JPS6396566A - Gas insulating current transformer - Google Patents

Gas insulating current transformer

Info

Publication number
JPS6396566A
JPS6396566A JP61241954A JP24195486A JPS6396566A JP S6396566 A JPS6396566 A JP S6396566A JP 61241954 A JP61241954 A JP 61241954A JP 24195486 A JP24195486 A JP 24195486A JP S6396566 A JPS6396566 A JP S6396566A
Authority
JP
Japan
Prior art keywords
conductor
current transformer
transfer element
heat transfer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61241954A
Other languages
Japanese (ja)
Inventor
Isao Kamata
功 鎌田
Takaaki Sakakibara
榊原 高明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61241954A priority Critical patent/JPS6396566A/en
Publication of JPS6396566A publication Critical patent/JPS6396566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To remarkably improve the measurement accuracy of a current transformer by providing a heat transfer element consisting of a heat pipe provided with a cooling fin on its one end, etc., on the inside of a conductor for passing through a shielding case. CONSTITUTION:In a gas insulating current transformer, even when a current flaws to a conductor 22v and the temperature of a conductor part rises, its heat is emitted to an adjacent conductor 60 connected to the conductor 22v by a heat transfer element 51 provided on the inside of the conductor 22v. Also, this emitted heat is diffused to the outside of the adjacent conductor 60 by a cooling fin 52 provided on the end part of the heat transfer element 51 and a projecting part 61 formed in the adjacent conductor. In this way, even if a current flows to conductors 22u-22w and the temperature of the conductor part is varied, its heat can suppress to the minimum a temperature change in the vicinity of a magneto-optical field sensor 23 provided in the periphery of the conductors 22u-22w by the heat transfer element 51, and prevents an output error from being generated in the current transformer.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ガス絶縁変流器に関するものであり、特に光
磁界センサ及びその検出装置を備え、この間で光を伝送
する構成を有するガス絶縁変流器に係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a gas-insulated current transformer, and in particular, a gas-insulated current transformer that is equipped with an optical magnetic field sensor and its detection device, and that transmits light between them. It pertains to a gas insulated current transformer having the following configuration.

(従来の技術) 従来、ガス絶縁開閉装置に用いられるガス絶縁変流器は
、ケイ素鋼板にコイルを巻き付けて成る鉄心タイプの変
流器コアにより構成されていた。
(Prior Art) Conventionally, a gas insulated current transformer used in a gas insulated switchgear has been configured with an iron core type current transformer core made by winding a coil around a silicon steel plate.

この様な従来のガス絶縁変流器を、特に3相−捨型のガ
ス絶縁開閉装置に用いられるガス絶縁変流器を例に取っ
て、第2図に基いて説明する。
Such a conventional gas insulated current transformer will be described with reference to FIG. 2, taking as an example a gas insulated current transformer used in a three-phase disposable type gas insulated switchgear.

円筒形のタンク1内にはU、V、W相の3相の導体2u
〜2Wが配設されている。タンク1の前後には絶縁スペ
ーサ3が設けられ、これによって導体2u〜2Wが支持
されている。タンク1は、その軸に垂直に前後に分割さ
れ、前方にあって本来の径を有するタンク1aと、後方
にあって変流器コア4の寸法分だけ径が大きくされたタ
ンク1bとから構成されている。このタンク1bの内側
端部の導体2u〜2wの延長上に夫々変流器コア4が設
置されている。そして、この変流器コア4の前方(即ち
、後方のタンク1bの端部)には支持板5が設けられ、
変流器コア4の内側にはこれと連結して絶縁シールド6
が設けられ、これらにより変流器コア4の支持及び導体
2u〜2wとの絶縁がなされている。更に、タンク1の
下部には、変流器コア4の電流を引き出す為の密封端子
7が設けられている。
Inside the cylindrical tank 1 are three-phase conductors 2u of U, V, and W phases.
~2W is installed. Insulating spacers 3 are provided before and after the tank 1, and the conductors 2u to 2W are supported by these spacers. The tank 1 is divided into front and rear parts perpendicular to its axis, and consists of a tank 1a at the front having the original diameter and a tank 1b at the rear having a diameter increased by the dimension of the current transformer core 4. has been done. Current transformer cores 4 are installed on the extensions of the conductors 2u to 2w at the inner end of the tank 1b, respectively. A support plate 5 is provided in front of the current transformer core 4 (that is, at the end of the rear tank 1b),
An insulating shield 6 is connected to the inside of the current transformer core 4.
are provided to support the current transformer core 4 and insulate it from the conductors 2u to 2w. Furthermore, a sealed terminal 7 is provided at the bottom of the tank 1 for drawing out the current from the current transformer core 4.

