JPS63281219A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPS63281219A
JPS63281219A JP11535387A JP11535387A JPS63281219A JP S63281219 A JPS63281219 A JP S63281219A JP 11535387 A JP11535387 A JP 11535387A JP 11535387 A JP11535387 A JP 11535387A JP S63281219 A JPS63281219 A JP S63281219A
Authority
JP
Japan
Prior art keywords
thin film
alloy thin
recording
underlayer
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11535387A
Other languages
Japanese (ja)
Other versions
JP2557381B2 (en
Inventor
Yoichiro Tanaka
陽一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62115353A priority Critical patent/JP2557381B2/en
Publication of JPS63281219A publication Critical patent/JPS63281219A/en
Application granted granted Critical
Publication of JP2557381B2 publication Critical patent/JP2557381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To simultaneously realize high-density recording and improvement in S/N by forming a recording layer consisting of a thin ferromagnetic Co-Cr alloy film via an underlying layer consisting of a thin nonmagnetic Co-Cr-O alloy film on a substrate. CONSTITUTION:The thin nonmagnetic Co-Cr-O alloy film 12 is formed as the underlying layer between the substrate 11 and the recording layer in order to form the finer crystal grains of the thin ferromagnetic Co-Cr alloy film 13 constituting the recording layer. Namely, the finer crystal grains of the underlying layer are formed by intrusion of oxygen into the thin nonmagnetic Co-Cr alloy film 12 and the crystal grains of the thin ferromagnetic Co-Cr alloy film 13 formed thereon are also influenced by the underlying layer and are reduced in sizes. The thin ferromagnetic Co-Cr alloy film 13 of the recording layer is thereby provided with the fine crystal grains and large perpendicularly magnetic anisotropy in combination by which the high density recording and high S/N are simultaneously attained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は垂直磁気記録媒体に係り、特に強磁性Co−
Cr系合金薄膜からなる記録層を有する垂直磁気記録媒
体に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention relates to perpendicular magnetic recording media, and in particular to ferromagnetic Co-
The present invention relates to a perpendicular magnetic recording medium having a recording layer made of a Cr-based alloy thin film.

(従来の技術) 情報処理技術の発達に伴って、フロッピーディスク等の
磁気記録媒体に対する大容量化の要求はますます高まっ
ている。この要求に対し、膜面に垂直な方向の磁化を利
用して記録を行なう垂直磁気記録用の媒体、即も垂直磁
気記録媒体の研究・開発が活発になされている。
(Prior Art) With the development of information processing technology, there is an increasing demand for larger capacities for magnetic recording media such as floppy disks. In response to this demand, active research and development is being carried out on perpendicular magnetic recording media, in other words perpendicular magnetic recording media, in which recording is performed using magnetization in a direction perpendicular to the film surface.

垂直磁気記録媒体は垂直磁気異方性を備えた媒体であり
、現在実用されている面内記録用の磁気記録媒体の多く
を構成している塗布型媒体よりも、Co−Cr系合金等
からなる強磁性金属薄膜を真空蒸着法やスパッタ法によ
り形成して記録層とした金属薄膜型媒体が、より高密度
記録に適した媒体として期待されている。
Perpendicular magnetic recording media are media with perpendicular magnetic anisotropy, and are made from Co-Cr alloys, etc., rather than coating-type media, which constitute most of the magnetic recording media for in-plane recording currently in use. A metal thin film type medium in which a recording layer is formed by forming a ferromagnetic metal thin film by vacuum evaporation or sputtering is expected to be a medium suitable for higher density recording.

ところで、垂直磁気記録方式で高密度記録を達成するに
は、垂直磁気異方性の大きな記録層が必要であり、その
ためには強磁性金属薄膜の結晶配向性を良くしなければ
ならない。一方、高密度領域で大きな再生出力と良好な
S/Nを得るためには、記録層を構成する単位磁性粒子
をできるだけ微細にする必要がある。例えばスパッタ法
で形成したCo−Cr系合金等の強磁性金属薄膜におい
ては、個々の結晶粒が単位磁性粒子に対応するため、結
晶粒を微細化しなければならない。
By the way, in order to achieve high-density recording using the perpendicular magnetic recording method, a recording layer with large perpendicular magnetic anisotropy is required, and for this purpose, the crystal orientation of the ferromagnetic metal thin film must be improved. On the other hand, in order to obtain a large reproduction output and a good S/N ratio in a high-density region, it is necessary to make the unit magnetic particles constituting the recording layer as fine as possible. For example, in a ferromagnetic metal thin film such as a Co--Cr alloy formed by sputtering, each crystal grain corresponds to a unit magnetic particle, so the crystal grains must be made fine.

酸素のような不純物ガスを導入したアルゴン雰囲気中で
のスパッタを行なう等の方法により、結晶粒を微細化す
ることは可能であるが、この方法の場合には結晶配向性
の極度の低下を引起こし、垂直磁気異方性も劣化してし
まう。
Although it is possible to make crystal grains finer by sputtering in an argon atmosphere into which an impurity gas such as oxygen is introduced, this method causes an extreme decrease in crystal orientation. This causes the perpendicular magnetic anisotropy to deteriorate.

強磁性Co−Cr系合金薄膜の結晶配向性を良くするた
めに、GeまたはTiからなる下地層を用いる方法が知
られている(特開昭61−113122号公報)。しか
し、下地層に用いられるこれらの金属元素は酸素と結合
し易いため、均一性や再現性の点で問題がある。
In order to improve the crystal orientation of a ferromagnetic Co--Cr alloy thin film, a method of using an underlayer made of Ge or Ti is known (Japanese Patent Laid-Open No. 113122/1982). However, since these metal elements used in the underlayer easily combine with oxygen, there are problems in terms of uniformity and reproducibility.

