JPS6396962A - Fieid-effect transistor and manufacture thereof - Google Patents

Fieid-effect transistor and manufacture thereof

Info

Publication number
JPS6396962A
JPS6396962A JP24364486A JP24364486A JPS6396962A JP S6396962 A JPS6396962 A JP S6396962A JP 24364486 A JP24364486 A JP 24364486A JP 24364486 A JP24364486 A JP 24364486A JP S6396962 A JPS6396962 A JP S6396962A
Authority
JP
Japan
Prior art keywords
channel region
drain
source
region
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24364486A
Other languages
Japanese (ja)
Inventor
Junichi Sone
曽根 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24364486A priority Critical patent/JPS6396962A/en
Publication of JPS6396962A publication Critical patent/JPS6396962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To increase the mutual conductance of a field effect transistor while alleviating the electric field intensity of a channel region by increasing the impurity concentration of the channel region from a source toward a drain. CONSTITUTION:A channel region 2 in which an N-type impurity is doped is formed on a semiconductor insulating substrate 1 made of gallium oxide or the like, a gate 3 is formed thereon, source, drain N-type high concentration impurity regions 4a, 4b are formed on the gate 3 in a self-aligning manner, and source and drain electrodes 5a, 5b are provided thereon to form an FET. The impurity concentration of the region 2 is raised from the source to the drain, a depleted layer is extended more toward the drain to alleviate an electric field intensity in the region 2, and its absolute value increases more toward the drain. As a result, mutual conductance gm is increased to form an FET having high performance at a high speed.

Description

【発明の詳細な説明】 〔差業上の利用分野J 本発明社電界効果トランジスタ及びその製造方法に関し
、特にシlットキー接合製又はPN接合凰のゲートを有
する電界効果トランジスタ及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Differential Fields of Application J] The present invention relates to a field effect transistor and a method for manufacturing the same, and particularly relates to a field effect transistor having a Schittky junction or PN junction gate and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

半導体の能動層上にシ1ットキ接合型又はPN接合温の
ゲートを設け、更にソース及びドレイン電極を設けるこ
とで電界効果トランジスタを構成することは公知である
It is known to construct a field effect transistor by providing a Schittke junction type or PN junction temperature gate on an active layer of a semiconductor, and further providing source and drain electrodes.

第6図は従来のFETの一例の模式的断面図である。FIG. 6 is a schematic cross-sectional view of an example of a conventional FET.

この例は、半絶縁性基板1の上にn型の不純物を一様に
ドープしたチャネル領域2′ヲ設け、チャネル領域2′
の上にシ曹ットキー接合屋のゲート3を設け、チャネル
領域2′の両側にはnm高濃度の不純物領域4a及び4
bを設け、更にその上にソース及びドレイン電極5a及
び5bを設けている。
In this example, a channel region 2' uniformly doped with n-type impurities is provided on a semi-insulating substrate 1, and the channel region 2'
A semiconductor gate 3 is provided on top of the gate 3, and high-concentration impurity regions 4a and 4 are formed on both sides of the channel region 2'.
b is provided, and source and drain electrodes 5a and 5b are further provided thereon.

従って、シ目ットキー接合による空乏層?′が拡がシ、
そこを縫うようにしてチャネル領域2′をl電子が走行
する。
Therefore, is there a depletion layer due to the Shimettky junction? ′ expands,
l electrons travel through the channel region 2' as if weaving through it.

以下に、この実施例の動作態yiを説明する。The operating state yi of this embodiment will be explained below.

先ず、第6図に示すように、ゲート3のソース端を原点
にしてドレインの方向にX軸をと9ゲート3の電位をO
K置くと、xKおけるチャネル領域内の電位V(X)は
、座標Xにおける空乏磨鉱がシa(勾を用いて で表わすことができる。ここで、qは電子の電荷量の絶
装置、n(>はチャネル領域2′ の不純物濃度、tは
チャネル領域2′の厚さ、eは比誘′F!L率、eo 
 は真空の誘電率、VPはピンチオフ電圧である。
First, as shown in FIG. 6, with the source end of gate 3 as the origin and the X axis in the direction of the drain, the potential of gate 3 is set to O.
The potential V(X) in the channel region at xK can be expressed by the gradient of the depletion atomizer at the coordinate X. Here, q is the absolute value of the electron charge, n (> is the impurity concentration of the channel region 2', t is the thickness of the channel region 2', e is the relative dielectric constant 'F!L ratio, eo
is the dielectric constant of vacuum, and VP is the pinch-off voltage.