ところで、この様なガス絶縁3相変流器においては、3
箇所に設(プる変流器コアが重い為、これを支えや支持
板、絶縁シールド等もかなりの大きざとなり、これらを
3箇所に設ける為に機器が複維且つ大型化し、単4も大
きくなってしまう。また、変流器コアはココアで1用途
にしか使用できない為、継電器用や計測用等に複数のコ
アが必要となり、これも大型化の原因となる他、コスト
的にも高価となってしまう。
By the way, in such a gas-insulated three-phase current transformer, three
Because the current transformer core is heavy, the supports, support plates, insulation shields, etc. required for it are quite large, and in order to install these in three locations, the equipment becomes multi-fiber and larger, and even AAA In addition, since the current transformer core is cocoa and can only be used for one purpose, multiple cores are required for relays, measurements, etc., which not only causes the size to increase, but also increases the cost. It ends up being expensive.

これらの欠点に鑑み、最近では、細径性、絶縁性、無誘
導性、耐環境性等の優れた特徴を有する光ファイバーを
用いた計測技術が注目され、これを応用した光磁界セン
サにより変流器を構成する試みがなされている。
In view of these shortcomings, measurement technology using optical fibers, which have excellent characteristics such as small diameter, insulation, non-induction, and environmental resistance, has recently attracted attention. Attempts are being made to construct vessels.

第3図に、この様な光磁界センサによるガス絶縁変流器
の構成を示した。
FIG. 3 shows the configuration of a gas insulated current transformer using such an optical magnetic field sensor.

第3図(B)において、しゃ断器のタンク21内には、
3相の導体22u〜22Wが配設され、これらの導体2
2u〜22Wの両端には、ガス絶縁開閉装置内に配設さ
れた隣接導体と接続する為の接続部22a、22bが形
成されている。これらの導体22u〜22Wの略中央位
置には、各導体を周回する様に取付けられる光磁界セン
サ23をその内部に収納できるようなシールドケース2
6が取付けられている。このシールドケース26は銅、
アルミ等の導電材料又はこれら導電材料とケイ素綱板等
の磁性材料を組み合わせて形成されたもので、電界シー
ルドとしての機能も兼ねたものである。また、このシー
ルドケース26は、ケース26a、7タ26b1絶縁リ
ング26cの3つの部分から構成され、シールドケース
26の2つの導体貫通部の内、一方の貫通部は溶接によ
って導体とり゛−ス26aとが固定され、他方の貫通部
は絶縁リング26cとフタ26bを介してケース26a
に導体が固定されている。
In FIG. 3(B), in the tank 21 of the breaker,
Three-phase conductors 22u to 22W are arranged, and these conductors 2
Connection portions 22a and 22b are formed at both ends of 2u to 22W for connection to adjacent conductors disposed within the gas insulated switchgear. Approximately at the center of these conductors 22u to 22W, there is a shield case 2 in which a magneto-optical field sensor 23, which is attached so as to go around each conductor, can be housed therein.
6 is installed. This shield case 26 is made of copper.
It is made of a conductive material such as aluminum or a combination of such a conductive material and a magnetic material such as a silicon steel plate, and also functions as an electric field shield. Further, this shield case 26 is composed of three parts: a case 26a, a 7-ring 26b, and an insulating ring 26c, and one of the two conductor penetration parts of the shield case 26 is welded so that the conductor is connected to the conductor 26a. are fixed, and the other penetrating portion is connected to the case 26a via the insulating ring 26c and the lid 26b.
The conductor is fixed to.

