案されたもので
あって、二層構造の垂直磁気記録媒体におけるスペーシ
ングロスを増加させず高透磁率磁性層の抗磁力が二層膜
化によって増加するのを防止することを目的とし、これ
により再生出力の筋い垂直磁気記録媒体を提供すること
を目的とする。
The present invention has been proposed in view of the above circumstances, and is intended to increase the coercive force of a high permeability magnetic layer by forming a double layer without increasing the spacing loss in a double-layered perpendicular magnetic recording medium. The purpose of this invention is to provide a perpendicular magnetic recording medium with a high reproduction output.

また本発明は、生産性や設備投資等の点からも好適な垂
直磁気記録媒体を提供することを目的とする。
Another object of the present invention is to provide a perpendicular magnetic recording medium that is suitable from the viewpoint of productivity, equipment investment, etc.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、再生出力の高い垂直磁気記録媒体を開発
せんものと長期に亘り鋭意研究を重ねた結果、Co −
Cr系非磁性酸化物層を中間層として設けることにより
スペーシングロスをあまり増加させることなく高i!+
H率磁性層の抗磁力を小さくできること、またこのCo
 −Cr系非磁性酸化物層はC。
The present inventors have conducted intensive research over a long period of time to develop a perpendicular magnetic recording medium with high reproduction output, and as a result, the Co-
By providing a Cr-based nonmagnetic oxide layer as an intermediate layer, high i! without significantly increasing spacing loss! +
The coercive force of the H-rate magnetic layer can be reduced, and this Co
-The Cr-based nonmagnetic oxide layer is made of C.

−Cr系垂直磁化層の結晶配向度や磁気特性にほとんど
影響を与えないこと、等の知見を得るに至った。
It has been found that this method has almost no effect on the degree of crystal orientation or magnetic properties of the -Cr-based perpendicular magnetic layer.

本発明は、これらの知見に基づいて完成されたものであ
って、非磁性支持体上に高透磁率磁性層、Co −Cr
系非磁性酸化物層、Co −Cr系垂直磁化層が順次積
層形成されていることを特徴とするものである。
The present invention was completed based on these findings, and consists of a high permeability magnetic layer, Co-Cr, on a non-magnetic support.
It is characterized in that a non-magnetic oxide layer and a Co--Cr perpendicular magnetization layer are sequentially laminated.

Co−Cr系非磁性酸化物層は、Co−Cr系垂直磁化
層を作製する時と同じターゲットを用い、スパッタ中に
酸素を導入するだけで簡単に作成することが可能である
The Co--Cr based non-magnetic oxide layer can be easily created by simply introducing oxygen during sputtering using the same target used to create the Co--Cr perpendicular magnetic layer.

上記Co −Cr系非磁性酸化物層の膜厚としては、1
0〜400人の範囲内であることが好ましく、上記膜厚
が400人を越えるとスペーシングロスの増加による再
生出力の低下が抗磁力の低下による再生出力の増加を上
回り、却って再生出力が低下する。
The thickness of the Co-Cr-based nonmagnetic oxide layer is 1
It is preferably within the range of 0 to 400. If the film thickness exceeds 400, the decrease in reproduction output due to increased spacing loss will exceed the increase in reproduction output due to decrease in coercive force, and the reproduction output will actually decrease. do.

また、Co−Cr系非(ff性酸化物層の膜IIの制御
は、パノ千弐の作成方法では膜堆積速度と堆積時間によ
り、また連続式の作成方法では膜堆積速度と非磁性支持
体の送り速度により行うが、信頼できる膜厚制御が可能
な膜厚下限は10人である。
In addition, control of Co-Cr-based non-(ff-type oxide layer II) is controlled by the film deposition rate and deposition time in the Pano Senji production method, and by the film deposition rate and nonmagnetic support in the continuous production method. However, the lower limit of film thickness that allows reliable film thickness control is 10 people.

〔作用〕[Effect]

高透(イ1率磁性層とCo −Cr系垂直磁化層の間に
中間膜として設けられるCo −Cr系非磁性酸化物層
は、スペーシングロスをあまり増加させず高透磁率ル5
j性層の抗(ff力が二層化によって増加するのを防き
゛、再イ1出力向上に貢献する。
The Co--Cr based non-magnetic oxide layer provided as an intermediate film between the high-permeability magnetic layer and the Co-Cr-based perpendicular magnetic layer does not significantly increase spacing loss and has high magnetic permeability.
This prevents the resistance (ff force) of the magnetic layer from increasing due to double layering, and contributes to improving the power output.