又、ソース電極5aとドレイン電極5bの間に流れる最
大ドレイン電流ID8  は I Ds = noq (t−嘲)μl藁IW=n0q
(t−aL)7*ESW    −・・(31=noq
 (t−a6 )a Eo Wで与えられる。ここでμ
は電子の移動度、Wはゲート幅、E (X)は座標Xに
おけるチャネル領域2′内の電界強度、Esは電子が速
度飽和を起こす電界強度、EOけチャネル領域2′内の
ソース1AcX=0)における電界強度aLはドレイン
端(X=L)における空乏層の拡がシ、aoはソース端
(x=o)における空乏層の拡がシである。
Also, the maximum drain current ID8 flowing between the source electrode 5a and the drain electrode 5b is IDs = noq (t-scorn)μlIW=n0q
(t-aL)7*ESW-...(31=noq
(t-a6)a Eo W is given. Here μ
is the electron mobility, W is the gate width, E (X) is the electric field strength in the channel region 2' at the coordinate The electric field strength aL at 0) is the expansion of the depletion layer at the drain end (X=L), and ao is the expansion of the depletion layer at the source end (x=o).

又、シ■ットキー接合の障壁電圧Vbiはと表わすこと
ができる。
Further, the barrier voltage Vbi of the Schittky junction can be expressed as follows.

更に、チャネル領域2′内の電界強度Eに)は電位V(
菊との間で という関係がある。
Furthermore, the electric field strength E in the channel region 2') is equal to the potential V (
There is a relationship with chrysanthemums.

第7図(JL)及び(b)はそれぞれ第6図のチャネル
領域の空乏層の拡がシの分布図及び電界強度の分布図で
ある。
FIGS. 7(JL) and (b) are respectively a distribution diagram of the expansion of the depletion layer in the channel region of FIG. 6 and a distribution diagram of the electric field strength.

第7図(a)に示すように、空乏層の拡が1mに)は、
ソース側からドレイン側に向かうにつれ大きくなるので
チャネルはドレイン側程狭くなる。
As shown in Figure 7(a), when the depletion layer expands to 1 m),
Since the size increases from the source side to the drain side, the channel becomes narrower toward the drain side.

又、電界強度Eに)は、第7図Φ)に示すように、ドレ
イン側に近ずく程急に大きくなっている。
Furthermore, the electric field strength E) increases rapidly as it approaches the drain side, as shown in FIG. 7 Φ).

ここで、数値計算に用いた物理定数は砒化ガリウムFE
Tを想定して no=IX10  cm #=13.0 L=1.0μm Es=3KV/m t=α1μm tt = 5ooocd7v、See に選び、障壁電圧Vbi  はピンチオフ電圧Vp(=
0.7V)の1/3に設定し九。
Here, the physical constant used in the numerical calculation is gallium arsenide FE
Assuming T, select no=IX10 cm #=13.0 L=1.0 μm Es=3KV/m t=α1 μm tt = 5ooocd7v, See, and barrier voltage Vbi is pinch-off voltage Vp (=
Set to 1/3 of 0.7V).