また、第3図(A>に示した様に、タンク21には、3
箇所の口出し部21u、21v、21wが円周方向に等
間隔に形成され、この口出し部のフランジに支持容器2
9がボルトで着脱自在に固定されている。この支持容器
29とシールドケース26との間には、シールドケース
26及び導体22u〜22Wを支持するための絶縁筒2
8が各導体22u〜22Wと垂直に設けられている。更
に、導体22、シールドケース26、絶縁筒28、支持
容器29、支持容器の外側に配設されるフタ34等の各
接続部には、オーリング35〜41によるガスシール部
を設けて、これらを気密状の導体ユニットとし、このユ
ニット内にタンク21内と同圧力のSF6ガス等の絶縁
ガスを封入して、各相のユニット毎に水分、ガス圧管理
を図示しない吸着剤ケース、密度スイッチ等で行なって
いる。
In addition, as shown in FIG. 3 (A>), the tank 21 has three
Opening portions 21u, 21v, and 21w are formed at equal intervals in the circumferential direction, and the support container 2 is attached to the flanges of the opening portions.
9 is removably fixed with a bolt. An insulating cylinder 2 for supporting the shield case 26 and the conductors 22u to 22W is provided between the support container 29 and the shield case 26.
8 is provided perpendicularly to each conductor 22u to 22W. Furthermore, gas seals using O-rings 35 to 41 are provided at the connection parts of the conductor 22, shield case 26, insulating tube 28, support container 29, lid 34 disposed on the outside of the support container, etc. is an airtight conductor unit, and an insulating gas such as SF6 gas with the same pressure as in the tank 21 is sealed in this unit, and an adsorbent case (not shown) and a density switch are installed to manage moisture and gas pressure for each phase unit. etc.

一方、前記シールドケース26内には、)7ラデー素子
からなる光磁界センサ23が、各導体22u〜22Wを
周回し、且つ各導体22u〜22Wと接触しないように
、支持台25によって固定されている。この光磁界セン
サ23は、全反射面、反射ミラー等を僅えた断面略正方
形のものである。
On the other hand, inside the shield case 26, an optical magnetic field sensor 23 consisting of 7 Radhe elements is fixed by a support base 25 so as to circulate around each of the conductors 22u to 22W and not to come into contact with each of the conductors 22u to 22W. There is. This optical magnetic field sensor 23 has a substantially square cross section with only a total reflection surface, a reflection mirror, and the like.

また、光磁界センサ23は磁界強度によりファラデー回
転角を生ずる鉛ガラス等のガラスで形成され、各]−ナ
ーに全反射面を設けたファラデー素子と反射ミラーを組
み合せて構成され、ファラデー素子透過光が導体を周回
する様な構成とされ、更に、反射ミラーにより光路を往
復させることで、外部の磁界の影響を受けることなく高
精度、高感度な計測が行えるようにしたものである。
The optical magnetic field sensor 23 is made of glass such as lead glass that generates a Faraday rotation angle depending on the strength of the magnetic field, and is constructed by combining a Faraday element with a total reflection surface on each corner and a reflecting mirror, so that the light transmitted through the Faraday element is The structure is such that the light goes around a conductor, and the optical path is made to reciprocate using a reflective mirror, making it possible to perform highly accurate and sensitive measurements without being affected by external magnetic fields.

また、絶縁筒28内の空間を介して対向する位置に配設
されたシールドケース26と支持容器29の対向面には
、それぞれ光通過用の孔27,30が形成されている。
In addition, holes 27 and 30 for light passage are formed in opposing surfaces of the shield case 26 and the support container 29, which are disposed at opposing positions with a space in the insulating cylinder 28 interposed therebetween.