記録層の下側に記録層を構成する強磁性Co−Cr系合
金薄膜よりもCr濃度の高い、即ち非磁性のCo−Cr
系合金薄膜層を形成して垂直配向性を良好にする方法も
提案されている(特開昭55−12232号公報)。こ
の場合、垂直配向性を改善するには非磁性Co−Cr系
合金薄膜層の膜厚を大きくする必要があり、従ってその
内部応力が記録層の強磁性Co−Cr系合金薄膜よりも
大きくなるため、媒体に大きなカールが生じるおそれが
ある。カールが発生すると、媒体に対する磁気ヘッドの
接触状態が不安定となり、良好な記録再生特性は望めな
い。
Below the recording layer is a non-magnetic Co-Cr containing a higher Cr concentration than the ferromagnetic Co-Cr alloy thin film constituting the recording layer.
A method of improving vertical alignment by forming a thin film layer of a alloy has also been proposed (Japanese Unexamined Patent Publication No. 12232/1983). In this case, in order to improve the perpendicular alignment, it is necessary to increase the thickness of the non-magnetic Co-Cr alloy thin film layer, and therefore its internal stress becomes larger than that of the ferromagnetic Co-Cr alloy thin film of the recording layer. Therefore, large curls may occur in the medium. When curling occurs, the contact state of the magnetic head with the medium becomes unstable, and good recording and reproducing characteristics cannot be expected.

(発明が解決しようとする問題点) このように従来の強磁性Co−Cr系合金薄膜からなる
記録層を有する垂直磁気記録媒体においては、強磁性C
o−Cr系合金薄膜の結晶配向性を損なわずに、結晶粒
を微細化することが難しく、高密度記録とS/Nの向上
を同時に実現することが困難であった。
(Problems to be Solved by the Invention) As described above, in a perpendicular magnetic recording medium having a recording layer made of a conventional ferromagnetic Co-Cr alloy thin film,
It has been difficult to make crystal grains finer without impairing the crystal orientation of an o-Cr alloy thin film, and it has been difficult to achieve high-density recording and improvement in S/N at the same time.

また、結晶配向性を良くするためにGeまたはTi薄膜
からなる下地層を用いたものでは、均一性、再現性の点
で問題があり、さらに非磁性C0−Cr系合金薄膜から
なる下地層を用いたものでは、カールの発生を招くこと
なしに結晶配向性を向上させることが難しいという問題
があった。
Furthermore, when using an underlayer made of a thin Ge or Ti film to improve crystal orientation, there are problems in terms of uniformity and reproducibility. However, there was a problem in that it was difficult to improve the crystal orientation without causing curling.

従って、本発明は強磁性Co−Cr系合金薄膜の結晶配
向性を損なわずに結晶粒を微細化し、S/Nを犠牲にす
ることなく高密度記録を達成できる垂直磁気記録媒体を
提供することを目的とする。
Therefore, an object of the present invention is to provide a perpendicular magnetic recording medium in which the crystal grains of a ferromagnetic Co--Cr alloy thin film are made fine without impairing the crystal orientation, and high-density recording can be achieved without sacrificing S/N. With the goal.

また、本発明は均一性・再現性に優れ、下地層の膜厚を
カールが発生しやすい程度に大きくすることなく強磁性
Co−Cr系薄膜の結晶配向性を良好にでき、高密度記
録の可能な垂直磁気記録媒体を提供することを目的とす
る。
In addition, the present invention has excellent uniformity and reproducibility, and can improve the crystal orientation of the ferromagnetic Co-Cr thin film without increasing the thickness of the underlayer to the extent that curling is likely to occur. The purpose is to provide a perpendicular magnetic recording medium that is possible.

[発明の構成] (問題点を解決するための手段) 本発明は、記録層を構成する強磁性Co−Cr系合金薄
膜の結晶粒を微細化するために、基体と記録層との間に
非磁性Co−Cr−0系合金薄膜を下地層として形成す
ることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method for refining the crystal grains of a ferromagnetic Co-Cr alloy thin film constituting the recording layer. It is characterized by forming a nonmagnetic Co-Cr-0 alloy thin film as an underlayer.

また、本発明は記録層を構成する強磁性Co−Cr系合
金薄膜の結晶配向性を効率的に向上させるために、基体
と記録層との間に下地層としてGeまたはTiの薄膜か
らなる第1の下地層および非磁性Co−Cr系合金薄膜
からなる第2の下地層を順次形成することを特徴とする
Furthermore, in order to efficiently improve the crystal orientation of the ferromagnetic Co--Cr alloy thin film constituting the recording layer, the present invention also provides a base layer consisting of a Ge or Ti thin film between the substrate and the recording layer. The method is characterized in that a first underlayer and a second underlayer made of a nonmagnetic Co--Cr alloy thin film are sequentially formed.