更に又、FETの相互コンダクタンスgmは、−al =2g#0μmEs−@((3) で与えられる。これより半導体材料を決めると、大きな
相互コンダクタンスgm t−得るにはソース端におけ
る電界強度Eoが電界強度E8に近ければ近づく程、あ
るいはドレイン端における空乏層の拡が〕凰りが小さけ
れば小さい程良いことがわかる。
Furthermore, the mutual conductance gm of the FET is given by -al = 2g#0μmEs-@((3). From this, when determining the semiconductor material, in order to obtain a large mutual conductance gm t-, the electric field strength Eo at the source end must be It can be seen that the closer the electric field strength is to E8, or the smaller the spread of the depletion layer at the drain end, the better.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の電界効果トランジスタでは、チャ
ネル領域の不純物濃度がソース端からドレイン端に向っ
て一様であるため、ドレイン側に近ずく程チャネル領域
内の空乏層の拡がシが太きく、又ドレイン側根チャネル
領域内電界強度Eに)の絶対値が大きくなり、相互コン
ダクタンスgmの向上を図りにくいという欠点がある。
However, in conventional field effect transistors, the impurity concentration in the channel region is uniform from the source end to the drain end, so the depletion layer in the channel region expands wider as it approaches the drain side. There is a drawback that the absolute value of the electric field strength E in the drain side root channel region becomes large, making it difficult to improve the mutual conductance gm.

本発明の目的は、チャネル領域内の電界強度が緩和され
かつ相互コンダクタンスgmが大きくなって性能が一層
向上したFETを提供することにある。
An object of the present invention is to provide an FET in which the electric field strength in the channel region is relaxed and the mutual conductance gm is increased, so that the performance is further improved.

〔問題点を解決するための手段〕 本発明の電界効果トランジスタは、半絶縁性基板表面に
設けられた一導電型低濃度のチャネル領域と該チャネル
領域上に設けられたゲートと前記チャネル領域を通じて
接続された一導電型高濃度のソース及びドレイン領域と
を備えた電界効果トランジスタにおいて、前記チャネル
領域の不純物濃度が前記ソース側から前記ドレイン側に
向って高くなっている@ 本発明の電界効果トランジスタの製造方法は、半絶縁性
基板表面に設けられた一導電型低濃度のチャネル領域と
該チャネル領域上に設けられたゲ↓ 一ト前記チャネル領域を通じて接続された一導電型高濃
度のソース及びドレイン領域とを備えた電界効果トラン
ジスタの製造方法において、前記半絶縁性基板表面に前
記チャネル領域に連なる一導電型濃度の前記ドレイン領
域を少くとも形成する工程及び熱処理によって前記ドレ
イン領域の不純物を前記チャネル領域に拡散する工程を
含み不純物濃度が前記ソース側から前記ドレイン側に向
って高くなっている前記チャネル領域を形成して成る。
[Means for Solving the Problems] The field effect transistor of the present invention has a low concentration channel region of one conductivity type provided on the surface of a semi-insulating substrate, a gate provided on the channel region, and a conductive layer formed on the surface of the semi-insulating substrate through the channel region. In a field effect transistor comprising connected high concentration source and drain regions of one conductivity type, the impurity concentration of the channel region increases from the source side to the drain side@field effect transistor of the present invention The manufacturing method includes a low concentration channel region of one conductivity type provided on the surface of a semi-insulating substrate, a gate provided on the channel region, a high concentration source of one conductivity type connected through the channel region, and a gate region provided on the channel region. In the method of manufacturing a field effect transistor having a drain region, impurities in the drain region are removed by a step of forming at least the drain region of one conductivity type concentration continuous with the channel region on the surface of the semi-insulating substrate and heat treatment. The method includes a step of diffusing into a channel region to form the channel region in which the impurity concentration increases from the source side to the drain side.

〔作用〕[Effect]

本発明ではチャネル領域内の不純物濃度がソーえずに最
大ドレイン電流を増加でき、しかも相互コンダクタンス
gmを大きくして性能の向上を図ることができる。
In the present invention, the maximum drain current can be increased without decreasing the impurity concentration in the channel region, and the mutual conductance gm can be increased to improve performance.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のFETの一実施例の模式的断面図であ
る。
FIG. 1 is a schematic cross-sectional view of an embodiment of the FET of the present invention.

