JPS63201912A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS63201912A
JPS63201912A JP3325887A JP3325887A JPS63201912A JP S63201912 A JPS63201912 A JP S63201912A JP 3325887 A JP3325887 A JP 3325887A JP 3325887 A JP3325887 A JP 3325887A JP S63201912 A JPS63201912 A JP S63201912A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
film
coercive force
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3325887A
Other languages
Japanese (ja)
Other versions
JPH0814889B2 (en
Inventor
Yukio Honda
幸雄 本多
Masaaki Futamoto
二本 正昭
Kazuyoshi Yoshida
吉田 和悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62033258A priority Critical patent/JPH0814889B2/en
Publication of JPS63201912A publication Critical patent/JPS63201912A/en
Publication of JPH0814889B2 publication Critical patent/JPH0814889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To permit sufficient magnetic recording from the front to the rear surface part of a medium and to improve recording and reproducing characteristics by using the medium which is increased in the coervice force on the front side of the medium and is successively decreased toward the rear face. CONSTITUTION:The perpendicular magnetic recording medium formed by changing the coercive force in the perpendicular direction of a magnetic Co-Cr alloy film formed on a nonmagnetic substrate continuously or stepwise in such a manner that the coercive force on the boundary side of the substrate is decreased and the coercive force on the front face side of the magnetic film is increased is used. Stepwise changing of the coercive force is permitted simply by laminating multi-layered films having the different coercive forces on the substrate. Recording and reproduction efficiency are thereby improved and the high density magnetic recording is permitted. The similar effect is further obtd. as well by using, for example, Co-V, Co-Mo, Co-W, Co-Ru, etc., in addition to Co-Cr as the Co-base alloy which is the perpendicularly magnetized film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録媒体とくに垂直磁気記録方式に適し
た磁気記録媒体とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, particularly a magnetic recording medium suitable for perpendicular magnetic recording, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

まず垂直磁気記録方式について説明する。この方式は磁
気記録媒体膜面に垂直方向に磁気記録を行うものであり
、高密度磁気記録に際して各ビット内の反磁界が小さい
ために磁気記録密度を上げるのに適した方式である。こ
の目的のために使用される磁気記録媒体としては、Co
−Cr、C。
First, the perpendicular magnetic recording method will be explained. This method performs magnetic recording in a direction perpendicular to the film surface of a magnetic recording medium, and is suitable for increasing magnetic recording density because the demagnetizing field within each bit is small during high-density magnetic recording. The magnetic recording medium used for this purpose is Co
-Cr,C.

−V、Co−Mo、Co−W、Co−Rn、C。-V, Co-Mo, Co-W, Co-Rn, C.

−Re、Co−0,Co−Cr−Rh、Co −Cr−
Ru、Co−Ni−0などのCo基合金薄膜を用いたも
のがある。これらの磁性薄膜を構成するCo基合金は、
最密六方格子(hap)構造 。
-Re, Co-0, Co-Cr-Rh, Co-Cr-
Some use Co-based alloy thin films such as Ru and Co-Ni-0. The Co-based alloy that makes up these magnetic thin films is
Close-packed hexagonal lattice (HAP) structure.

を持ち、薄膜を構成する微結晶粒がC軸配向し易いとい
う特徴がある。そしてこれらCo基合金薄膜はC軸方向
に強い結晶磁気異方性をもつ。そして、これら垂直磁気
記録媒体を用いて、磁気記録特性(例えば、記録密度、
記録再生の感度)を上げるためには、簿膜のC軸配向度
を向上すると共に、膜の保磁力(膜の垂直方向)を大き
くすることが必要である。磁気記録感度を上げるために
は、アイ・イー・イー・イー、・トランザクション オ
ン マグネチツクス、エム ニー ジー15、(I E
 E E  Trans、 Magnstics、 M
AG−15)。
It has the characteristic that the microcrystalline grains constituting the thin film are easily oriented along the C axis. These Co-based alloy thin films have strong magnetocrystalline anisotropy in the C-axis direction. Using these perpendicular magnetic recording media, magnetic recording characteristics (such as recording density,
In order to increase the sensitivity of recording and reproduction, it is necessary to improve the degree of C-axis orientation of the film and to increase the coercive force (in the perpendicular direction of the film) of the film. In order to increase the magnetic recording sensitivity, it is necessary to
E E Trans, Magntics, M
AG-15).

1456 (1979)における岩崎らの“垂直磁気記
録媒体”と題する文献において論じられているように、
Co基合金薄膜の下部にパーマロイなどの軟磁性材料の
薄膜層を設ける方法が知られている。
As discussed in the paper entitled “Perpendicular Magnetic Recording Media” by Iwasaki et al. in 1456 (1979),
A method is known in which a thin film layer of a soft magnetic material such as permalloy is provided below a Co-based alloy thin film.