(作用) 非磁性Co−Cr−0系合金薄膜からなる下地層を形成
すると、記録層である強磁性Co−Cr系合金薄膜の結
晶粒が微細となり、高密度記録を行なった場合でも大き
な再生出力、従って高いS/Nが得られる。即ち、非磁
性Co−Cr系合金薄膜中に酸素が混入することにより
下地層の結晶粒が微細化し、その上に形成される強磁性
Co−Cr系合金薄膜の結晶粒も下地層の影響を受けて
微細化される。また、下地層としての非磁性Co−Cr
−0系合金薄膜は、酸素を含むために結晶配向性が若干
低下するものの、C「濃度がより低い強磁性Co−Cr
系合金薄膜に比較すれば良好な結晶配向性を示す。従っ
て、セルフエピタキシー効果によって、下地層の上に形
成される強磁性Co−Cr系合金薄膜も比較的良好な結
晶配向性を示す。
(Function) When a base layer made of a non-magnetic Co-Cr-0 alloy thin film is formed, the crystal grains of the ferromagnetic Co-Cr alloy thin film that is the recording layer become fine, resulting in large reproduction even during high-density recording. Output and therefore high S/N can be obtained. That is, the incorporation of oxygen into the non-magnetic Co-Cr alloy thin film makes the crystal grains of the underlayer finer, and the crystal grains of the ferromagnetic Co-Cr alloy thin film formed thereon are also affected by the underlayer. It is then refined. In addition, non-magnetic Co-Cr as an underlayer
Although the crystal orientation of the -0 series alloy thin film decreases slightly due to the inclusion of oxygen, the ferromagnetic Co-Cr with a lower concentration of C
It shows good crystal orientation when compared to other alloy thin films. Therefore, due to the self-epitaxy effect, the ferromagnetic Co--Cr alloy thin film formed on the underlayer also exhibits relatively good crystal orientation.

このように強磁性Co−Cr系合金薄膜の下地層として
非磁性Co−Cr−0系合金薄膜を形成することにより
、記録層の強磁性Co−Cr系合金薄膜が微細な結晶粒
と大きな垂直磁気異方性を併せ持つようになり、高密度
記録と高S/Nが同時に達成される。
By forming the non-magnetic Co-Cr-0 alloy thin film as the underlayer of the ferromagnetic Co-Cr alloy thin film in this way, the ferromagnetic Co-Cr alloy thin film of the recording layer can be formed perpendicular to fine crystal grains. It also has magnetic anisotropy, achieving high density recording and high S/N at the same time.

また、下地層は非磁性であるため、磁性Co−Cr系合
金薄膜を下地層として用いた場合のように、記録層との
界面で飽和磁化量の違いにより体禎磁荷が発生して記録
再生特性に悪影響を与えることはない。
In addition, since the underlayer is non-magnetic, body magnetic charges are generated due to the difference in the amount of saturation magnetization at the interface with the recording layer, as in the case where a magnetic Co-Cr alloy thin film is used as the underlayer. It does not adversely affect the playback characteristics.

一方、GeまたはTiの薄膜からなる第1の下地層と、
非磁性Co−Cr系合金薄膜からなる第2の下地層を積
層形成すると、記録層である強磁性Co−Cr系合金薄
膜の結晶配向性が著しく高まり、大きな垂直磁気異方性
が得られる。即ち、第2の磁性層である非磁性Co−C
r系合金薄膜はCr濃度がより低い強磁性Co−Cr系
合金薄膜に比較すれば良好な結晶配向性を示すので、第
2の下地層の上に形成される強磁性Co−Cr系合金薄
膜もセルフエピタキシー効果によって比較的良好な結晶
配向性を示す。そして、この非磁性Co−Cr系合金薄
膜からなる第2の下地層をより結晶配向性の良いGeま
たはTiの薄膜からなる第1の下地層の上に形成すれば
、第2の下地層の配向性、ひいては記録層の結晶配向性
は実用上十分にまで向上する。
On the other hand, a first base layer made of a thin film of Ge or Ti;
When the second underlayer made of a nonmagnetic Co--Cr alloy thin film is laminated, the crystal orientation of the ferromagnetic Co--Cr alloy thin film serving as the recording layer is significantly increased, and a large perpendicular magnetic anisotropy is obtained. That is, the non-magnetic Co-C which is the second magnetic layer
Since the r-based alloy thin film exhibits better crystal orientation compared to a ferromagnetic Co-Cr-based alloy thin film with a lower Cr concentration, the ferromagnetic Co-Cr-based alloy thin film formed on the second underlayer Also shows relatively good crystal orientation due to self-epitaxy effect. If the second underlayer made of this non-magnetic Co-Cr alloy thin film is formed on the first underlayer made of a Ge or Ti thin film with better crystal orientation, the second underlayer is The orientation, and ultimately the crystal orientation of the recording layer, is improved to a level sufficient for practical use.

また、記録層と接する第2の下地層は非磁性であるため
、磁性Co−Cr系合金薄膜を下地層として用いた場合
のように、記録層との界面で飽和磁化量の違いにより体
積磁荷が発生して記録再生特性に悪影響を与えることは
ない。
In addition, since the second underlayer in contact with the recording layer is nonmagnetic, the difference in saturation magnetization at the interface with the recording layer causes volume magnetization, as in the case where a magnetic Co-Cr alloy thin film is used as the underlayer. The generation of loads will not adversely affect the recording and reproducing characteristics.

(実施例) まず、特許請求の範囲第1項に記載された発明に係る実
施例について説明する。
(Example) First, an example according to the invention described in claim 1 will be described.

第1図は本発明の一実施例に係る垂直磁気記録媒体の構
成を模式的に示す断面図である。第1図において、基体
11は樹脂製のフィルム状基体であり、この基体11の
両面に下地層として厚さ300人程炭層非磁性Co−C
r−0合金薄膜12がそれぞれ形成され、さらにその上
に記録層として厚さ0.3μm程度の強磁性Go−Cr
合金薄膜13がそれぞれ形成されている。
FIG. 1 is a sectional view schematically showing the structure of a perpendicular magnetic recording medium according to an embodiment of the present invention. In FIG. 1, the substrate 11 is a film-like substrate made of resin, and a carbon layer of non-magnetic Co-C is formed on both sides of the substrate 11 with a thickness of about 300 as an underlayer.
An r-0 alloy thin film 12 is formed on each film, and a ferromagnetic Go-Cr film with a thickness of about 0.3 μm is further formed thereon as a recording layer.
An alloy thin film 13 is formed respectively.