更に、支持容器29内には、レンズ、偏光子、検光子等
より成る発受光部32が支持部材31により支持容器2
9に固定され、この発受光部32と光磁界センサ23の
先出入面24とは、光路の光軸上に対向する様に配置さ
れ、絶縁筒28内の空間を介して光の伝送が行なわれる
様に構成されている。
Furthermore, within the support container 29, a light emitting/receiving section 32 consisting of a lens, a polarizer, an analyzer, etc. is attached to the support container 2 by a support member 31.
The light emitting/receiving section 32 and the first entrance/exit surface 24 of the optical magnetic field sensor 23 are arranged to face each other on the optical axis of the optical path, and light is transmitted through the space within the insulating cylinder 28. It is configured so that

また、支持容器29に取付けられたフタ34には密封端
子33が設けられ、この密封端子33を介して発受光部
32とタンク21の外部に設けられた検出袋@44とが
送光用及び受光用の光ファイバー42.43により接続
されている。
Further, a lid 34 attached to the support container 29 is provided with a sealed terminal 33, and the light emitting/receiving section 32 and the detection bag @44 provided outside the tank 21 are connected via the sealed terminal 33 for light transmission and detection. They are connected by optical fibers 42 and 43 for light reception.

以上の様な構成を有するガス絶縁変流器においては、光
磁界センサ23を電界シールドを兼ねたシールドケース
26内に配置したので、光磁界セン923が外部磁界の
影響を受けることを回避できると共に、光磁界センサ2
3が高電界中に曝されることも防止できる。
In the gas insulated current transformer having the above configuration, the optical magnetic field sensor 23 is placed inside the shield case 26 which also serves as an electric field shield, so that the optical magnetic field sensor 923 can be prevented from being affected by external magnetic fields. , optical magnetic field sensor 2
3 can also be prevented from being exposed to high electric fields.

また、光磁界センサ23は支持台25によってシールド
ケース26内に固定され、導体22と接触しないように
構成されているので、導体の伸縮、撓み等が、光磁界セ
ンサ23の光学特性に影響を与えたり、光軸をずらせた
りすることも防止できる。
Furthermore, since the magneto-optical field sensor 23 is fixed in the shield case 26 by the support stand 25 and is configured so as not to come into contact with the conductor 22, expansion, contraction, bending, etc. of the conductor have no effect on the optical characteristics of the magneto-optical field sensor 23. It is also possible to prevent the optical axis from being shifted.

その上、導体22、シールドケース26、絶縁筒28、
支持容器2つ、フタ34等の各接続部にオーリング35
〜41によるガスシール部を設けて、これらを気密一体
ユニットとし、このユニットの中に光磁界センナ23、
発受光部32等の光学部品を納めることにより、変流器
近傍において発生するアーク等の閃光や、ガス絶縁開閉
装置のアークしゃ断時や地絡事故時に発生する絶縁ガス
の気体及び固体分解生成物から、これらの光学部品を保
護することもできる。
In addition, the conductor 22, the shield case 26, the insulating tube 28,
Two support containers, O-rings 35 at each connection part of the lid 34, etc.
- 41 are provided to form a gas-tight integral unit, and the optical magnetic field sensor 23,
By housing optical parts such as the light emitting/receiving section 32, it is possible to prevent flashes of arcs, etc. that occur near current transformers, gaseous and solid decomposition products of insulating gas that occur when arcs are interrupted in gas-insulated switchgear, or during ground faults. It is also possible to protect these optical components from