この実施例は、砒化ガリウムの半絶縁性基板1の表面に
n型不純物をドープしたチャネル領域2を設けこのチャ
ネル領域2にゲート3を設け、ゲート3に自己整合的に
ソース及びドレインのnfi高濃度の不純物領域4a及
び4bを設け、更にその上にソース及びドレイン電極5
a及び5bt−設けておシ、チャネル領域2の不純物濃
度がソース側からドレイン側に向って高くなっている。
In this embodiment, a channel region 2 doped with n-type impurities is provided on the surface of a semi-insulating substrate 1 made of gallium arsenide, a gate 3 is provided in this channel region 2, and the nfi height of the source and drain is self-aligned to the gate 3. High concentration impurity regions 4a and 4b are provided, and source and drain electrodes 5 are further formed thereon.
A and 5bt- are provided, and the impurity concentration of the channel region 2 increases from the source side to the drain side.

第2図(a) 、 (b)及び(C)はそれぞれ第1図
のチャネル領域の不純物濃度、空乏層の拡がシ及び電界
強度の分布図である。
FIGS. 2(a), 2(b), and 2(c) are distribution charts of the impurity concentration, depletion layer expansion, and electric field strength in the channel region of FIG. 1, respectively.

この実施例では、チャネル領域2の不純物濃度n (x
)が となるように、不純物濃度の傾きλの濃度勾配がつけて
あり、第2図(〜に示すように1  ソース例からドレ
イン側に向って不純物濃度が高くなっている。
In this embodiment, the impurity concentration n (x
), and the impurity concentration increases from the source toward the drain as shown in FIG. 2 (1).

又、従来例と同様、障壁電圧Vbi  をビンチオに設
定してゲート3の電位な0にすると、座標Xにおける空
乏層波がシa(X)と電位v(神との関係はV(坤=□
n(坤a(神8 ・・・(8)2εtO で与えられる。一方、最大ドレイン電流よりs  はI
O3−(in(X) (t−a(d)μE(x) W 
−−−(9)となる。ここで Ig(すl = Es       ・・・ (11)
であり、従来例と同じ物理定数の値と不純物濃度の傾ぐ
の値λ=0.25とを使って数値針31.t−すると、
空乏層の拡がシa (x)及び電界強度E(−4は、そ
れぞれ第2図(ロ)及び(e)に示すようになる。
In addition, as in the conventional example, when the barrier voltage Vbi is set to Vincio and the potential of the gate 3 is 0, the depletion layer wave at the coordinate X is □
n(gona(God8...(8)2εtO).On the other hand, from the maximum drain current, s is I
O3-(in(X) (t-a(d)μE(x) W
---(9) becomes. Here, Ig(sl = Es... (11)
Using the same physical constant values and impurity concentration slope value λ=0.25 as in the conventional example, the numerical hand 31. t- Then,
The expansion of the depletion layer, shea (x), and the electric field strength E(-4) are as shown in FIGS. 2(b) and 2(e), respectively.

第3図はチャネル領域の不純物濃度の傾きに対する最大
ドレイン電流特性図である。
FIG. 3 is a maximum drain current characteristic diagram with respect to the slope of impurity concentration in the channel region.

ここで、最大ドレイン電流Ins  は、ドレイン電流
Ingo= noqμEstWで正規化してあシ、破線
はソース端で、電界がEsとなる時の正規化した最大ド
レイン電流を示し、その時の最大ドレイン電流をIcと
すると となる。
Here, the maximum drain current Ins is normalized by the drain current Ingo = noqμEstW, and the broken line indicates the normalized maximum drain current when the electric field becomes Es at the source end, and the maximum drain current at that time is Ic. Then, it becomes .

次に、本発明の実施例及び従来例のFETのチャネル領
域内電界強度E(勾を、第2図(e)と第7図(麺とを
参照して比較すると、ドレイン端の電界強度は、電子の
速度飽和を起こすため、両者ともEsと同一だがソース
端の電界強度は、本発明の実施例がα75 Es と従
来例のトランジスタの0.5Esに比べL5倍大きい。
Next, comparing the electric field strength E (gradient) in the channel region of the FET of the embodiment of the present invention and the conventional example with reference to FIG. 2(e) and FIG. 7 (noodle), the electric field strength at the drain end is , to cause electron velocity saturation, both are the same as Es, but the electric field strength at the source end is α75 Es in the embodiment of the present invention, which is L5 times larger than 0.5 Es in the conventional transistor.