非磁性Co−Cr−0合金薄膜12はCr濃度が27w
t%を超える値、例えば30wt%程度であり、Co−
Crターゲットを用い、酸素を含むA「雰囲気中でRF
マグネトロンスパパワ法により形成される。この際、酸
素濃度が高いとCo−Crの酸化物薄膜が形成されてし
まうため、酸素濃度が10%以下の酸素・Ar雰囲気中
でスパッタを行なうことが望ましい。Cr濃度が27シ
t%を超えるCo−Cr−0合金薄膜は飽和磁化量Ms
が記録層のそれより小さく、非磁性と見なすことができ
る。
The nonmagnetic Co-Cr-0 alloy thin film 12 has a Cr concentration of 27w.
The value exceeds t%, for example about 30wt%, and Co-
RF in an oxygen-containing A atmosphere using a Cr target.
Formed by the magnetron spa power method. At this time, since a Co--Cr oxide thin film will be formed if the oxygen concentration is high, it is desirable to perform sputtering in an oxygen/Ar atmosphere with an oxygen concentration of 10% or less. A Co-Cr-0 alloy thin film with a Cr concentration exceeding 27 sit% has a saturation magnetization Ms
is smaller than that of the recording layer and can be considered non-magnetic.

記録層としての強磁性Co−Cr合金薄膜13はC「濃
度が27wt%以下、例えば20wt%であり、例えば
DCマグネトロンスパッタ法により形成される。この強
磁性Co−Cr合金薄膜13は膜面に垂直方向に磁化容
易軸を持つように配向され、いわゆる垂直磁気異方性を
有する。
The ferromagnetic Co-Cr alloy thin film 13 as a recording layer has a carbon concentration of 27 wt% or less, for example 20 wt%, and is formed by, for example, DC magnetron sputtering. It is oriented to have an axis of easy magnetization in the vertical direction, and has so-called perpendicular magnetic anisotropy.

このように構成された垂直磁気記録媒体では、Co−C
r合金薄膜13が微細な結晶粒を有し、またCo−Cr
の結晶軸であるC軸が膜面(基体11の主面)に対して
垂直方向に良く配向して、高密度記録に適したものであ
ると同時に、大きな再生出力と高いS/Nが得られる。
In the perpendicular magnetic recording medium configured in this way, Co-C
The r-alloy thin film 13 has fine crystal grains and is made of Co-Cr.
The C-axis, which is the crystal axis of the substrate, is well oriented perpendicularly to the film surface (principal surface of the substrate 11), making it suitable for high-density recording, and at the same time provides large playback output and high S/N. It will be done.

第1表は、種々の材料の下地層の上に形成したCo−C
r合金薄膜の結晶粒径と、S/Nおよび記録密度特性を
調べた実験結果を示したものである。結晶粒径は強磁性
Co−Cr合金薄膜表面を高分解能の走査型電子顕微鏡
で観察して測定した。
Table 1 shows Co-C formed on base layers of various materials.
This figure shows the results of an experiment in which the crystal grain size, S/N, and recording density characteristics of an r-alloy thin film were investigated. The crystal grain size was measured by observing the surface of the ferromagnetic Co--Cr alloy thin film using a high-resolution scanning electron microscope.

S/Nと記録密度特性は、3.5インチ径のフロッピー
ディスク状に作製した媒体を毎分3oo回転で回転させ
ながら、ギャップ長0.3μmのフェライト製リングヘ
ッドを接触させて測定した。記録信号にはNRZ Iパ
ターンのオール1°S信号を用い、低記録密度(1kB
PI)における再生出力の50%の再生出力を与える記
録密度(D5o)を測定して記録密度特性を評価した。
The S/N and recording density characteristics were measured by contacting a ferrite ring head with a gap length of 0.3 μm while rotating a medium prepared in the shape of a 3.5-inch diameter floppy disk at 300 rotations per minute. All 1°S signals of NRZ I pattern are used for the recording signal, and the recording density is low (1kB).
The recording density characteristics were evaluated by measuring the recording density (D5o) that gives a reproduction output of 50% of the reproduction output in PI).

p5Gはこれが大きい程、高密度の記録ができることを
示している。また、S/Nは70kBP+の記録、密度
における再生出力とノイズとの比である。
The larger the value of p5G, the higher the density of recording. Further, S/N is the ratio of reproduction output to noise at a recording density of 70 kBP+.

第1表 第1表から明らかなように、C「濃度が27.0w1%
を超える非磁性Co−Cr−0合金薄膜を下地層とする
と、強磁性co−Cr合金薄膜の結晶粒径が微細となり
、S/Nが高<、D50の値も大きいため、良好な高密
度記録が可能である。
As is clear from Table 1, the concentration of C is 27.0w1%.
When a non-magnetic Co-Cr-0 alloy thin film exceeding Recording is possible.

第2図は本発明の他の実施例に係る垂直磁気記録媒体の
断面図であり、耐熱性フィルム状基体21の両面に例え
ば厚さ 0.5μmの軟磁性層22がそれぞれ形成され
、その上に例えば厚さ 150人でCr9度が28wt
%の非磁性Co−Cr−Mo−0合金薄膜23が下地層
としてそれぞれ形成され、さらにその上に記録層として
の強磁性Co−Cr合金薄膜24がそれぞれ形成されて
いる。軟磁性層22としては例えばパーマロイ薄膜が形
成される。また、軟磁性層22.非磁性Co−Cr−M
o−0合金薄膜23および強磁性Co−Cr合金薄膜2
4は真空蒸着法によって形成される。
FIG. 2 is a sectional view of a perpendicular magnetic recording medium according to another embodiment of the present invention, in which soft magnetic layers 22 with a thickness of, for example, 0.5 μm are formed on both sides of a heat-resistant film-like substrate 21, and For example, the thickness is 150 people and Cr9 degree is 28wt.
% non-magnetic Co--Cr--Mo-0 alloy thin films 23 are formed as underlayers, and ferromagnetic Co--Cr alloy thin films 24 are formed thereon as recording layers. As the soft magnetic layer 22, for example, a permalloy thin film is formed. In addition, the soft magnetic layer 22. Non-magnetic Co-Cr-M
o-0 alloy thin film 23 and ferromagnetic Co-Cr alloy thin film 2
4 is formed by a vacuum evaporation method.