しかしながら1、以上の様な構成を有する従来のガス絶
縁変流器においては、各相の導体22U〜22Wに電流
が流れると、それらの導体の周囲の温度が上昇する。そ
れに伴って、各導体を周回するように取付けられている
光磁界センサ23の近傍においても温度分布が変化する
。その結果、光磁界センサ23を構成するファラデー素
子等の光学素子の光学的パラメーターが不均一なものと
なり、ファラデー素子透過光の偏光度が変化してしまい
、第4図に示した様に、変流器の出力誤差が増大し、精
度の高い測定が行えないといった欠点があった。
However, in the conventional gas insulated current transformer having the above configuration, when current flows through the conductors 22U to 22W of each phase, the temperature around these conductors increases. Accordingly, the temperature distribution also changes in the vicinity of the optical magnetic field sensor 23, which is attached so as to go around each conductor. As a result, the optical parameters of the optical elements such as the Faraday element constituting the magneto-optical field sensor 23 become non-uniform, and the degree of polarization of the light transmitted through the Faraday element changes, as shown in FIG. This method has the disadvantage that the output error of the flow meter increases, making it impossible to perform highly accurate measurements.

即ら、第4図に示した様に、導体に一定の電流を流した
場合に、通電時間が長くなるに従って導体の温度が上昇
し、それに伴って変流器の出力に誤差が生ずる。
That is, as shown in FIG. 4, when a constant current is passed through a conductor, the temperature of the conductor increases as the current-carrying time increases, and an error occurs in the output of the current transformer.

そこで、光磁界センサ近傍における温度変化の影響を考
慮した精度の高いガス絶縁変流器の開発が切望されてい
た。
Therefore, there has been a strong desire to develop a highly accurate gas-insulated current transformer that takes into account the effects of temperature changes in the vicinity of the optical magnetic field sensor.

(発明が解決しようとする問題点) 上記の様に、従来のガス絶縁変流器においては、導体に
電流が流れた場合に導体の温度が上昇し、それに伴って
、光磁界センサを構成するファラデー素子等の光学素子
の光学的パラメーターが不均一なものとなり、ファラデ
ー素子透過光の偏光度が変化して、変流器の出力誤差が
増大し、精度の高い測定が行えなかった。
(Problems to be Solved by the Invention) As mentioned above, in a conventional gas-insulated current transformer, when current flows through the conductor, the temperature of the conductor rises, and accordingly, the temperature of the conductor rises. The optical parameters of the optical element such as the Faraday element became non-uniform, the degree of polarization of the light transmitted through the Faraday element changed, and the output error of the current transformer increased, making it impossible to perform highly accurate measurements.

そこで、本発明は上記の様な従来技術の問題点を解決す
るために提案されたもので、その目的は、導体内部に発
生する熱の影響が、光磁界センサの近傍に及ばないよう
にして、変流器の測定精度を大幅に向上させたガス絶縁
変流器を提供することにある。
Therefore, the present invention was proposed to solve the problems of the prior art as described above, and its purpose is to prevent the influence of heat generated inside the conductor from reaching the vicinity of the optical magnetic field sensor. An object of the present invention is to provide a gas-insulated current transformer that greatly improves the measurement accuracy of the current transformer.

[発明の構成] (問題点を解決するための手段) 上記の目的を達成するために、本発明のガス絶縁変流器
は、シールドケースを貫通する導体内部に、その一端に
冷却フィンを設けたヒートパイプ等よりなる熱伝達素子
を配設したものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the gas insulated current transformer of the present invention includes a cooling fin provided at one end inside the conductor penetrating the shield case. A heat transfer element made of a heat pipe or the like is installed.

(作用) 上記の様な構成を有する本発明のガス絶縁変流器は、導
体に電流が流れて、導体部分の温度が変化した場合に、
導体内部に配設した熱伝達素子によって、その熱を導体
外部に放散させ、導体の周囲に配設された光磁界センサ
に熱による影響が及ばないようにして、光磁界センサを
構成するファラデー素子等の光学素子の光学的パラメー
ターが変化しないようにしたものでおる。
(Function) The gas insulated current transformer of the present invention having the above-described configuration has the following effects when current flows through the conductor and the temperature of the conductor portion changes:
A Faraday element that constitutes a magneto-optical field sensor uses a heat transfer element placed inside the conductor to dissipate the heat to the outside of the conductor so that the heat does not affect the magneto-optic field sensor placed around the conductor. The optical parameters of the optical elements such as the above do not change.