従って、最大ドレイン電流ID8は、ソース端の不純物
濃度ボ両トランジスタともnQと等しいので、本発明の
実施例が従来例に比べL5倍程度大きい。
Therefore, since the maximum drain current ID8 is equal to nQ for both transistors with impurity concentration at the source end, the embodiment of the present invention is about L5 times larger than the conventional example.

同様に、速度飽和を起こすドレイン端では、第2図(ゆ
と第7図(→を比べてわかる様に、チャネルの厚さくt
−ILL)は、本発明の実施例が、0.25t、従来例
がα21tと本発明のトランジスタが従来例に比べて大
きく、更に不純物濃度もドレイン端では従来例に比べ、
本発明の実施例は125倍高いので、得られる最大ドレ
イン電流はするドレイン側の不純物濃度比を増大させる
につれ、最大ドレイン電[が増大することがわかる。
Similarly, at the drain end where velocity saturation occurs, the channel thickness t
-ILL) is 0.25t in the embodiment of the present invention and α21t in the conventional example, which is larger than the conventional example, and the impurity concentration at the drain end is also higher than that of the conventional example.
In the example of the present invention, the maximum drain current is 125 times higher, so it can be seen that the maximum drain current increases as the impurity concentration ratio on the drain side increases.

これはソース端の電界強度がλと共に増大していくこと
に対応する。ただし、不純物濃度に一様に傾斜を設けた
本発明の実施例では、λをα48程ることが不可能とな
る。
This corresponds to the fact that the electric field strength at the source end increases with λ. However, in the embodiment of the present invention in which the impurity concentration is provided with a uniform slope, it is impossible to reduce λ by α48.

更に又、本発明の実施例では、ソース端の不純物濃度は
従来例と同様nQなので、第3図に示すように、例えば
λツα4に選べは相互コンダクタンスgmは従来例に比
べL8倍程度に増加するととがわかる。
Furthermore, in the embodiment of the present invention, the impurity concentration at the source end is nQ as in the conventional example, so as shown in FIG. You can see that it increases.

第4図(a)〜(ψは本発明0FETの製造方法の第1
の実施例を説明するための工程順に示した半導体チップ
の断面図である。
FIG. 4(a) to (ψ are the first values of the manufacturing method of the 0FET of the present invention.
FIG. 2 is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

この実施例は、先ず、第4図(→に示すように、砒化ガ
リウムの半絶縁性基板1の上にnfiの不純物をドープ
した能動層2af、エピタキシャル成長させる。
In this embodiment, first, as shown in FIG. 4, an active layer 2af doped with NFI impurities is epitaxially grown on a semi-insulating substrate 1 of gallium arsenide.

次に、第4図(b)に示すように、タングステンシリサ
イド(WSi)からなるゲート3を形成後ホトレジスト
膜6を形成してドレインの不純物領域形成用の開口部を
設け、更にこれをマスクとして、N型ドーパントである
シリコンをイオン注入する。
Next, as shown in FIG. 4(b), after forming a gate 3 made of tungsten silicide (WSi), a photoresist film 6 is formed to provide an opening for forming a drain impurity region, and this is further used as a mask. , silicon, which is an N-type dopant, is ion-implanted.

次に、第4図(C)に示すように、ホトレジスト膜6を
除去した後、全面に窒化膜7を被着しイオン注入した不
純物の7エールを行なう。このとき、早せ呑#イオン注
入された不純物が横方向に拡散し、ゲート3の下の能動
層2aの不純物濃度をソース側からドレイン側に向って
高くすることができる。
Next, as shown in FIG. 4C, after removing the photoresist film 6, a nitride film 7 is deposited on the entire surface, and ion implantation of impurities is performed. At this time, the ion-implanted impurity is diffused laterally, and the impurity concentration of the active layer 2a under the gate 3 can be increased from the source side to the drain side.