このように構成された垂直磁気記録媒体においても、先
の実施例で説明した垂直磁気記録媒体と同様に、良好な
結晶配向性と高密度記録特性が得られた。
In the perpendicular magnetic recording medium configured in this manner, good crystal orientation and high-density recording characteristics were obtained, similar to the perpendicular magnetic recording medium described in the previous example.

なお、上記2つの実施例においては記録層として強磁性
Co−Cr合金薄膜を用いたが、例えばCo−Cr1.
:V、Rh、Ni、W等の第3元素を含むものでもよく
、要するにCo、Crを主成分とする強磁性Co−Cr
系合金薄膜であればよい。
In the above two examples, a ferromagnetic Co-Cr alloy thin film was used as the recording layer, but for example, Co-Cr1.
: May contain a third element such as V, Rh, Ni, W, etc. In short, ferromagnetic Co-Cr whose main components are Co and Cr.
Any type alloy thin film may be used.

また、下地層として非磁性(o−Cr−0合金薄膜を用
いたが、Co、CrおよびOに第3元素または第4元素
を添加したもの、例えばCo−Cr−V−,0,Co−
Cr−Rh−0,Co−Cr−N1−W−0等の合金薄
膜でもよく、要は非磁性Co−Cr−0系合金薄膜であ
ればよい。基体の材質も例えばAI製、ガラス基体等種
々選択することができる。また、基体の片面にのみ記録
層が形成されている媒体にも適用することができる。
In addition, as an underlayer, a nonmagnetic (o-Cr-0 alloy thin film was used, but a layer with a third or fourth element added to Co, Cr, and O, such as Co-Cr-V-, 0, Co-
An alloy thin film such as Cr-Rh-0 or Co-Cr-N1-W-0 may be used, and in short, a non-magnetic Co-Cr-0 alloy thin film may be used. The material of the substrate can be selected from various materials such as AI, glass substrate, etc. Furthermore, the present invention can also be applied to a medium in which a recording layer is formed only on one side of the substrate.

次に、特許請求の範囲第5項に記載された発明に係る実
施例について説明する。
Next, an embodiment according to the invention set forth in claim 5 will be described.

第3図は本発明の実施例に係る垂直磁気記録媒体の構成
を模式的に示す断面図である。第3図において、基体3
1は樹脂製のフィルム状基体であリ、この基体31の両
9面に第1の下地層として厚さ 300人程炭層Ge薄
膜32、および第2の下地層として厚さ 300人程炭
層非磁性Co−Cr系合金の非磁性Co−Cr−0合金
薄膜33がそれぞれ形成され、さらにその上に記録層と
して厚さ0.3μ尻程度の強磁性Co−Cr合金薄膜3
4がそれぞれ形成されている。尚、本発明においては非
磁性Co−Cr系合金薄膜は非磁性Co−Cr合金薄膜
であってもよい。
FIG. 3 is a cross-sectional view schematically showing the structure of a perpendicular magnetic recording medium according to an embodiment of the present invention. In FIG. 3, the base 3
Reference numeral 1 is a film-like substrate made of resin, and on both nine sides of this substrate 31, a first base layer with a thickness of about 300 mm is coated with a coal seam Ge thin film 32, and a second base layer is a coal seam layer with a thickness of about 300 mm. A non-magnetic Co-Cr-0 alloy thin film 33 of a magnetic Co-Cr alloy is formed, and a ferromagnetic Co-Cr alloy thin film 3 with a thickness of about 0.3 μm is further formed thereon as a recording layer.
4 are formed respectively. In the present invention, the non-magnetic Co--Cr alloy thin film may be a non-magnetic Co--Cr alloy thin film.

非磁性Co−Cr−0合金薄膜33はCr濃度が27w
t%を超える値、例えば30wt%程度であり、Co−
Crターゲットを用い、酸素を含むAr雰囲気中でRF
マグネトメンスパパワ法により形成される。この際、酸
素濃度が高いとCo−Crの酸化物薄膜が形成されてし
まうため、酸素濃度が10%以下の酸素・A「雰囲気中
でスパッタを行なうことが望ましい。Cr濃度が27w
t%を超えるCo−Cr−0合金薄膜は飽和磁化量Ms
が記録層のそれより小さく、非磁性と見なすことができ
る。
The nonmagnetic Co-Cr-0 alloy thin film 33 has a Cr concentration of 27w.
The value exceeds t%, for example about 30wt%, and Co-
RF using a Cr target in an Ar atmosphere containing oxygen
Formed by magnetomespapower method. At this time, if the oxygen concentration is high, a Co-Cr oxide thin film will be formed, so it is desirable to perform sputtering in an oxygen/A atmosphere with an oxygen concentration of 10% or less.
The Co-Cr-0 alloy thin film exceeding t% has a saturation magnetization Ms
is smaller than that of the recording layer and can be considered non-magnetic.