(実施例) 以下、本発明の一実施例を第1図に基づいて具体的に説
明する。なお、第3図に示した従来型と同一の部材につ
いては同一の符号を付し、説明は省略する。
(Example) Hereinafter, an example of the present invention will be specifically described based on FIG. Note that the same members as those of the conventional type shown in FIG. 3 are given the same reference numerals, and explanations thereof will be omitted.

本実施例の構成* 第1図において、導体22Vの内部に、その両端に形成
された接続部22a、22bを貫通するように、ヒート
パイプ等からなる熱伝達素子51が配設されている。こ
の熱伝達素子51の一端には、冷却フィン52が取付け
られ、この冷却フィン52が前記導体22Vの両側に接
続されるガス絶縁開閉装置の隣接導体60内に配置され
るように構成されている。
Configuration of this embodiment * In FIG. 1, a heat transfer element 51 made of a heat pipe or the like is disposed inside a conductor 22V so as to penetrate through connection parts 22a and 22b formed at both ends of the conductor 22V. A cooling fin 52 is attached to one end of the heat transfer element 51, and the cooling fin 52 is arranged in an adjacent conductor 60 of a gas-insulated switchgear connected to both sides of the conductor 22V. .

一方、隣接導体60には、前記冷却フィン52の配設箇
所に、熱伝達素子51によって伝達された熱を導体60
の外部に放散するための穴部61が形成されている。
On the other hand, the adjacent conductor 60 transfers the heat transferred by the heat transfer element 51 to the location where the cooling fins 52 are disposed.
A hole 61 is formed for dissipating to the outside.

本実施例の作用* 上記の様な構成を有する本実施例のガス絶縁変流器にお
いては、導体22vに電流が流れて導体部分の温度が上
昇した場合でも、その熱は導体22v内部に配設された
熱伝達素子51によって、導体22Vに接続されている
隣接導体60に放出される。また、前記導体22Vより
隣接導体60に放出された熱は、ざらに、熱伝達素子5
1の端部に設けられた冷却フィン52及び隣接導体に形
成された穴部61によって、隣接導体60の外部に放散
される。
Effect of this embodiment* In the gas insulated current transformer of this embodiment having the above-described configuration, even if current flows through the conductor 22v and the temperature of the conductor portion rises, the heat is dissipated inside the conductor 22v. The provided heat transfer element 51 radiates into an adjacent conductor 60 which is connected to conductor 22V. Further, the heat released from the conductor 22V to the adjacent conductor 60 is roughly transferred to the heat transfer element 5.
The heat is dissipated to the outside of the adjacent conductor 60 by the cooling fins 52 provided at the end of the conductor 1 and the holes 61 formed in the adjacent conductor.

この様にして、導体22LJ〜22wに電流が流れて導
体部分の温度が変化しても、その熱は熱伝達素子51に
よって導体22u〜22Wの外部に放散されるので、導
体22u〜22Wの周囲に配設された光磁界センサ23
近傍における温度変化を最小に抑えることができる。そ
の結果、光磁界センサを構成するファラデー素子等の光
学素子の光学的パラメーターを均一なものとでき、ファ
ラデー素子透過光の偏光度も一定に保持できるので、変
流器に出力誤差が生じるのを防止することができる。
In this way, even if current flows through the conductors 22LJ to 22w and the temperature of the conductor portion changes, the heat is dissipated to the outside of the conductors 22u to 22W by the heat transfer element 51, so the surroundings of the conductors 22u to 22W Optical magnetic field sensor 23 arranged in
Temperature changes in the vicinity can be minimized. As a result, the optical parameters of the optical elements such as the Faraday element that make up the optical magnetic field sensor can be made uniform, and the degree of polarization of the light transmitted through the Faraday element can also be maintained constant, thereby preventing output errors from occurring in the current transformer. It can be prevented.

[発明の効果] 以上説明した様に、本発明によれば、導体内部に熱伝達
素子を配設するという簡単な手段によって、導体内部に
発生する熱の影響が、光磁界センサの近傍に及ばないよ
うにして、変流器の測定精度を大幅に向上させたガス絶
縁変流器を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, by the simple means of arranging a heat transfer element inside the conductor, the influence of heat generated inside the conductor can be reduced to the vicinity of the optical magnetic field sensor. Therefore, it is possible to provide a gas-insulated current transformer in which the measurement accuracy of the current transformer is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるガス絶縁変流器の一実施例を示
す断面図、第2図(A>、(B)は、夫々変流器コアを
用いた従来のガス絶縁変流器を示す正面図と側断面図、
第3図(A>、(B)は光磁界センサを用いた従来のガ
ス絶縁変流器を示す縦断面図と側断面図、第4図は従来
の光磁界センサを用いたガス絶縁変流器による出力測定
例を示す図である。 1・・・タンク、2u〜2W・・・導体、3・・・絶縁
スペーサ、4・・・変流器コア、5・・・支持板、6・
・・絶縁シールド、7・・・密封端子、21・・・タン
ク、22U〜22W・・・導体、22a、22b・・・
接続部、23・・・・・・光磁界センサ、24・・・先
出入面、25・・・支持台。 26・・・磁気シールドケース、26a・・・ケース、
26b・・・フタ、26C・・・絶縁リング、27・・
・孔、28・・・絶縁筒、29・・・支持容器、30・
・・孔、31・・・支持部材、32・・・発受光部、3
3・・・密封端子、34・・・フタ、35〜41・・・
オーリング、42.43・・・光ファイバー、44・・
・検出装置、51・・・熱伝達素子、52・・・冷却フ
ィン、60・・・導体、61・・・穴部。
FIG. 1 is a sectional view showing an embodiment of a gas insulated current transformer according to the present invention, and FIGS. Front view and side sectional view shown,
Figure 3 (A>, (B)) is a longitudinal cross-sectional view and a side cross-sectional view showing a conventional gas-insulated current transformer using an optical magnetic field sensor, and Figure 4 is a gas-insulated current transformer using a conventional optical magnetic field sensor. 1 is a diagram showing an example of output measurement by a device. 1... Tank, 2u~2W... Conductor, 3... Insulating spacer, 4... Current transformer core, 5... Support plate, 6...
...Insulation shield, 7...Sealed terminal, 21...Tank, 22U~22W...Conductor, 22a, 22b...
Connection part, 23... Optical magnetic field sensor, 24... First entrance/exit surface, 25... Support stand. 26... Magnetic shield case, 26a... Case,
26b...Lid, 26C...Insulation ring, 27...
- Hole, 28... Insulating cylinder, 29... Support container, 30.
... Hole, 31... Support member, 32... Light emitting/receiving section, 3
3... Sealed terminal, 34... Lid, 35-41...
O-ring, 42.43...Optical fiber, 44...
- Detection device, 51... Heat transfer element, 52... Cooling fin, 60... Conductor, 61... Hole.

Claims (4)

【特許請求の範囲】[Claims] (1)しや断器等のガス絶縁電気装置のタンク内に、絶
縁物によつて支持されたシールドケースを配設し、この
シールドケースを貫通するように導体を固定し、この導
体の両端に隣接するガス絶縁電気装置の導体と接続する
接続部を設け、また、前記シールドケース内に位置する
導体の周囲に光磁界センサを配設したガス絶縁変流器に
おいて、前記シールドケースを貫通する導体内部に、熱
伝達素子を配設したことを特徴とするガス絶縁変流器。
(1) A shield case supported by an insulator is installed in the tank of a gas-insulated electrical device such as a circuit breaker, a conductor is fixed so as to pass through the shield case, and both ends of the conductor are fixed. A gas insulated current transformer is provided with a connecting portion to be connected to a conductor of a gas insulated electric device adjacent to the gas insulated current transformer, and an optical magnetic field sensor is arranged around the conductor located within the shield case. A gas insulated current transformer characterized by having a heat transfer element arranged inside the conductor.
(2)前記熱伝達素子が、その一端に冷却フィンを配設
したものである特許請求の範囲第1項記載のガス絶縁変
流器。
(2) The gas insulated current transformer according to claim 1, wherein the heat transfer element has a cooling fin provided at one end thereof.
(3)冷却フィンが、ガス絶縁電気装置の導体内に配設
され、且つこの導体がその冷却フィンの配設箇所に熱伝
達素子によって伝達された熱を導体外部に放散するため
の穴部が形成されたものである特許請求の範囲第2項記
載のガス絶縁変流器。
(3) A cooling fin is disposed within the conductor of the gas-insulated electrical device, and the conductor has a hole at the location where the cooling fin is disposed for dissipating heat transferred by the heat transfer element to the outside of the conductor. 3. A gas insulated current transformer according to claim 2, which is formed of a gas insulated current transformer.
(4)前記熱伝達素子が、ヒートパイプよりなることを
特徴とする特許請求の範囲第1項又は第2項記載のガス
絶縁変流器。
(4) The gas insulated current transformer according to claim 1 or 2, wherein the heat transfer element is a heat pipe.
JP61241954A 1986-10-14 1986-10-14 Gas insulating current transformer Pending JPS6396566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241954A JPS6396566A (en) 1986-10-14 1986-10-14 Gas insulating current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241954A JPS6396566A (en) 1986-10-14 1986-10-14 Gas insulating current transformer

Publications (1)

Publication Number Publication Date
JPS6396566A true JPS6396566A (en) 1988-04-27

Family

ID=17082042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241954A Pending JPS6396566A (en) 1986-10-14 1986-10-14 Gas insulating current transformer

Country Status (1)

Country Link
JP (1) JPS6396566A (en)

Similar Documents

Publication Publication Date Title
JPH06168833A (en) Current and voltage converter for metal- encapsulated and gas-insulated high- voltage apparatus
US5295207A (en) Optical apparatus for measuring current in a grounded metal-clad installation
EP0849600A1 (en) Optical current transformer
AU766689B2 (en) Pole of a circuit breaker with an integrated optical current sensor
JPH10153624A (en) Measuring device of high-voltage facility sealed and gas-insulated by metal
KR20090131386A (en) 3-phase batch gis spacer using optical fiber current sensor
JPS6396566A (en) Gas insulating current transformer
JPS62184375A (en) Gas insulation current transformer
JP2003232815A (en) Optical current measuring device
JPH02115771A (en) Gas insulated current transformer
JPS60203863A (en) Gas-insulated three-phase current transformer
JPH05164787A (en) Light-applied rectifier
JPH0951610A (en) Insulating spacer of gas insulated electric equipment and insulation monitor thereof
JPS62278463A (en) Gas insulation current transformer
WO2011078096A1 (en) Single-phase optical current transformer
JPH02105068A (en) Optical applied current transformer
JPH0546161B2 (en)
KR101366259B1 (en) Optical current transformer for electrical equipment
JPH04283666A (en) Gas-insulated instrument transformer for power demandmeter
JPS60207071A (en) Gas insulating current transformer
JPH02128165A (en) Light transformer for meter
JPS6290561A (en) Current measuring device for gas insulating switch apparatus
JPH0450663A (en) Current measuring device
JPS6398567A (en) Optical axis shift preventing structure of gas insulating optical current transformer
JPS62276468A (en) Gas insulating current transformer