また、このCo −Cr系非磁性酸化物層は、Co −
Cr系垂直磁化層を作製するためのターゲットをそのま
ま用いて形成される。
Moreover, this Co-Cr-based nonmagnetic oxide layer is made of Co-Cr-based nonmagnetic oxide layer.
It is formed using the target for producing the Cr-based perpendicular magnetic layer as it is.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に従って説明する。 Hereinafter, the present invention will be explained according to specific experimental results.

先ず、バッチ式RFスパッタリング装置を用い、高透磁
率磁性層(パーマロイ層、■り厚0.51Jm)及びC
o −Cr系垂直磁化層(Co −Cr層、膜to、2
μm)からなる二層構造垂直磁気記録媒体を作製し、C
o −Cr層の飽和磁化に対するパーマロイ層の抗6荘
力の変化について調べた。なお、各層のスパッタリング
条件は下記の通りである。
First, a high permeability magnetic layer (permalloy layer, thickness 0.51 Jm) and C
o -Cr-based perpendicular magnetization layer (Co -Cr layer, film to, 2
A two-layer perpendicular magnetic recording medium consisting of C
The change in the anti-hexamagnetic force of the permalloy layer with respect to the saturation magnetization of the o-Cr layer was investigated. Note that the sputtering conditions for each layer are as follows.

パーマロイ層 ターゲ7 )  N1tsFe+7.5M0n、s (
数値は原子%〉直径310璽寵 アルゴン圧       2 X 10”’Torr投
入パワー         3(10W基板ホルダ  
        水冷 基板        ポリアミドフィルムGo −Cr
胚 ターゲット  コバルト板(直径310 am )上に
Crペレットを必要量配置 アルゴン圧       3 X 10−3Torr投
入パワー         300W基板ホルダ   
       水冷 結果を第1表ならびに第1図に示す。なお、この場合、
パーマロイ間作製後真空状態を一時解除してCo −C
r層を作製した。また、試料5はパーマロイ層の単層膜
である。
Permalloy layer target 7) N1tsFe+7.5M0n,s (
Values are atomic %〉Diameter 310㎽ Argon pressure 2 x 10'''Torr Input power 3 (10W substrate holder
Water-cooled substrate Polyamide film Go-Cr
Embryo target Place the required amount of Cr pellets on a cobalt plate (diameter 310 am) Argon pressure 3 X 10-3 Torr Input power 300 W Substrate holder
The water cooling results are shown in Table 1 and Figure 1. In this case,
After creating the permalloy, the vacuum state is temporarily released and the Co-C
An r layer was prepared. Moreover, Sample 5 is a single-layer film of a permalloy layer.

第1表 この第1表及び第1図より、Co−CrNの飽和磁化の
増加に伴って、パーマロイ層の抗磁力が急激に増加する
ことがわかった。
Table 1 From Table 1 and FIG. 1, it was found that the coercive force of the permalloy layer increases rapidly as the saturation magnetization of Co--CrN increases.

また、真空状態を解除せず、連続DCマグネトロンスパ
ッタリング装置を用いて二層構造垂直磁気記録媒体を作
製した場合、パーマロイ単層膜の抗磁力が0.6 (O
s)であったのに対して、二層膜(Co −Cr層の飽
和磁化は320emu/cc )の抗磁力は2、1 (
Oe)とおよそ3.5倍にも増え、真空状態を解除した
ときよりも抗磁力の増加が顕著であることがわかった。
Furthermore, when a two-layer perpendicular magnetic recording medium is fabricated using a continuous DC magnetron sputtering device without releasing the vacuum state, the coercive force of the permalloy single-layer film is 0.6 (O
s), whereas the coercive force of the two-layer film (saturation magnetization of the Co-Cr layer is 320 emu/cc) is 2.1 (
It was found that the increase in coercive force was approximately 3.5 times greater than when the vacuum state was released.

次に、連1blDcマグネトロンスパッタリング装置を
用い、Co −Cr系非磁性酸化物層の作製を行った。
Next, a Co--Cr based nonmagnetic oxide layer was formed using a 1blDc magnetron sputtering apparatus.

条件は下記の通りである。The conditions are as follows.