フ現在用いられている垂直磁気記録媒体は、ポリイミド
、ポリエチレンテレフタレートなどのプラスチックフィ
ルム類、あるいはAQ、ガラス板などの非磁性基板上に
、直接Co基合金薄膜を付着せしめるか、もしくは上記
基板上にパーマロイなどの軟磁性薄層を介してCo基合
金薄膜を形成せしめたものである。またCo基合金薄膜
の形成方法においても、薄膜形成時の基板温度、形成速
度、およびCo基合金の組成もできるだけ一定に保つ工
夫がなされている。
Currently used perpendicular magnetic recording media are made by directly depositing a Co-based alloy thin film on plastic films such as polyimide or polyethylene terephthalate, or on non-magnetic substrates such as AQ or glass plates, or by directly depositing a Co-based alloy thin film on the above substrate. A Co-based alloy thin film is formed through a soft magnetic thin layer such as permalloy. Furthermore, in the method of forming a Co-based alloy thin film, efforts have been made to keep the substrate temperature, formation speed, and composition of the Co-based alloy as constant as possible during thin film formation.

磁気記録用媒体を高密度にするためには、媒体の膜厚は
できるだけ薄く、C軸配向度が優れており、また柱状晶
粒径の大きさも一様に揃っていることが望ましい、また
、磁気記録再生感度を向上するには、Co基合金薄膜の
垂直方向の保磁力を大きくシ、媒体の膜厚を厚くする必
要がある。しかし、この場合、磁気ヘッドによる記録再
生が極めて困難になるという欠点があった。
In order to make a magnetic recording medium high in density, it is desirable that the film thickness of the medium be as thin as possible, that the degree of C-axis orientation be excellent, and that the size of the columnar crystal grains be uniform. In order to improve the magnetic recording and reproducing sensitivity, it is necessary to increase the vertical coercive force of the Co-based alloy thin film and increase the film thickness of the medium. However, in this case, there was a drawback that recording and reproducing using a magnetic head became extremely difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はCo基合金薄膜の垂直方向の保磁力の大
きさについては配慮がされていなかった。
In the above-mentioned conventional technology, no consideration was given to the magnitude of the coercive force in the vertical direction of the Co-based alloy thin film.

本発明の目的は、上述した従来技術の欠点を解消したも
のであって、垂直磁気記録用媒体の垂直磁化膜として、
非磁性基板上、あるいは軟磁性薄膜層を設けた非磁性基
板上に形成させるCo基合金薄膜のC軸配向度と柱状結
晶粒径をを制御し。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a perpendicularly magnetized film for a perpendicular magnetic recording medium.
The degree of C-axis orientation and columnar crystal grain size of a Co-based alloy thin film formed on a non-magnetic substrate or a non-magnetic substrate provided with a soft-magnetic thin film layer are controlled.

特にCo基合金薄膜の膜厚方向の保磁力の大きさを制御
してCo基合金薄膜を形成することによって、磁気記録
再生感度に優れた高密度磁気記録に好適な垂直磁気記録
媒体を提供することにある。
In particular, by forming a Co-based alloy thin film by controlling the magnitude of the coercive force in the film thickness direction of the Co-based alloy thin film, a perpendicular magnetic recording medium suitable for high-density magnetic recording with excellent magnetic recording and reproducing sensitivity is provided. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、以下に示す知見に基づいて完成されたもので
ある。すなわち、最密六方格子構造(以下hcp構造と
いう)のCoは、そのC軸方向に大きな結晶磁気異方性
を有し、これにcrtvtMoなどの元素を添加して非
磁性基板上にCo基合金薄膜を形成すれば、C軸を膜面
に垂直方向に配向させた垂直磁化膜が得られ、また添加
元素の組成や、膜の形成温度を変化することにより、飽
和磁化や保磁力の大きさを変化できることは知られてい
る。いま、Co基合金薄膜として、Co−Cr合金膜を
例に上げて本発明の詳細な説明する。
The present invention was completed based on the findings shown below. In other words, Co with a close-packed hexagonal lattice structure (hereinafter referred to as HCP structure) has large crystal magnetic anisotropy in the C-axis direction, and by adding elements such as crtvtMo to it, a Co-based alloy is formed on a non-magnetic substrate. If a thin film is formed, a perpendicularly magnetized film with the C-axis oriented perpendicular to the film surface can be obtained, and the saturation magnetization and coercive force can be adjusted by changing the composition of additive elements and the film formation temperature. It is known that it is possible to change The present invention will now be described in detail by taking a Co--Cr alloy film as an example of a Co-based alloy thin film.