記録層としての強磁性Co−Cr合金薄膜34はC「濃
度が27wt%以下、例えば19wt%であり、例えば
DCマグネトロンスパッタ法により形成される。この強
磁性Co−Cr合金薄膜34は膜面に垂直方向に磁化容
易軸を持つように配向され、いわゆる垂直磁気異方性を
有する。
The ferromagnetic Co-Cr alloy thin film 34 as a recording layer has a carbon concentration of 27 wt% or less, for example 19 wt%, and is formed by, for example, DC magnetron sputtering. It is oriented to have an axis of easy magnetization in the vertical direction, and has so-called perpendicular magnetic anisotropy.

このように構成された垂直磁気記録媒体では、強磁性C
o−Cr合金薄膜34が、Co−Crの結晶軸であるC
軸が膜面(基体11の主面)に対して垂直方向に極めて
良く配向しており、かつ優れた記録密度特性を有してい
る。
In the perpendicular magnetic recording medium configured in this way, the ferromagnetic C
The o-Cr alloy thin film 34 has C which is the crystal axis of Co-Cr.
The axes are extremely well oriented in the direction perpendicular to the film surface (main surface of the substrate 11) and have excellent recording density characteristics.

第2表は、種々の材料の下地層の上に形成した強磁性C
o−Cr合金薄膜の結晶配向性と、記録密度特性を調べ
た実験結果を示したものである。
Table 2 shows the ferromagnetic C formed on the underlayer of various materials.
This figure shows the results of an experiment investigating the crystal orientation and recording density characteristics of an o-Cr alloy thin film.

結晶配向性は、強磁性Co−Cr結晶の(002)面に
対するX線回折強度■  を測定して評価した。
Crystal orientation was evaluated by measuring the X-ray diffraction intensity (2) for the (002) plane of the ferromagnetic Co--Cr crystal.

■  が大きい程、結晶配向性が良好であることを示す
。なお、非磁性Co−Cr薄膜上に形成した強磁性Co
−Cr合金薄膜の結晶配向性は、非磁性Co−Cr合金
薄膜のI  とその上に強磁性Co−Cr合金薄膜を形
成したときのI  と差を評価したものである。また、
記録密度特性は、3.5インチ径のフロッピーディスク
状に作製した媒体を毎分300回転で回転させながら、
ギャップ長0.3μmのフェライト製リングヘッドを接
触させて測定した。記録信号にはNRZ Iパターンの
オール1°S信号を用い、低記録密度(1kBPl)に
おける再生出力の50%の再生出力を与える記録密度(
D5o)を測定して記録密度特性を評価した。
(2) The larger the value, the better the crystal orientation. Note that ferromagnetic Co formed on a nonmagnetic Co-Cr thin film
The crystal orientation of the -Cr alloy thin film is evaluated by evaluating the difference between I of a non-magnetic Co-Cr alloy thin film and I when a ferromagnetic Co-Cr alloy thin film is formed thereon. Also,
The recording density characteristics are determined by rotating a floppy disk-shaped medium with a diameter of 3.5 inches at 300 revolutions per minute.
The measurement was carried out by contacting a ferrite ring head with a gap length of 0.3 μm. All 1°S signals of the NRZ I pattern are used for the recording signal, and the recording density (1kBPl) gives a reproduction output of 50% of the reproduction output at a low recording density (1kBPl).
D5o) was measured to evaluate recording density characteristics.

D5oはこれが大きい程、高密度の記録ができることを
示している。
The larger D5o is, the higher the density recording is possible.

第2表から明らかなように、GeまたはTiの薄膜から
なる第1の下地層と、Cr濃度が27wt%を超える非
磁性Co−Cr合金薄膜からなる第2の下地層を形成す
ると、非常に良好な結晶配向性が得られ、D5oの値も
大きいため、良好な高密度記録が可能である。
As is clear from Table 2, when a first underlayer made of a thin film of Ge or Ti and a second underlayer made of a nonmagnetic Co-Cr alloy thin film with a Cr concentration exceeding 27 wt% are formed, Since good crystal orientation is obtained and the value of D5o is large, good high-density recording is possible.

第4図は本発明の他の実施例に係る垂直磁気記録媒体の
断面図であり、耐熱性フィルム状基体41の両面に例え
ば厚さ0.4μmの軟磁性層42がそれぞれ形成され、
その上に第1の下地層としての例えば厚さ 200人の
Ti薄膜43と、第2の下地層としての例えば厚さ 2
50人でC「濃度が27.5wt%の非磁性Co−Cr
−Nb合金薄膜44がそれぞれ形成され、さらにその上
に記録層としての強磁性Co−Cr合金薄膜45がそれ
ぞれ形成されている。軟磁性層42としては例えばパー
マロイ薄膜が形成される。また、軟磁性層42゜Ti薄
膜43.非磁性Co−Cr−Nb合金薄膜44および強
磁性Co−Cr合金薄膜45は真空蒸着法によって形成
される。
FIG. 4 is a cross-sectional view of a perpendicular magnetic recording medium according to another embodiment of the present invention, in which soft magnetic layers 42 having a thickness of, for example, 0.4 μm are formed on both sides of a heat-resistant film-like substrate 41.
On top of that, a Ti thin film 43 with a thickness of, for example, 200 mm as a first underlayer, and a Ti thin film 43 with a thickness of, for example, 200 mm as a second underlayer.
50 people received C "non-magnetic Co-Cr with a concentration of 27.5 wt%"
A -Nb alloy thin film 44 is formed, and a ferromagnetic Co--Cr alloy thin film 45 as a recording layer is further formed thereon. As the soft magnetic layer 42, for example, a permalloy thin film is formed. In addition, the soft magnetic layer 42°Ti thin film 43. The nonmagnetic Co-Cr-Nb alloy thin film 44 and the ferromagnetic Co-Cr alloy thin film 45 are formed by vacuum evaporation.

このように構成された垂直磁気記録媒体においても、先
の実施例で説明した垂直磁気記録媒体と同様に、良好な
結晶配向性と高密度記録特性が得られた。
In the perpendicular magnetic recording medium configured in this manner, good crystal orientation and high-density recording characteristics were obtained, similar to the perpendicular magnetic recording medium described in the previous example.

なお、上記2つの実施例においては記録層として強磁性
Co−Cr合金薄膜を用いたが、例えばCo−CrにV
、Rh、Ni、W等の第3元素を含むものでもよく、要
するにCo、Crを主成分とする強磁性Co−Cr系合
金薄膜であればよい。
In addition, in the above two examples, a ferromagnetic Co-Cr alloy thin film was used as the recording layer, but for example, V
, Rh, Ni, W, or other third elements. In short, any ferromagnetic Co--Cr alloy thin film containing Co and Cr as main components may be used.

また、下地層として非磁性Co−Cr−0合金薄膜を用
いたが、Co、Crに第3元素または第4元素を添加し
たもの、例えばCo−Cr−V。
In addition, although a nonmagnetic Co-Cr-0 alloy thin film was used as the underlayer, a layer obtained by adding a third element or a fourth element to Co or Cr, such as Co-Cr-V.

Co−Cr −Rh、Co−Cr−Ni −W等の合金
薄膜でもよく、要は非磁性Co−Cr−0系合金薄膜で
あればよい。基体の材質も種々選択することができる。
An alloy thin film such as Co-Cr-Rh or Co-Cr-Ni-W may be used, and in short, a non-magnetic Co-Cr-0 alloy thin film may be used. Various materials can also be selected for the base.

また、基体の片面にのみ記録層が形成されている媒体に
も適用することができる。
Furthermore, the present invention can also be applied to a medium in which a recording layer is formed only on one side of the substrate.

[発明の構成コ 本発明によれば、強磁性Co−Cr系合金薄膜からなる
記録層の下地層として非磁性Co=Cr−〇系合金薄膜
を形成することにより、大きな垂直磁気異方性を維持し
たまま結晶粒を微細化し、高S/Nおよび高記録密度特
性が得られる。
[Structure of the Invention] According to the present invention, a large perpendicular magnetic anisotropy can be achieved by forming a non-magnetic Co=Cr-○ alloy thin film as the underlayer of a recording layer made of a ferromagnetic Co-Cr alloy thin film. By making the crystal grains finer while maintaining the same, high S/N and high recording density characteristics can be obtained.

本発明によれば、強磁性Co−Cr系合金からなる記録
層の下地層として、GeまたはTiの薄膜からなる第1
の下地層と、非磁性Co−Cr系合金薄膜からなる第2
の下地層を形成することにより、下地層が単層のものに
比べ結晶配向性が著しく良好で、かつ均一で優れた高密
度記録特性が得られる。
According to the present invention, a first layer made of a thin film of Ge or Ti is used as an underlayer of a recording layer made of a ferromagnetic Co-Cr alloy.
and a second layer consisting of a non-magnetic Co-Cr alloy thin film.
By forming the underlayer, crystal orientation is significantly better than when the underlayer is a single layer, and uniform and excellent high-density recording characteristics can be obtained.

また、本発明では下地層が非磁性であるため、記録層内
部に体積磁荷を発生させて記録再生特性を損なうことが
ない。
Further, in the present invention, since the underlayer is non-magnetic, there is no possibility that volume magnetic charges are generated inside the recording layer, thereby impairing recording and reproducing characteristics.

さらに、本発明によれば記録層と同系、即ちCo−Cr
系合金を下地層として使用していることにより、記録層
と下地層とで熱膨張係数等の特性が近いため、スパッタ
法や真空蒸着法のように基体が高温となる成膜方法を用
いた場合においても、記録層・下地層間での剥離が生じ
難く、従って耐久性を向上させることができる。
Furthermore, according to the present invention, the same type as the recording layer, that is, Co--Cr
Because the recording layer and the underlayer have similar characteristics such as coefficient of thermal expansion due to the use of a base alloy based on the base layer, it is possible to use a film formation method in which the substrate is heated to a high temperature, such as sputtering or vacuum evaporation. Even in such cases, peeling between the recording layer and the underlayer is less likely to occur, and therefore durability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図および第4図はそれぞれ本発明
の実施例に係る垂直磁気記録媒体の構成を模式的に示す
断面図である。 11、’21・・・基体、12.23・・・非磁性Co
−C「−0合金薄膜(下地層)、13.24・・・強磁
性Co−Cr合金薄膜(記録層)、22・・・軟磁性層
、31.41・・・基体、32・・・Ge薄膜(第1の
下地層)、33.44・・・非磁性Co−Cr合金薄膜
(第2の下地層)、34.45・・・強磁性Co−Cr
合金薄膜(記録層)、42・・・軟磁性層、43・・・
Ti薄膜(第1の下地層)。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are sectional views each schematically showing the structure of a perpendicular magnetic recording medium according to an embodiment of the present invention. 11,'21...Substrate, 12.23...Nonmagnetic Co
-C"-0 alloy thin film (base layer), 13.24... Ferromagnetic Co-Cr alloy thin film (recording layer), 22... soft magnetic layer, 31.41... base, 32... Ge thin film (first underlayer), 33.44...Nonmagnetic Co-Cr alloy thin film (second underlayer), 34.45...Ferromagnetic Co-Cr
Alloy thin film (recording layer), 42... Soft magnetic layer, 43...
Ti thin film (first underlayer). Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (8)

【特許請求の範囲】[Claims] (1)基体上に非磁性Co−Cr−O系合金薄膜からな
る下地層を介して強磁性Co−Cr系合金薄膜からなる
記録層を形成してなることを特徴とする垂直磁気記録媒
体。
(1) A perpendicular magnetic recording medium characterized in that a recording layer made of a ferromagnetic Co--Cr alloy thin film is formed on a substrate via an underlayer made of a non-magnetic Co--Cr-O alloy thin film.
(2)下地層を構成する非磁性Co−Cr−O系合金薄
膜は27wt%を超えるCrを含有することを特徴とす
る特許請求の範囲第1項記載の垂直磁気記録媒体。
(2) The perpendicular magnetic recording medium according to claim 1, wherein the nonmagnetic Co-Cr-O alloy thin film constituting the underlayer contains more than 27 wt% of Cr.
(3)基体と下地層との間に軟磁性層を有することを特
徴とする特許請求の範囲第1項記載の垂直磁気記録媒体
(3) The perpendicular magnetic recording medium according to claim 1, further comprising a soft magnetic layer between the substrate and the underlayer.
(4)下地層および記録層はスパッタ法また真空蒸着法
により形成されていることを特徴とする特許請求の範囲
第1項記載の垂直磁気記録媒体。
(4) The perpendicular magnetic recording medium according to claim 1, wherein the underlayer and the recording layer are formed by a sputtering method or a vacuum evaporation method.
(5)基体上にGeまたはTiの薄膜からなる第1の下
地層および非磁性Co−Cr系合金薄膜からなる第2の
下地層を介して強磁性Co−Cr系合金薄膜からなる記
録層を形成してなることを特徴とする垂直磁気記録媒体
(5) A recording layer made of a ferromagnetic Co-Cr alloy thin film is formed on the substrate via a first underlayer made of a Ge or Ti thin film and a second underlayer made of a non-magnetic Co-Cr alloy thin film. A perpendicular magnetic recording medium characterized in that it is formed by forming.
(6)第2の下地層を構成する非磁性Co−Cr系合金
薄膜は27wt%を超えるCrを含有することを特徴と
する特許請求の範囲第5項記載の垂直磁気記録媒体。
(6) The perpendicular magnetic recording medium according to claim 5, wherein the nonmagnetic Co--Cr alloy thin film constituting the second underlayer contains more than 27 wt% of Cr.
(7)基体と第1の下地層との間に軟磁性層を有するこ
とを特徴とする特許請求の範囲第5項記載の垂直磁気記
録媒体。
(7) The perpendicular magnetic recording medium according to claim 5, further comprising a soft magnetic layer between the substrate and the first underlayer.
(8)第2の下地層および記録層はスパッタ法または真
空蒸着法により形成されていることを特徴とする特許請
求の範囲第5項記載の垂直磁気記録媒体。
(8) The perpendicular magnetic recording medium according to claim 5, wherein the second underlayer and the recording layer are formed by a sputtering method or a vacuum evaporation method.
JP62115353A 1987-05-12 1987-05-12 Perpendicular magnetic recording media Expired - Lifetime JP2557381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62115353A JP2557381B2 (en) 1987-05-12 1987-05-12 Perpendicular magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115353A JP2557381B2 (en) 1987-05-12 1987-05-12 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPS63281219A true JPS63281219A (en) 1988-11-17
JP2557381B2 JP2557381B2 (en) 1996-11-27

Family

ID=14660425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115353A Expired - Lifetime JP2557381B2 (en) 1987-05-12 1987-05-12 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JP2557381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162222A (en) * 1986-01-09 1987-07-18 Teijin Ltd Vertical magnetic recording medium and its production
JPS6398827A (en) * 1986-10-15 1988-04-30 Sony Corp Perpendicular magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162222A (en) * 1986-01-09 1987-07-18 Teijin Ltd Vertical magnetic recording medium and its production
JPS6398827A (en) * 1986-10-15 1988-04-30 Sony Corp Perpendicular magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media

Also Published As

Publication number Publication date
JP2557381B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US5908514A (en) Magnetic alloy for improved corrosion resistance and magnetic performance
US6686071B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
US6544672B1 (en) Magnetic recording medium and magnetic storage
JP2991672B2 (en) Magnetic recording media
JPH09288818A (en) Magnetic recording medium
US6671116B2 (en) Magnetic recording system including magnetic recording medium having three-dimensional random orientation of axis of easy magnetization
JPS63281219A (en) Perpendicular magnetic recording medium
US7144641B2 (en) Magnetic backlayer
JP2006085751A (en) Magnetic recording medium and magnetic storage device
JP2005174531A (en) Magnetic body for non-reactive treatment for use in granular perpendicular recording
JP3582435B2 (en) Perpendicular magnetic recording medium
JP2000215432A (en) Perpendicular magnetic recording medium
JPH0773433A (en) Magnetic recording medium, its production and magnetic recorder
JP3434845B2 (en) Magnetic recording medium, method for manufacturing the magnetic recording medium, and magnetic storage device
JPH0831639A (en) Vertical magnetic recording medium
JPH10289437A (en) Magnetic recording medium and magnetic storage device
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JP2001291220A (en) Magnetic recording medium and magnetic storage device
JP2906480B2 (en) Magnetic recording medium
JPH04311809A (en) Perpendicular magnetic recording medium and production thereof
JP3394108B2 (en) Magnetic storage device and multilayer magnetic layer magnetic recording medium
JP2002063712A (en) Magnetic recording medium and magnetic recording apparatus using the same
JP2508639B2 (en) Perpendicular magnetic recording media
JPS60191428A (en) Vertically magnetized recording body
JPH05189740A (en) Magnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 11