スパッタ条件 ターゲット  Co−Cr(150mmX  250m
mX15mm)Crの割合 22面積% アルゴン圧       I X 1O−3Torr投
入パワー         1  kWキャンロール温
度      130℃基板     ポリエチレンテ
レフタレート(厚さ50μm、 5インチ幅) 以上の条件に従い、スパッタ中の酸素圧力を変化させた
ときのスパッタ膜のlI2ff及び飽和磁化の変化を第
2図に示す。なお、膜厚は触針式膜厚計を用いて測定し
、飽和磁化は振動試料型磁力計(VSM)を用いて測定
した。
Sputtering conditions target Co-Cr (150mm x 250m
m x 15 mm) Cr ratio 22 area % Argon pressure I FIG. 2 shows changes in lI2ff and saturation magnetization of the sputtered film. The film thickness was measured using a stylus-type film thickness meter, and the saturation magnetization was measured using a vibrating sample magnetometer (VSM).

その結果、酸素圧力を2 X 10− ’Torr以上
とすることに1リスバツク膜が非(n性となることがわ
かった。
As a result, it was found that the 1-resback film became non-(n) when the oxygen pressure was increased to 2 x 10-'Torr or more.

第2表に、酸素圧力をl Xl0−’Torr、  2
 Xl0−’丁orr、  4 X 10”’Torr
と変えたときの、スパッタ膜の組成の変化を示す。
Table 2 shows the oxygen pressure as l Xl0-'Torr, 2
Xl0-'Torr, 4 X 10"'Torr
This shows the change in the composition of the sputtered film when changing.

第2表 なお、酸素圧力2 X 10−’Torrの場合、深さ
方向に組成分布が見られた。
In Table 2, when the oxygen pressure was 2 x 10-'Torr, a composition distribution was observed in the depth direction.

このように、非磁性のCo −Cr系非磁性酸化物層は
、Co −Cr層を作製する時と同じターゲットを用い
てスパッタ中に酸素を導入するだけで簡単に作製するこ
とが可能であることがわかる。
In this way, a nonmagnetic Co-Cr-based nonmagnetic oxide layer can be easily fabricated by simply introducing oxygen during sputtering using the same target used to fabricate the Co-Cr layer. I understand that.

そこで次に、i!!続DCマグネトロンスパ、タリング
装置を用い、50μm厚のポリエチレンテレフタレート
基板上に、パーマロイ層、Co −Cr系非磁性酸化物
層、Co−Cr層を真空状態を破らずにこの+lliに
被着し、垂直磁気記録媒体を作製した。なお、パーマロ
イ層の膜厚は0.5μm、ターゲット組成はNi++o
、sFe+5M0a、s  (数値は原子%)とした。
So next, i! ! A permalloy layer, a Co-Cr based non-magnetic oxide layer, and a Co-Cr layer were deposited on this +lli without breaking the vacuum state on a 50 μm thick polyethylene terephthalate substrate using a continuous DC magnetron spacing and taring device, A perpendicular magnetic recording medium was fabricated. The thickness of the permalloy layer is 0.5 μm, and the target composition is Ni++o.
, sFe+5M0a,s (values are atomic %).

またCo −Cr層の膜厚は0.15μmとし、ターゲ
ットのCrの割合は22而積%とした。これらのスパッ
タ条件は先に示した通りである。Co−Cr系非磁性酸
化物層のスパッタ条件は試料8と同様である。
The thickness of the Co--Cr layer was 0.15 μm, and the Cr content of the target was 22% by volume. These sputtering conditions are as shown above. The sputtering conditions for the Co--Cr based nonmagnetic oxide layer are the same as those for Sample 8.

かかる方法に従い、Co−Cr系非磁性酸化物層の膜厚
を変えて試料(実施例1〜実施例5)を作製し、さらに
比較例としてCo−Cr系非磁性酸化物層を被着形成し
ないものも同時に作製し、これら試料よりパーマロイ膜
の抗磁力に対するCo−C「系非磁性酸化物層の膜厚依
存性を調べた。結果を第3図に示す。
According to this method, samples (Examples 1 to 5) were prepared by changing the thickness of the Co-Cr-based non-magnetic oxide layer, and a Co--Cr-based non-magnetic oxide layer was also deposited as a comparative example. Using these samples, the dependence of the coercive force of the permalloy film on the thickness of the Co--C nonmagnetic oxide layer was investigated. The results are shown in FIG.