非磁性基板上にCo−Cr合金磁性膜を形成し5磁性膜
の磁気特性、組成と微細構造の関係について、振動試料
型磁力計やカー回転角の測定、X線マイクロアナライザ
やオージェ電子分光法及び電子i*giによる断面R察
などにより調べた。その結果、Co−Cr合金磁性膜の
垂直方向の保磁力と膜組成の間には、Cr添加物濃度の
組成によって保磁力の大きさを制御でき、15〜28w
t%Crの範囲のG o −Cr合金組成において、垂
直方向の保磁力の大きさをほぼ比例的に制御でき、Cr
添加量を少なくすることにより保磁力を大きくできるこ
とを見出した。また、Co−Cr合金磁性膜の垂直方向
の保磁力と膜の微細構造の関係について調べた結果、C
o−Cr合金膜の柱状結晶の粒径と保磁力の大きさに相
関があり1粒径の大きさを大きくすると保磁力が大きく
なることを見出した。さらに、柱状結晶の粒径は、磁性
膜の形成温度や形成速度を変化することによって制御で
き、形成温度を高く、また形成速度を遅くすると柱状結
晶粒径は大きくなることがわかった。
A Co-Cr alloy magnetic film is formed on a nonmagnetic substrate, and the relationship between the magnetic properties, composition, and microstructure of the magnetic film is investigated using a vibrating sample magnetometer, Kerr rotation angle measurement, X-ray microanalyzer, and Auger electron spectroscopy. It was also investigated by cross-sectional R observation using electronic i*gi. As a result, the magnitude of the coercive force can be controlled by the composition of the Cr additive concentration, and the magnitude of the coercive force in the vertical direction of the Co-Cr alloy magnetic film and the film composition can be controlled from 15 to 28 W.
In the Go-Cr alloy composition in the range of t%Cr, the magnitude of the vertical coercive force can be controlled almost proportionally, and Cr
It has been found that the coercive force can be increased by reducing the amount added. In addition, as a result of investigating the relationship between the vertical coercive force and the fine structure of the Co-Cr alloy magnetic film, we found that C
It has been found that there is a correlation between the grain size of columnar crystals in an o-Cr alloy film and the magnitude of coercive force, and that as the grain size increases, the coercive force increases. Furthermore, it was found that the grain size of the columnar crystals can be controlled by changing the formation temperature and formation rate of the magnetic film, and that increasing the formation temperature and slowing the formation rate increases the columnar crystal grain size.

上記知見をもとに1本発明者らは、非磁性基板上にCo
−Cr合金磁性膜の垂直方向の保磁力を連続的に又は、
段階的に変化させ基板界面側の保磁力を小さくし、磁性
膜の表面側の保磁力を大きくなるように形成した垂直磁
気記録媒体を用いれば、磁気ヘッド、特にリング型磁気
ヘッドを用いた時の記録再生効率を向上でき、高密度磁
気記録が可能であることを見出した。保磁力を段階的に
変化させるには保磁力の異なる多層膜を積層すればよい
Based on the above findings, the present inventors have developed a method for depositing Co on a non-magnetic substrate.
- The vertical coercive force of the Cr alloy magnetic film is increased continuously or
By using a perpendicular magnetic recording medium in which the coercive force is changed stepwise to reduce the coercive force on the substrate interface side and increase the coercive force on the surface side of the magnetic film, it is possible to reduce the coercive force when using a magnetic head, especially a ring-type magnetic head. It has been found that the recording and reproducing efficiency of the magnetic field can be improved and high-density magnetic recording is possible. In order to change the coercive force in stages, it is sufficient to laminate multilayer films having different coercive forces.

さらに本発明者らは、垂直磁化膜であるCo基合金とし
て、Co−Cr以外に、例えばCo−V。
Furthermore, the present inventors used Co-based alloys, which are perpendicularly magnetized films, in addition to Co-Cr, such as Co-V.

Co−Mo、Co−We Co−Ruなどを用いても同
様の効果を確認している。
Similar effects have been confirmed using Co-Mo, Co-We, Co-Ru, and the like.

また、本発明者らは、垂直磁化膜であるCo基合金薄膜
の下層に、Co系の非晶質軟磁性薄膜、例えばG o 
−M o −Z r 、 Co −M o −N b 
In addition, the present inventors added a Co-based amorphous soft magnetic thin film, for example, a Go
-Mo -Zr, Co -Mo -Nb
.

Co−W−Nb、Co−Nb−Zr薄膜、または他の高
透磁率磁性薄膜を形成させた磁気記録媒体においても、
上述のCo基合金垂直磁化膜の保磁力を変化させるよう
に膜を形成することにより、記録再生効率を向上できる
ことを確認した。
Even in magnetic recording media formed with Co-W-Nb, Co-Nb-Zr thin films, or other high permeability magnetic thin films,
It has been confirmed that recording and reproducing efficiency can be improved by forming the above-mentioned Co-based alloy perpendicularly magnetized film so as to change the coercive force.