最後に、第4図(Φに示すように、窒化膜7t−tした
後、不純物領域4bをゲート3に自己整合的に形成し、
更に金・ゲルマニウム・ニッケル(Au・Go−Ni)
からなるソース及びドレイン電極5a及び5bを形成し
、熱処理を施すことで本発明の第1の実施例によるFE
Tができる。
Finally, as shown in FIG. 4 (Φ), after forming the nitride film 7t-t, an impurity region 4b is formed in a self-aligned manner on the gate 3.
Furthermore, gold, germanium, nickel (Au, Go-Ni)
The FE according to the first embodiment of the present invention is formed by forming source and drain electrodes 5a and 5b consisting of
I can do T.

第5図(a)〜(d)は本発明0FETの製造方法の第
2の実施例を説明するための工程順に示した半導体チッ
プの断面図である。
FIGS. 5(a) to 5(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a second embodiment of the method for manufacturing an 0FET according to the present invention.

この実施例は、先ず、第5図(a)に示すように、砒化
ガリウムの半絶縁性基板lO上にN型不純物をドープし
た能動層2aをエピタキシャル成長させる。
In this embodiment, first, as shown in FIG. 5(a), an active layer 2a doped with an N-type impurity is epitaxially grown on a semi-insulating substrate lO of gallium arsenide.

次に、第5図(ロ)に示すように1 タングステンシリ
サイド(ws i )からなるゲート3を形成した後、
ホトV−)スト膜6を形成し、更にドレインの不純物領
域形成用の窓を開口して、これをマスクとしてN型ドー
パントであるシリコンをイオン注入する。
Next, as shown in FIG. 5(b), after forming a gate 3 made of 1 tungsten silicide (ws i ),
A photoV-) film 6 is formed, a window for forming a drain impurity region is opened, and silicon, which is an N-type dopant, is ion-implanted using this as a mask.

次に、第5図f、)に示すように、ホトレジス)N6を
除去した後、ソースの不純物領域mt6用の窓を開口し
たホトレジスト族8を形成して、これをマスクとしてN
型ドーパントであるシリコンをドレイン例よシも低い濃
度にイオン注入する。
Next, as shown in FIG.
Silicon, which is a type dopant, is ion-implanted to a low concentration in the drain region as well.

次に、第5図(Φに示すように、全面に鼠化膜7を被着
しイオン注入した不純物の7エールを行いチャネル領域
2とソース及びドレインの不純物領域4a及び4b’ 
 を形成する。このとき、このアニール工程で、イオン
注入された不純物が活性化されると共にゲート3の下の
チャネル領域2にまで横方向に拡散する。ただし、ドレ
イン領域4b’にイオン注入された不純物の方がソース
領域4aにイオン注入された不純物よシも濃度が高いの
でゲート3の下のチャネル領域2の不純物濃度をソース
側からドレイン側に向って高くすることができる。
Next, as shown in FIG. 5 (Φ), a dosing film 7 is deposited on the entire surface and ion-implanted impurities are applied to the channel region 2 and the source and drain impurity regions 4a and 4b'.
form. At this time, in this annealing process, the implanted impurities are activated and laterally diffused into the channel region 2 below the gate 3. However, since the impurity ion-implanted into the drain region 4b' has a higher concentration than the impurity ion-implanted into the source region 4a, the impurity concentration in the channel region 2 under the gate 3 is changed from the source side to the drain side. can be made higher.

最後に、第5図<6)に示すように、窒化rA7を除去
した後、金・ゲルマニウム・ニッケル(Au・Gell
N1)からなるソース及びドレイン電極5a及び5bt
−形成し熱処理を施すことで本発明の第2の実施例によ
るFETができる。
Finally, as shown in Figure 5<6), after removing the nitrided rA7, gold/germanium/nickel (Au/Gell
N1) source and drain electrodes 5a and 5bt
- The FET according to the second embodiment of the present invention can be obtained by forming and heat-treating.