この第3図より、co−Cr系非磁性酸化物層の膜厚が
13人でもパーマロイ層の抗磁力を小さくする効果があ
り、co−Cr系非磁性酸化物層の膜厚が大きくなるに
従ってパーマロイ層の抗磁力が小さくなることがわかっ
た。
From this Figure 3, it can be seen that even if the thickness of the co-Cr based non-magnetic oxide layer is 13, it has the effect of reducing the coercive force of the permalloy layer, and as the film thickness of the co-Cr based non-magnetic oxide layer increases, It was found that the coercive force of the permalloy layer became smaller.

さらに、上記方法により作製した垂直磁気記録媒体のう
ち、Co −Cr系非磁性酸化物層の膜厚が0人のもの
(比較例)、13人のもの(実施例1)。
Furthermore, among the perpendicular magnetic recording media produced by the above method, the thickness of the Co-Cr-based nonmagnetic oxide layer was 0 (comparative example) and 13 (example 1).

300人のもの(実施例5)について、Go −Cr層
の垂直抗磁力と結晶配向度を示ずΔθ、。を測定した。
For 300 people (Example 5), the vertical coercive force of the Go-Cr layer and the degree of crystal orientation were Δθ. was measured.

結果を第3表に示す。なお、垂直抗磁力はカー効果測定
により、またΔθ、。はX線回折によりそれぞれ測定し
た。
The results are shown in Table 3. In addition, the perpendicular coercive force is determined by Kerr effect measurement, and Δθ. were measured by X-ray diffraction.

第3表 この第3表から明らかなように、中間層としてCo −
Cr系非磁性酸化物層を設けても、垂直抗磁力の低下は
見られず、またCo −Cr層の結晶配向度にほとんど
影響を与えない。
Table 3 As is clear from Table 3, Co −
Even if a Cr-based nonmagnetic oxide layer is provided, no decrease in perpendicular coercive force is observed, and the degree of crystal orientation of the Co--Cr layer is hardly affected.

次に、記録波長10μmとし、上述の各垂直磁気記録媒
体の再生出力を調べ、再生出力のCo −Cr系非磁性
酸化物層膜厚依存性を調べた。結果を第4図に示す。
Next, the recording wavelength was set to 10 μm, and the reproduction output of each of the above-mentioned perpendicular magnetic recording media was examined, and the dependence of the reproduction output on the thickness of the Co-Cr-based nonmagnetic oxide layer was examined. The results are shown in Figure 4.

その結果、Co −Cr系非磁性酸化物層の膜J1が4
00Å以下で再生出力の増加が見られることがわかった
。Co −Cr系非磁性酸化物層の膜厚が400人を越
えると中間層を設けない場合よりも再生出力が低下する
のは、抗磁力の低下による再生出力の増加よりもスペー
シングロスの増加による再生出力の低下が上回るためと
考えられる。
As a result, the film J1 of the Co-Cr-based nonmagnetic oxide layer is 4
It was found that an increase in reproduction output was observed below 00 Å. When the thickness of the Co-Cr-based nonmagnetic oxide layer exceeds 400 layers, the reproduction output becomes lower than when no intermediate layer is provided. This is due to an increase in spacing loss rather than an increase in reproduction output due to a decrease in coercive force. This is thought to be because the reduction in playback output due to

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、高透磁率磁性層を下
地とする二層構造垂直磁気記録媒体において、高透磁率
磁性層とCo −Cr系垂直磁化層との間に中間層とし
てCo −Cr系非磁性酸化物層を設けることにより、
スペーシングロスを増加させることなく高進65f率磁
性層の抗磁力を小さくすることができ、その結果再生出
力の高い垂直磁気記録媒体を提供することが可能となる
As is clear from the above explanation, in a two-layer perpendicular magnetic recording medium having a high permeability magnetic layer as a base layer, Co-- By providing a Cr-based nonmagnetic oxide layer,
The coercive force of the highly advanced 65f magnetic layer can be reduced without increasing spacing loss, and as a result, it is possible to provide a perpendicular magnetic recording medium with high reproduction output.

また、中間層として被着されるGo −Cr系非磁性L
t化物層は、Co −Cr系垂直磁化層と同一のターゲ
ットを用いスパンタ中に酸素を導入することにより節単
に作製することができ、住辛性や設v;N投資等の点で
も有111である。
In addition, a Go-Cr-based nonmagnetic L layer is deposited as an intermediate layer.
The t-oxide layer can be fabricated simply and economically by using the same target as the Co-Cr perpendicular magnetization layer and introducing oxygen into the spunter, and is also advantageous in terms of durability, installation costs, etc. It is.