本発明において、多層化したCo基合金磁性膜とすると
き、その1層の厚さは、20人未満では1層ごとの連続
膜を形成するには不十分であり、20Å以上とすること
が望ましい、1層の膜厚が5000Å以上となっても1
本発明の効果は同じであるが、垂直磁気記録用媒体とし
ては全体の膜厚が3000人程度で用いられることから
、その膜厚は3000Å以下が望ましく、実用的にいっ
て、さらに望ましい1層の膜厚の範囲は、50〜100
0人である。
In the present invention, when forming a multilayered Co-based alloy magnetic film, the thickness of one layer is insufficient to form a continuous film for each layer if less than 20 people are used, and it is preferable to set the thickness to 20 Å or more. Desirably, even if the thickness of one layer is 5000 Å or more, 1
Although the effects of the present invention are the same, since the total film thickness is used for a perpendicular magnetic recording medium of about 3000 people, it is desirable that the film thickness be 3000 Å or less, and from a practical standpoint, it is even more desirable to have a single layer. The film thickness range is 50 to 100
There are 0 people.

本発明の磁気記録媒体における薄膜の形成方法は、真空
蒸着法、高周波スパッタリング法、イオンビームスパッ
タリング法などの物理蒸着法を用いることができ、また
磁性薄膜の保磁力の制御法としては、磁性膜の組成の他
に薄膜形成時の基板温度の制御および薄膜の形成速度の
調整の他に。
As a method for forming a thin film in the magnetic recording medium of the present invention, a physical vapor deposition method such as a vacuum evaporation method, a high frequency sputtering method, or an ion beam sputtering method can be used. In addition to controlling the substrate temperature during thin film formation and adjusting the thin film formation rate.

例えばスパッタリング法で形成させる場合には、スパッ
タリングの出力やAr圧力などを変化させても保磁力の
大きさは制御できる。
For example, when forming by sputtering, the magnitude of the coercive force can be controlled by changing the sputtering output, Ar pressure, etc.

〔作用〕[Effect]

ヘッドの磁界の強さは、端面からの距離に反比例して弱
くなる。このためヘッドの磁界強度に比べて、大きな保
磁力を持つ記録媒体では、媒体の表面部分でのみしか磁
気記録がされないので記録再生特性が悪い6一方、小さ
な保磁力の媒体では、媒体の表面から下面まで磁気記録
されるが、十分な再生出力が得られない0本発明のごと
く、ヘッド磁界強度の分布に対応して、媒体の表面側の
保磁力を大きくし、下面に向って順次保磁力を低下した
媒体を用いることにより、媒体の表面から下面部まで十
分な磁気記録が行われるため、記録再生特性を向上でき
る。
The strength of the magnetic field of the head decreases in inverse proportion to the distance from the end face. For this reason, in a recording medium with a large coercive force compared to the magnetic field strength of the head, magnetic recording is performed only on the surface of the medium, resulting in poor recording and reproducing characteristics.6 On the other hand, with a medium with a small coercive force, the Magnetic recording is performed to the bottom surface, but sufficient reproduction output cannot be obtained. According to the present invention, the coercive force is increased on the surface side of the medium in accordance with the distribution of the head magnetic field strength, and the coercive force is gradually increased toward the bottom surface. By using a medium with a reduced magnetic field, sufficient magnetic recording can be performed from the surface to the bottom of the medium, so that the recording and reproducing characteristics can be improved.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図面を参照しながらさ
らに詳細に説明する0図において同一符号を付したもの
は、同じ性能特性を有する部分を示す。
An embodiment of the present invention will be described below in more detail with reference to the drawings. In the drawings, the same reference numerals indicate parts having the same performance characteristics.

実施例1 ガライ基板を用いて、第1図に示す構造の多層の磁性膜
から成るC o −Cr垂直磁気記録媒体を、高周波ス
パッタリング法により、以下に示す手順で作製した。
Example 1 A Co--Cr perpendicular magnetic recording medium consisting of a multilayer magnetic film having the structure shown in FIG. 1 was fabricated using a Galai substrate by high-frequency sputtering according to the procedure shown below.

本実施例に用いた高周波スパッタ袋層では、各各組成の
異なる4種類のCo−Cr合金ターゲットを設置でき、
本実施例では、Co−27wt%Cr、Co−24wt
%Cr、Co−21wt%Cr、Co−18wt%Cr
から成るCo−Cr、合金ターゲットを用いた。まず基
板1を温度120℃に設定し・Ar圧力5mTorrp
スパッタリングにおける高周波出力4W/a#の条件で
Co−27wt%Crから成る第1の磁性層2を厚さ5
00人に形成した。つぎに同一雰囲気中で前記と同一の
条件でCo−24wt%Crから成る第2の磁性層3を
、ついでCo−21wt%Crから成る第3の磁性層4
を、ついでCo−18wt%Crから成る第4の磁性層
5を各々300人の厚さ形成し、全膜厚1400人の多
層の磁性膜から成るCo−Cr垂直磁気記録媒体6を作
製した。
In the high-frequency sputtering bag layer used in this example, four types of Co-Cr alloy targets with different compositions can be installed.
In this example, Co-27wt%Cr, Co-24wt%
%Cr, Co-21wt%Cr, Co-18wt%Cr
A Co-Cr alloy target consisting of was used. First, set the substrate 1 at a temperature of 120°C and an Ar pressure of 5 mTorr.
The first magnetic layer 2 made of Co-27wt%Cr was formed to a thickness of 5% under the condition of a high frequency output of 4W/a# in sputtering.
00 people were formed. Next, in the same atmosphere and under the same conditions as above, a second magnetic layer 3 made of Co-24wt%Cr was formed, and then a third magnetic layer 4 made of Co-21wt%Cr was formed.
Next, a fourth magnetic layer 5 made of Co-18 wt % Cr was formed to a thickness of 300 layers each to produce a Co--Cr perpendicular magnetic recording medium 6 consisting of a multilayer magnetic film with a total thickness of 1400 layers.

また、4層の磁性膜から成Co−Cr垂直磁気記録媒体
6において、各々第1.第2.第3の磁性層の上層の磁
性膜を形成しない媒体を作製して、カー効果を利用して
各々の磁性層の垂直方向の保磁力を測定し、その結果の
一例を第1表に示した。
In addition, in the Co--Cr perpendicular magnetic recording medium 6 made of four magnetic layers, each of the first and second layers is made of four layers of magnetic films. Second. A medium was prepared in which no magnetic film was formed on the upper layer of the third magnetic layer, and the coercive force in the perpendicular direction of each magnetic layer was measured using the Kerr effect. An example of the results is shown in Table 1. .

第  1  表 第1表に示すごとく、各々組成を変化した多層のCo 
−Cr磁性膜を形成することにより、各磁性層において
垂直方向の保磁力を制御した膜を形成できた。
Table 1 As shown in Table 1, multilayer Co with different compositions
By forming the -Cr magnetic film, it was possible to form a film in which the coercive force in the perpendicular direction was controlled in each magnetic layer.

また、比較用として前記と同様の条件で、C。Also, for comparison, C. under the same conditions as above.

−’21wt%Crの合金ターゲットを用いて、第2図
に示すような膜厚1400人の単−屑から成るC o 
−Cr垂直磁気記録媒体6を作製した。この磁性膜の垂
直方向の保磁力は8500eであった。
- Using an alloy target of 21 wt% Cr, a Co.
-Cr perpendicular magnetic recording medium 6 was produced. The perpendicular coercive force of this magnetic film was 8500e.

第2表に1本実施例で作製した組成変化により保磁力を
変化した多層のG o −Cr垂直磁気記録媒体と、単
一層から成る媒体の記録再生特性を測定した結果の一例
を示す。
Table 2 shows an example of the results of measuring the recording and reproducing characteristics of the multilayer G o -Cr perpendicular magnetic recording medium in which the coercive force was changed by changing the composition prepared in this example, and the medium consisting of a single layer.

第  2  表 第2表に示すごとく、各々組成を変化し、下層に比べて
上層の保磁力を大きくしたり多層のC0−Cr磁性膜を
形成することにより、垂直磁気記録における記録再生特
性を大幅に向上できた。
Table 2 As shown in Table 2, by changing the composition of each layer, increasing the coercive force of the upper layer compared to the lower layer, and forming a multilayer C0-Cr magnetic film, the recording and reproducing characteristics in perpendicular magnetic recording can be greatly improved. I was able to improve.

実施例2 ポリイミドフィルムを基板1にして、第1図と同様の構
造の多層の磁性膜から成るCo−Cr垂直磁気記録媒体
を、第3図に示す真空蒸着法により、以下の手順で作製
した。
Example 2 Using a polyimide film as the substrate 1, a Co-Cr perpendicular magnetic recording medium consisting of a multilayer magnetic film having a structure similar to that shown in FIG. 1 was fabricated by the vacuum evaporation method shown in FIG. 3 in the following steps. .

I X :L 0−BTorrの真空中で、第1のキャ
ンローラ7を110℃に加熱して、第1の蒸着源8から
Co−22wt%Crを1000人/Sの速度で500
人の厚さに蒸着した。ついで同一真空中で第2のキャン
ローラ7を150℃に加熱して第2の蒸発源8からCo
−22,wt%Crを1000人/Sの速度で300人
の厚さに蒸着した。さらに同一真空中で第3のキャンロ
ーラ7を190℃に加熱して、第3の蒸発源8からCo
−22wt%Crを1000人/Sの速度で300人の
厚さに蒸着した。最後に同様の真空中で第4のキャンロ
ーラ7を230℃に加熱して、第4の蒸発源8からCo
−22wt%Crを1000人/Sの速度で300人の
厚さ蒸着し、全膜厚1400人のCo−Cr垂直磁気記
録媒体6を作製した。
IX: In a vacuum of L 0-BTorr, the first can roller 7 is heated to 110° C., and Co-22wt% Cr is deposited at a rate of 1000 persons/S at a rate of 500° C. from the first vapor deposition source 8.
Deposited to the thickness of a person. Next, the second can roller 7 is heated to 150° C. in the same vacuum to remove Co from the second evaporation source 8.
-22,wt%Cr was deposited to a thickness of 300 mm at a rate of 1000 mm/S. Furthermore, the third can roller 7 is heated to 190° C. in the same vacuum, and Co is removed from the third evaporation source 8.
-22wt% Cr was deposited to a thickness of 300 mm at a rate of 1000 mm/S. Finally, the fourth can roller 7 is heated to 230° C. in the same vacuum, and the fourth evaporation source 8 is heated to
-22wt% Cr was deposited to a thickness of 300 layers at a rate of 1000 layers per second to produce a Co--Cr perpendicular magnetic recording medium 6 with a total film thickness of 1400 layers.

本実施例におけるCo−Cr垂直磁気記録媒体6の断面
試料をArイオンシニング法により作製して、透過電子
顕微鏡観察によりCo −Cr柱状結晶の粒径を測定し
た。また実施例1と同様の方法で第1〜第4層の各々の
保磁力の大きさをカー効果を利用して測定し、その結果
の一例を第3表に示した。
A cross-sectional sample of the Co--Cr perpendicular magnetic recording medium 6 in this example was prepared by the Ar ion thinning method, and the grain size of the Co--Cr columnar crystals was measured by observation with a transmission electron microscope. Further, the magnitude of the coercive force of each of the first to fourth layers was measured using the Kerr effect in the same manner as in Example 1, and an example of the results are shown in Table 3.

第  3  表 形成した多層のCo−Cr磁性膜は、各々の磁性膜にお
いて柱状結晶粒径を順次制御でき、また、保磁力の大き
さを制御した膜を形成できた。
Table 3 In the multilayer Co--Cr magnetic film formed, it was possible to sequentially control the columnar crystal grain size in each magnetic film, and it was also possible to form a film in which the magnitude of coercive force was controlled.

また、比較用として前記と同様の蒸着装置を用いて、キ
ャンローラ7を190’Cに加熱して、蒸発源8からC
o−22wt%Crを1000人/Sの速度で1400
人の厚さ蒸着した単一層のCo−Cr垂直磁気記録媒体
6を作製した。この磁性膜の垂直方向の保磁力は、82
00aであった。
For comparison, using the same evaporation apparatus as above, the can roller 7 was heated to 190'C, and the evaporation source 8 was heated to 190'C.
o-22wt%Cr at a rate of 1000 people/S to 1400
A single-layer Co--Cr perpendicular magnetic recording medium 6 was fabricated by vapor deposition to a thickness of about 100 mL. The perpendicular coercive force of this magnetic film is 82
It was 00a.

第4表に、本実施例で作製した柱状結晶粒径の変化によ
り保磁力を変化した多層のCo−Cr垂直磁化膜と、単
一層から成る媒体の記録再生特性を測定した結果の一例
を示す。
Table 4 shows an example of the results of measuring the recording and reproducing characteristics of a multilayer Co-Cr perpendicular magnetization film whose coercive force was changed by changing the columnar crystal grain size produced in this example, and a single-layer medium. .

第  4  表 より上層で大きくシ、下層に比べて上層の保磁力を大き
くした多層のCo−Cr磁性膜を形成することにより、
垂直磁気記録における記録再生特性を大幅に向上できた
Table 4 shows that by forming a multilayer Co-Cr magnetic film in which the upper layer has a larger coercive force and the upper layer has a larger coercive force than the lower layer,
The recording and reproducing characteristics of perpendicular magnetic recording were significantly improved.

実施例3 第4図に示すごとく、多層のG o −Cr磁性膜6の
下層(基板1の上層)に、G o −M o −Z r
合金の非晶質軟磁性薄膜9を設けた垂直磁気記録媒体を
、高周波スパッタリング装置により、基板温度150℃
、Ar圧力5mTorr、スパッタリングにおける高周
波出力4 W/a#の条件で、Co −0,2at%Z
r−0.7at%Moからなる非晶質の軟磁性M[9を
5000人の厚さに形成させた以外は上述の実施例1と
同じ手順によって作製した。
Example 3 As shown in FIG. 4, in the lower layer (upper layer of the substrate 1) of the multilayer Go-Cr magnetic film 6,
A perpendicular magnetic recording medium provided with an alloy amorphous soft magnetic thin film 9 is heated to a substrate temperature of 150° C. using a high frequency sputtering device.
, Ar pressure of 5 mTorr, high frequency output in sputtering of 4 W/a#, Co -0,2at%Z
It was produced by the same procedure as in Example 1 above, except that an amorphous soft magnetic M [9 made of r-0.7 at% Mo was formed to a thickness of 5000 mm.

この場合においても、各層のCo−Cr磁性膜の保磁力
、及び記録再生特性は実施例1における第1.第2表に
示した結果とほぼ同等の性能特性を得ることができた。
In this case as well, the coercive force and recording/reproducing characteristics of the Co--Cr magnetic film of each layer are the same as those in Example 1. Performance characteristics almost equivalent to those shown in Table 2 could be obtained.

以上の実施例では、Co基合金磁性膜の一例として、C
o−Cr磁性WIIIiの場合について述べたが、他の
Co基合金磁性薄膜であるG o−Ru eCo−V、
Co−Mow Co−W、Co−Re。
In the above embodiments, as an example of a Co-based alloy magnetic film, C
Although the case of o-Cr magnetic WIIIi has been described, other Co-based alloy magnetic thin films such as Go-Ru eCo-V,
Co-Mow Co-W, Co-Re.

Co−0s Co−Cr−Rh、Co−Cr−Ru。Co-0s Co-Cr-Rh, Co-Cr-Ru.

Co−Ni−0などを用いても同等の効果を得ることが
できた。
A similar effect could be obtained using Co-Ni-0 or the like.

また、軟磁性![としては、Co −M o −Z r
の非晶質簿膜の他に、他のCo系非晶Ix′fa膜、例
えばCo−Mo−Nb、Co−W−Nb、Co −Nb
−Zrなど、およびその他の高透磁率の材料であっても
同等の効果を得ることができた。
Also, soft magnetic! [As, Co -Mo -Zr
In addition to the amorphous film, other Co-based amorphous Ix'fa films, such as Co-Mo-Nb, Co-W-Nb, Co-Nb
- Equivalent effects could be obtained even with other high magnetic permeability materials such as Zr.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明の磁気記録媒体にお
いては、垂直磁化膜であるCo基合金薄膜を形成するに
あたって、Co基合金薄膜の保磁力が下層部に比べて上
層部が大きくなった多層のCo基合金薄膜とすることに
より、垂直磁気記録における線記**度や再生出力など
の磁気記録再生効率が大幅に改善される。この場合、下
地層として軟磁性薄膜があっても、あるいは非磁性基板
であっても有効であり、高密度磁気記録に適した垂直磁
気記録媒体を得ることができ、工業上の利用価値は極め
て大きい。
As explained in detail above, in the magnetic recording medium of the present invention, in forming a Co-based alloy thin film which is a perpendicularly magnetized film, a multi-layered Co-based alloy thin film in which the coercive force of the Co-based alloy thin film is larger in the upper layer than in the lower layer. By using the Co-based alloy thin film, magnetic recording and reproducing efficiency such as linearity and reproducing output in perpendicular magnetic recording can be greatly improved. In this case, it is effective even if there is a soft magnetic thin film as the underlayer or a non-magnetic substrate, and it is possible to obtain a perpendicular magnetic recording medium suitable for high-density magnetic recording, which has extremely high industrial value. big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1における垂直磁気記録体の
構造を示す断面図、第2図は比較用の垂直磁気記録媒体
の構造を示す断面図、第3図は本発明の実施例2におけ
る製造方法の説明図、第4図は本発明の実施例3におけ
る垂直磁気記録媒体の構造を示す断面図である。
FIG. 1 is a sectional view showing the structure of a perpendicular magnetic recording medium in Example 1 of the present invention, FIG. 2 is a sectional view showing the structure of a perpendicular magnetic recording medium for comparison, and FIG. 3 is an example of the present invention. FIG. 4 is a cross-sectional view showing the structure of a perpendicular magnetic recording medium in Example 3 of the present invention.

Claims (1)

【特許請求の範囲】 1、非磁性基板上、もしくは軟磁性薄膜を設けた非磁性
基板上に、強磁性金属薄膜を形成してなる磁気記録媒体
において、前記強磁性金属薄膜の表面側の保磁力が、膜
の下層の保磁力より大きいことを特徴とする磁気記録媒
体。 2、特許請求範囲第1項において、強磁性金属薄膜の保
磁力が、表面から下層に向って順次低下した積層膜とな
つていることを特徴とする磁気記録媒体。 3、非磁性基板上又は軟磁性薄膜を有する非磁性基板上
に、Coと他の金属とからなるCo基合金の強磁性金属
薄膜を形成する磁気記録媒体の製造方法において、上記
Coの他の金属に対する比率を増加させて上記強磁性金
属薄膜を形成することを特徴とする磁気記録媒体の製造
方法。
[Claims] 1. In a magnetic recording medium in which a ferromagnetic metal thin film is formed on a non-magnetic substrate or a non-magnetic substrate provided with a soft magnetic thin film, a A magnetic recording medium characterized in that the magnetic force is greater than the coercive force of the lower layer of the film. 2. A magnetic recording medium according to claim 1, characterized in that the ferromagnetic metal thin film is a laminated film in which the coercive force decreases sequentially from the surface toward the bottom layer. 3. A method for producing a magnetic recording medium in which a ferromagnetic metal thin film of a Co-based alloy consisting of Co and another metal is formed on a non-magnetic substrate or a non-magnetic substrate having a soft magnetic thin film, in which A method for manufacturing a magnetic recording medium, characterized in that the ferromagnetic metal thin film is formed by increasing its ratio to metal.
JP62033258A 1987-02-18 1987-02-18 Perpendicular magnetic recording media Expired - Lifetime JPH0814889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62033258A JPH0814889B2 (en) 1987-02-18 1987-02-18 Perpendicular magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62033258A JPH0814889B2 (en) 1987-02-18 1987-02-18 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPS63201912A true JPS63201912A (en) 1988-08-22
JPH0814889B2 JPH0814889B2 (en) 1996-02-14

Family

ID=12381482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62033258A Expired - Lifetime JPH0814889B2 (en) 1987-02-18 1987-02-18 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JPH0814889B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226515A (en) * 1989-02-28 1990-09-10 Hitachi Ltd Magnetic recording medium
JPH03160616A (en) * 1989-11-20 1991-07-10 Nippon Hoso Kyokai <Nhk> Double-layer perpendicular magnetic recording medium and its production
JPH04259909A (en) * 1991-02-15 1992-09-16 Fuji Photo Film Co Ltd Magnetic recording medium
US7381282B2 (en) 2004-04-07 2008-06-03 Hitachi Metals, Ltd. Co alloy target and its production method, soft magnetic film for perpendicular magnetic recording and perpendicular magnetic recording medium
WO2009119709A1 (en) * 2008-03-26 2009-10-01 Hoya株式会社 Vertical magnetic recording medium and method for making vertical magnetic recording medium
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
US8580409B2 (en) 2009-11-09 2013-11-12 HGST Netherlands B.V. Perpendicular magnetic recording media having a dual onset layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127929A (en) * 1980-03-07 1981-10-07 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS59167834A (en) * 1983-03-14 1984-09-21 Hitachi Maxell Ltd Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127929A (en) * 1980-03-07 1981-10-07 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS59167834A (en) * 1983-03-14 1984-09-21 Hitachi Maxell Ltd Magnetic recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226515A (en) * 1989-02-28 1990-09-10 Hitachi Ltd Magnetic recording medium
JPH03160616A (en) * 1989-11-20 1991-07-10 Nippon Hoso Kyokai <Nhk> Double-layer perpendicular magnetic recording medium and its production
JPH04259909A (en) * 1991-02-15 1992-09-16 Fuji Photo Film Co Ltd Magnetic recording medium
US7381282B2 (en) 2004-04-07 2008-06-03 Hitachi Metals, Ltd. Co alloy target and its production method, soft magnetic film for perpendicular magnetic recording and perpendicular magnetic recording medium
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
WO2009119709A1 (en) * 2008-03-26 2009-10-01 Hoya株式会社 Vertical magnetic recording medium and method for making vertical magnetic recording medium
US9047903B2 (en) 2008-03-26 2015-06-02 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and process for manufacture thereof
US8580409B2 (en) 2009-11-09 2013-11-12 HGST Netherlands B.V. Perpendicular magnetic recording media having a dual onset layer

Also Published As

Publication number Publication date
JPH0814889B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US5851643A (en) Magnetic recording media and magnetic recording read-back system which uses such media
JPS626426A (en) Magnetic recording medium
EP1686571B1 (en) Perpendicular magnetic recording medium and disk
JP2728498B2 (en) Magnetic recording media
US5834085A (en) Grain isolated multilayer perpendicular recording medium
JP2001523032A (en) Highly oriented magnetic thin film, recording medium using the same, transducer, device, and manufacturing method
JP2003217107A (en) Magnetic recording medium
JPS60214417A (en) Vertical magnetic recording medium
KR20070067600A (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
US5162158A (en) Low noise magnetic thin film longitudinal media
EP0140513A1 (en) Thin film magnetic recording structures
US20070042226A1 (en) Intermediate tri-layer structure for perpendicular recording media
JP2002190108A (en) Magnetic recording medium and its production method
US5772857A (en) Method of manufacturing CoCrTa/CoCrTaPt bi-layer magnetic thin films
JP3612087B2 (en) Magnetic recording medium
JPS60157715A (en) Magnetic recording medium
JPS63201912A (en) Magnetic recording medium and its production
US5001018A (en) Fe-Co base magnetic film and process for producing the same
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
JP2002237026A (en) Magnetic recording medium, manufacturing method for magnetic recording medium and magnetic recording device
JPS61113122A (en) Vertical magnetic recording medium
JPH05315135A (en) Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film
JPH08180360A (en) Perpendicular magnetic recording medium and magnetic recorder
JPS59228705A (en) Vertical magnetic recording medium and manufacture of the same
JPH0582653B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term