この第2の実施例によるFETは、第1の実施例場合に
比べて、ソース例のチャネル領域も高濃度になっている
ため、ソース電極との接触抵抗が小さい、従ってソース
寄生抵抗が小さい高性能のFETが夾現できる。
In the FET according to the second embodiment, since the channel region of the source is also highly doped compared to the case of the first embodiment, the contact resistance with the source electrode is small, and therefore the source parasitic resistance is low. High performance FET can be realized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、チャネル領域の不純物濃
度をソース例がドレイン偵りに向って高くすることによ
シ、ピッチオフ電圧全大幅に変えなくとも最大ドレイン
電流ID3  を増加でき、しかも相互コンダクタンス
gmの向上を図ることが出来るので、駆動能力に優れか
つ高速・高性能の電界効果トランジスタを¥現できると
いう効果がある。
As explained above, in the present invention, by increasing the impurity concentration in the channel region from the source toward the drain, the maximum drain current ID3 can be increased without significantly changing the total pitch-off voltage, and the mutual conductance can be increased. Since it is possible to improve the gm, there is an effect that a field effect transistor with excellent driving ability, high speed, and high performance can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のFETの一実施例の模式的断面図、第
2図(=) 、 (b)及び(C)はそれぞれ第1図の
チャネル領域の不純物濃度、空乏層の拡がシ及び電界強
度の分布図、第3図はチャネル領域の不純物の製造方法
の第1及び第2の実施例を説明するための工程順に示し
た半導体チップの断面図、第6図は従来0FETの一例
の模式的断面図、第7図(a)及び(b)はそれぞれ第
6図のチャネル領域の空乏層の拡がシ及び電界強度の分
布図である。 1・・・・−半絶縁性基板、2,2’・−・・・・チャ
ネル領域、2 &−−−−−−能動層、3−−−−−−
ゲート、4a、4b。 4 b/・・・・−・不純物領域、5ト・・・・・ソー
ス電極、5b・・・・・・ドレイン電極、6・・・・・
・ホトレジスト膜、7・・・・・・窒化膜、8・−・・
−・ホトレジスト膜、9.9’・・・・・・空乏層、a
に)・・・・−・空乏層の拡がシ、Eに)、 E ト−
・・・電界強度、IC9ID!・・・・・・最大ドレイ
ン電流、ID30・−・・・・ドレイン電流、L・・・
・・・ゲート長、n(X)。 ng・・・・・・不純物濃度、t・・・・・・チャネル
領域の厚さ、稟 f 図 χな x77 Xし7 芽 2 閏 牛 3 回 壬 4 回 千5田 良イブ  乙   回 【ん 茅 7 回
FIG. 1 is a schematic cross-sectional view of one embodiment of the FET of the present invention, and FIGS. 2 (=), (b), and (C) show the impurity concentration of the channel region and the expansion of the depletion layer shown in FIG. 1, respectively. 3 is a cross-sectional view of a semiconductor chip shown in order of steps to explain the first and second embodiments of the method for manufacturing impurities in the channel region, and FIG. 6 is an example of a conventional 0FET. FIGS. 7A and 7B are schematic cross-sectional views of FIGS. 7A and 7B, which are distribution diagrams of the depletion layer expansion and electric field strength in the channel region of FIG. 6, respectively. 1...-Semi-insulating substrate, 2,2'...channel region, 2 &-----active layer, 3--------
Gate, 4a, 4b. 4b/... impurity region, 5t... source electrode, 5b... drain electrode, 6......
・Photoresist film, 7... Nitride film, 8...
-・Photoresist film, 9.9'... Depletion layer, a
)...--The depletion layer expands, E), E
...Electric field strength, IC9ID! ...Maximum drain current, ID30...Drain current, L...
...Gate length, n(X). ng...Impurity concentration, t...Thickness of the channel region, 稟f Figure χNa x77 Kaya 7 times

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性基板表面に設けられた一導電型低濃度の
チャネル領域と該チャネル領域上に設けられたゲートと
前記チャネル領域を通じて接続された一導電型高濃度の
ソース及びドレイン領域とを備えた電界効果トランジス
タにおいて、前記チャネル領域の不純物濃度が前記ソー
ス側から前記ドレイン側に向って高くなっていることを
特徴とする電果効果トランジスタ。
(1) A low concentration channel region of one conductivity type provided on the surface of a semi-insulating substrate, a gate provided on the channel region, and a high concentration source and drain region of one conductivity type connected through the channel region. 1. A field effect transistor comprising: an impurity concentration in the channel region that increases from the source side toward the drain side.
(2)半絶縁性基板表面に設けられた一導電型低濃度の
チャネル領域と該チャネル領域上に設けられたゲートと
前記チャネル領域を通じて接続された一導電型高濃度の
ソース及びドレイン領域とを備えた電界効果トランジス
タの製造方法において、前記半絶縁性基板表面に前記チ
ャネル領域に連なる一導電型高濃度の前記ドレイン領域
を少くとも形成する工程及び熱処理によって前記ドレイ
ン領域の不純物を前記チャネル領域に拡散する工程を含
み不純物濃度が前記ソース側から前記ドレイン側に向っ
て高くなっている前記チャネル領域を形成することを特
徴とする電界効果トランジスタの製造方法。
(2) A low concentration channel region of one conductivity type provided on the surface of a semi-insulating substrate, a gate provided on the channel region, and a high concentration source and drain region of one conductivity type connected through the channel region. In the method for manufacturing a field effect transistor, impurities in the drain region are removed from the channel region by a step of forming at least the drain region of one conductivity type and high concentration that is continuous with the channel region on the surface of the semi-insulating substrate and by heat treatment. 1. A method of manufacturing a field effect transistor, comprising the step of diffusion to form the channel region in which the impurity concentration increases from the source side to the drain side.
JP24364486A 1986-10-13 1986-10-13 Fieid-effect transistor and manufacture thereof Pending JPS6396962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24364486A JPS6396962A (en) 1986-10-13 1986-10-13 Fieid-effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24364486A JPS6396962A (en) 1986-10-13 1986-10-13 Fieid-effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6396962A true JPS6396962A (en) 1988-04-27

Family

ID=17106885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24364486A Pending JPS6396962A (en) 1986-10-13 1986-10-13 Fieid-effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6396962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796889A (en) * 2014-08-29 2017-05-31 株式会社田村制作所 Semiconductor element and its manufacture method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154978A (en) * 1978-05-29 1979-12-06 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS57198660A (en) * 1981-06-01 1982-12-06 Fujitsu Ltd Field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154978A (en) * 1978-05-29 1979-12-06 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS57198660A (en) * 1981-06-01 1982-12-06 Fujitsu Ltd Field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796889A (en) * 2014-08-29 2017-05-31 株式会社田村制作所 Semiconductor element and its manufacture method
CN112928026A (en) * 2014-08-29 2021-06-08 株式会社田村制作所 Ga2O3Is a semiconductor device

Similar Documents

Publication Publication Date Title
KR970004457B1 (en) Semiconductor device and fabrication method
US5656518A (en) Method for fabrication of a non-symmetrical transistor
EP0115652B1 (en) Insulated gate field effect transistor and method of manufacturing the same
JPH04154171A (en) Semiconductor device
JPH0629532A (en) Mosfet and its manufacture
KR950002274B1 (en) Mos vlsi device having shallow junctions and method of making the same
JPH05502548A (en) Microfabricated MISFET device that suppresses hot carriers
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
US4277882A (en) Method of producing a metal-semiconductor field-effect transistor
JPH03280437A (en) Semiconductor device and manufacture thereof
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
JPS62248255A (en) Thin-film transistor
KR950013790B1 (en) Mosfet with not uniformed dopping channel using trench structure
EP0255133B1 (en) Mos field-effect transistor and method of making the same
JPS5916427B2 (en) Junction field effect transistor
US5512499A (en) Method of making symmetrical and asymmetrical MESFETS
JPS6396962A (en) Fieid-effect transistor and manufacture thereof
JPH10284722A (en) Mosfet and manufacture therefor
JPH0382163A (en) Power mosfet and manufacture thereof
JP3014138B2 (en) Semiconductor device
KR920003320B1 (en) Manufacturing method of self-aligned vertical double diffusion type with very small source region
JPH0493038A (en) Field-effect transistor
CN107180856B (en) PMOS device structure
JPH0523497B2 (en)
JPS6362274A (en) Manufacture of field-effect transistor