さらに、C(>−Cr系非磁性酸化物層を中間層として
設けても、Co−昨系垂直Tfi化層の結晶配向度や磁
気特性はほとんど変化せず、良好な垂直(磁気特性が保
たれる。
Furthermore, even if a C(>-Cr-based nonmagnetic oxide layer is provided as an intermediate layer), the crystal orientation and magnetic properties of the Co-based perpendicular Tfi layer hardly change, and good perpendicular (magnetic properties are maintained). dripping

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCo−Cr層の飽和磁化に対するパーマロイ層
の抗磁力の変化を示す特性図である。 第2図はスバフタ中の酸素圧力を変化させたときのスパ
ッタ膜の膜J!1及び飽和磁化の変化を示す特性図であ
る。 第3図はパーマロイ層の抗磁力のCo −Cr系非磁性
酸化物層膜厚依存性を示す41・外聞である。 第4図は再生出力のCo −Cr系非磁性酸化物層膜厚
依存性を示す特性図である。
FIG. 1 is a characteristic diagram showing changes in coercive force of a permalloy layer with respect to saturation magnetization of a Co--Cr layer. Figure 2 shows the sputtered film J! when the oxygen pressure in the subafuta is changed. 1 is a characteristic diagram showing changes in magnetization and saturation magnetization. FIG. 3 is a diagram showing the dependence of the coercive force of the permalloy layer on the thickness of the Co--Cr nonmagnetic oxide layer. FIG. 4 is a characteristic diagram showing the dependence of the reproduction output on the thickness of the Co--Cr nonmagnetic oxide layer.

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上に高透磁率磁性層、Co−Cr系非磁性
酸化物層、Co−Cr系垂直磁化層が順次積層形成され
ていることを特徴とする垂直磁気記録媒体。
A perpendicular magnetic recording medium characterized in that a high permeability magnetic layer, a Co--Cr based non-magnetic oxide layer, and a Co--Cr based perpendicular magnetic layer are sequentially laminated on a non-magnetic support.
JP61244927A 1986-10-15 1986-10-15 Perpendicular magnetic recording media Expired - Fee Related JPH0823929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244927A JPH0823929B2 (en) 1986-10-15 1986-10-15 Perpendicular magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244927A JPH0823929B2 (en) 1986-10-15 1986-10-15 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPS6398827A true JPS6398827A (en) 1988-04-30
JPH0823929B2 JPH0823929B2 (en) 1996-03-06

Family

ID=17126038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244927A Expired - Fee Related JPH0823929B2 (en) 1986-10-15 1986-10-15 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JPH0823929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281219A (en) * 1987-05-12 1988-11-17 Toshiba Corp Perpendicular magnetic recording medium
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114329A (en) * 1981-12-26 1983-07-07 Seiko Epson Corp Magnetic recording medium
JPS618719A (en) * 1984-06-20 1986-01-16 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114329A (en) * 1981-12-26 1983-07-07 Seiko Epson Corp Magnetic recording medium
JPS618719A (en) * 1984-06-20 1986-01-16 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281219A (en) * 1987-05-12 1988-11-17 Toshiba Corp Perpendicular magnetic recording medium
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media

Also Published As

Publication number Publication date
JPH0823929B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
US6495252B1 (en) Magnetic recording medium with superparamagnetic underlayer
JPS6038718A (en) Vertical magnetic recording medium
US5001018A (en) Fe-Co base magnetic film and process for producing the same
JPS59140629A (en) Vertical magnetic recording medium and its production
JPS6398827A (en) Perpendicular magnetic recording medium
JPS63201912A (en) Magnetic recording medium and its production
JPH05315135A (en) Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film
JPH0218710A (en) Disk-shaped magnetic recording medium
JPS59228705A (en) Vertical magnetic recording medium and manufacture of the same
JP2000348326A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JPH0337724B2 (en)
JPS63220411A (en) Perpendicular magnetic recording medium
JPH023102A (en) Perpendicular magnetic recording medium
JPS63124213A (en) Perpendicular magnetic recording medium
JPH0387005A (en) Magnetic film
JPH0311531B2 (en)
Lodder Magnetic Properties and Preparation of Thin-Film Magnetic Recording Media
JPH03116910A (en) Magnetic alloy film
JPH0322647B2 (en)
JPH0315245B2 (en)
JPS6367326B2 (en)
JPS59191130A (en) Base material for magnetic recording medium and magnetic recording medium
JPH03116516A (en) Magnetic film
JPS6095721A (en) Vertical magnetic recording medium and its production
JPS5975428A (en) Vertically magnetized magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees