JP2003232815A - Optical current measuring device - Google Patents

Optical current measuring device

Info

Publication number
JP2003232815A
JP2003232815A JP2002034255A JP2002034255A JP2003232815A JP 2003232815 A JP2003232815 A JP 2003232815A JP 2002034255 A JP2002034255 A JP 2002034255A JP 2002034255 A JP2002034255 A JP 2002034255A JP 2003232815 A JP2003232815 A JP 2003232815A
Authority
JP
Japan
Prior art keywords
metal
measuring device
insulating
gas
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002034255A
Other languages
Japanese (ja)
Inventor
Yukihisa Hirata
幸久 平田
Shigeru Kawaguchi
滋 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002034255A priority Critical patent/JP2003232815A/en
Publication of JP2003232815A publication Critical patent/JP2003232815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/247Details of the circuitry or construction of devices covered by G01R15/241 - G01R15/246
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/027Integrated apparatus for measuring current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures

Abstract

<P>PROBLEM TO BE SOLVED: To elongate the service life of a sensor, and to measure a current flowing in an energizing conductor in gas insulating equipment compactly and highly accurately. <P>SOLUTION: In the gas insulating equipment, an insulating gas is filled in a closed tank formed by connecting, through interposed metal rings, respective metal flanges having a plurality of tubular tanks on each connection end, and the energizing conductor arranged in the longitudinal direction is supported, and the circumferential part of an insulating spacer for gas-partitioning the inside of the closed tank is interposed and fixed on the inner circumferential side of the metal rings between respective metal flanges. In the equipment, an insulating ring is disposed between one side of the metal flange and the metal ring to thereby insulate the interval between the metal flanges where the insulating spacer is interposed, and a circular case for storing an optical fiber sensor for measuring the current flowing in the energizing conductor based on the polarized state received by light circulating around the energizing conductor and passing through it is provided, supported on one side, on a support member mounted on the metal flange. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、変電所や発電所の
電力機器や電力系統に流れる電流を光変成器を用いて計
測する光学式電流計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical current measuring device for measuring a current flowing through a power device or power system of a substation or a power plant using an optical transformer.

【0002】[0002]

【従来の技術】遮断器や断路器等のガス絶縁開閉装置に
おいて、電路に流れる電流を計測する手段として光変成
器を用いた光学式電流計測装置が採用されている。この
光学式電流計測装置は、導体の回りを周回させて設けら
れた光ファイバーセンサに光源より入射させた光が透過
することでファラデー旋光を受け、このファラデー旋光
から直交する2成分の光強度信号を取出し、これを電気
信号に変換して導体に流れる電流値を計測するものであ
る。
2. Description of the Related Art In a gas insulated switchgear such as a circuit breaker or a disconnector, an optical current measuring device using an optical transformer is adopted as a means for measuring a current flowing in an electric circuit. This optical current measuring device receives Faraday optical rotation by transmitting light incident from a light source to an optical fiber sensor that is provided around the conductor, and outputs a light intensity signal of two orthogonal components from this Faraday optical rotation. This is to take out, convert this into an electric signal and measure the value of the current flowing through the conductor.

【0003】図4はかかる光ファイバーセンサが設けら
れたガス絶縁開閉装置の構成例を示す断面図である。
FIG. 4 is a sectional view showing a structural example of a gas-insulated switchgear provided with such an optical fiber sensor.

【0004】図4において、1a,1bは内部に中心導
体2が長手方向に沿って配設される管状タンクで、これ
ら管状タンク1a,1bは、それぞれの接続端部に有する
金属フランジ3a,3b間に、中心導体2を支持し且つ
絶縁ガスを区分する絶縁スペーサ4並びにこの絶縁スペ
ーサ4の外周面側に設けられる金属リング5、絶縁スペ
ーサ4の外周部及び金属リング5のそれぞれ一方の端面
側にセンサ部15をそれぞれ介挿してボルト7により一
体的に締結されている。
In FIG. 4, 1a and 1b are tubular tanks in which a central conductor 2 is arranged along the longitudinal direction, and these tubular tanks 1a and 1b have metal flanges 3a and 3b at their connecting ends. In between, an insulating spacer 4 for supporting the central conductor 2 and partitioning an insulating gas, a metal ring 5 provided on the outer peripheral surface side of the insulating spacer 4, one end surface side of the outer peripheral portion of the insulating spacer 4 and the metal ring 5, respectively. The sensor portions 15 are respectively inserted in and are fastened integrally with the bolts 7.

【0005】上記センサ部15は、金属フランジ3aの
内径側に配置される環状絶縁部材16とその外周を取り
囲む環状金属部材17及びこれら環状絶縁部材16の外
周面と環状金属部材17の内面との間に中心導体2を中
心に複数回周回させて配設してなる光ファイバーセンサ
12から構成されている。
The sensor portion 15 includes an annular insulating member 16 arranged on the inner diameter side of the metal flange 3a, an annular metal member 17 surrounding the outer periphery thereof, and an outer peripheral surface of the annular insulating member 16 and an inner surface of the annular metal member 17. It is composed of an optical fiber sensor 12 which is arranged around the center conductor 2 a plurality of times in between.

【0006】なお、一方の金属フランジ3aと環状金属
部材17により挟まれる環状絶縁部材16の両端面及び
他方の金属フランジ3bと環状金属部材17により挟ま
れる絶縁スペーサ4の外周部の両端面にオーリング6が
それぞれ挿入され、環状タンク内部を気密に保持してい
る。
It should be noted that both ends of the annular insulating member 16 sandwiched between the one metal flange 3a and the annular metal member 17 and both end faces of the outer peripheral portion of the insulating spacer 4 sandwiched between the other metal flange 3b and the annular metal member 17 are overlapped. The rings 6 are respectively inserted to keep the inside of the annular tank airtight.

【0007】[0007]

【発明が解決しようとする課題】このようにセンサ部1
5を環状タンク1a,1bのフランジ接続部に配置する
構造の光学式電流計測装置においては、センサ部15に
図示しないガス絶縁開閉装置の遮断器や断路器の開閉時
に発生する振動が、環状タンク1a,1bや金属フラン
ジ3a,3bを介して伝達されると、光ファイバーセン
サ12が振動による影響を受けるため、電流計測時の誤
差要因となっていた。特に、干渉型の光学式電流計測セ
ンサ(サニャック型光CTセンサ)をセンサ部に採用す
る場合、センサは振動加速度の影響を受け易いため、高
精度で電流計測を行うことができないという問題があっ
た。
As described above, the sensor unit 1
In the optical current measuring device having a structure in which 5 is arranged at the flange connection portion of the annular tanks 1a and 1b, the vibration generated when the circuit breaker or disconnector of the gas insulated switchgear (not shown) is opened and closed in the sensor portion 15 When transmitted through 1a, 1b and the metal flanges 3a, 3b, the optical fiber sensor 12 is affected by vibration, which is an error factor during current measurement. In particular, when an interference type optical current measurement sensor (Sagnac type optical CT sensor) is adopted in the sensor unit, there is a problem that the sensor is easily affected by vibration acceleration, and thus current cannot be measured with high accuracy. It was

【0008】本発明は上記のような事情に鑑みてなされ
たもので、振動の影響を受けにくいセンサ支持構造とし
て、高精度で計測可能な光学式電流計測装置を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an optical current measuring device capable of highly accurate measurement as a sensor support structure which is hardly affected by vibration.

【0009】[0009]

【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような手段により光学式電流計測装置
を構成する。
In order to achieve the above object, the present invention constitutes an optical current measuring device by the following means.

【0010】請求項1に対応する発明は、複数の管状タ
ンクを各々の接続端部に有する金属フランジ相互間を金
属リングを介挿して接続してなる密閉タンク内に絶縁ガ
スを充填すると共に、その長手方向に通電導体を配置し
且つこの通電導体を支持すると共に前記密閉タンク内を
ガス区分する絶縁スペーサの外周部を前記金属フランジ
相互間の前記金属リングの内周側に介挿して取付けたガ
ス絶縁機器において、前記金属フランジの片側と前記金
属リングとの間に絶縁リングを配設して前記絶縁スペー
サを挟んだ金属フランジ間を絶縁すると共に、前記通電
導体の回りを周回させ且つ透過する光が受けるファラデ
ー効果に伴う偏光状態に基づいて前記通電導体に流れる
電流を計測するための光ファイバーセンサを環状のケー
スに収納し、このケースを前記一方の金属フランジの外
周面に取付けられた支持部材に片持ち支持させて設け
る。
The invention corresponding to claim 1 is to fill an insulating gas into a sealed tank formed by connecting metal flanges having a plurality of tubular tanks at respective connection end portions with each other through a metal ring, and A conductive conductor is arranged in the longitudinal direction, and the outer peripheral portion of an insulating spacer that supports the conductive conductor and divides the gas in the closed tank is attached to the inner peripheral side of the metal ring between the metal flanges. In a gas insulation device, an insulating ring is provided between one side of the metal flange and the metal ring to insulate between the metal flanges sandwiching the insulating spacer, and to circulate and transmit around the current-carrying conductor. An optical fiber sensor for measuring the current flowing through the current-carrying conductor based on the polarization state associated with the Faraday effect received by light is housed in an annular case. Provided in the over scan is cantilevered support member mounted on the outer circumferential surface of the one metal flange.

【0011】請求項2に対応する発明は、複数の管状タ
ンクを各々の接続端部に有する金属フランジ相互間に絶
縁フランジを介挿して接続してなる密閉タンク内に絶縁
ガスを充填すると共に、その長手方向に通電導体を配置
したガス絶縁機器において、前記通電導体に流れる電流
を、前記通電導体の回りを周回させ且つ透過する光が受
けるファラデー効果に伴う偏光状態に基づいて前記通電
導体に流れる電流を計測するための光ファイバーセンサ
を環状のケースに収納し、このケースを前記一方の金属
フランジの外周面に取付けられた支持部材に片持ち支持
させて設ける。
The invention according to claim 2 is to fill an insulating gas into a closed tank, which is formed by inserting and connecting an insulating flange between metal flanges having a plurality of tubular tanks at respective connection ends, In a gas-insulated device in which a current-carrying conductor is arranged in its longitudinal direction, a current flowing through the current-carrying conductor flows through the current-carrying conductor based on a polarization state associated with a Faraday effect of light passing through the current-carrying conductor and passing therethrough. An optical fiber sensor for measuring an electric current is housed in an annular case, and the case is cantilevered and supported by a supporting member attached to the outer peripheral surface of the one metal flange.

【0012】請求項3に対応する発明は、請求項1又は
請求項2に対応する発明の光学式電流計測装置におい
て、前記支持部材は、光ファイバーセンサを収納した環
状のケースを弾性力を有する絶縁体で構成される。
According to a third aspect of the present invention, in the optical current measuring device according to the first or second aspect of the present invention, the support member has an insulating ring-shaped case accommodating an optical fiber sensor having an elastic force. Composed of the body.

【0013】請求項4に対応する発明は、請求項1又は
請求項2に対応する発明の光学式電流計測装置におい
て、光ファイバーセンサを収納した環状のケースは、気
密構造にして内部を乾燥空気・窒素・不活性ガスで満た
すか、あるいは真空状態に保持される。
According to a fourth aspect of the invention, in the optical current measuring device according to the first or second aspect of the invention, the annular case accommodating the optical fiber sensor has an airtight structure and dry air inside. Filled with nitrogen / inert gas or kept in vacuum.

【0014】請求項5に対応する発明は、請求項4に対
応する発明の光学式電流計測装置において、前記環状の
ケースは、金属製でファイバーセンサを収納する開口部
にカバーを溶接して気密シールが施される。
According to a fifth aspect of the present invention, in the optical current measuring device according to the fourth aspect of the present invention, the annular case is made of metal and is hermetically sealed by welding a cover to an opening for housing the fiber sensor. The seal is applied.

【0015】請求項6に対応する発明は、請求項1乃至
請求項5のいずかに対応する発明の光学式電流計測装置
において、前記金属フランジ相互間を電気的に接続する
接続部材が配設される。
According to a sixth aspect of the present invention, in the optical current measuring device according to any one of the first to fifth aspects of the present invention, a connecting member for electrically connecting the metal flanges to each other is provided. Set up.

【0016】[0016]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明による光学式電流計測装置の
第1の実施の形態を示す断面図で、図4と同一部品には
同一符号を付して説明する。
FIG. 1 is a sectional view showing a first embodiment of an optical current measuring device according to the present invention, and the same parts as those in FIG.

【0018】図1において、1a,1bは内部中心位置
に通電導体(以下中心導体と呼ぶ)2が長手方向に沿っ
て配設される管状タンクで、これら管状タンク1a,1b
はそれぞれの接続端部に有する金属フランジ3a,3b
間に中心導体2を支持し且つ絶縁ガスを区分する絶縁ス
ペーサ4を介挿し、この絶縁スペーサ4の外周面側に金
属リング5を設けると共に、一方の金属フランジ3aと
金属リング5との間に絶縁リング8を配設し、これらは
ボルト7により一体的に締結される。したがって、金属
フランジ3a,3b相互間は絶縁リング8により電気的
に絶縁され、金属フランジ3a、金属リング5及び金属
フランジ3bを通して中心導体2から発生する磁束によ
る誘導電流が流れないようにしている。
In FIG. 1, reference numerals 1a and 1b denote tubular tanks in which a conducting conductor (hereinafter referred to as a central conductor) 2 is arranged at a center position of the inside along the longitudinal direction.
Are metal flanges 3a and 3b at their respective connection ends
An insulating spacer 4 for supporting the central conductor 2 and partitioning an insulating gas is interposed between the insulating spacer 4 and a metal ring 5 provided on the outer peripheral surface side of the insulating spacer 4, and between the metal flange 3a and the metal ring 5 on one side. An insulating ring 8 is provided, and these are integrally fastened by a bolt 7. Therefore, the metal flanges 3a and 3b are electrically insulated from each other by the insulating ring 8 so that the induction current due to the magnetic flux generated from the central conductor 2 does not flow through the metal flange 3a, the metal ring 5 and the metal flange 3b.

【0019】なお、金属フランジ3a,3bと接する絶
縁スペーサ4の両端面部にはオーリング6が挿入され、
タンク内部が気密に保持されている。
O-rings 6 are inserted into both end surfaces of the insulating spacer 4 which contacts the metal flanges 3a and 3b.
The inside of the tank is kept airtight.

【0020】このような環状タンクのフランジ接続部に
おいて、一方の管状タンク1b側の金属フランジ3bの
外周面に複数個の弾性力を有する絶縁体9をそれぞれ配
設し、この絶縁体9に光ファイバーセンサ12を中心導
体2の回りを周回させる如くして収納した環状のケース
10を電気的に絶縁して片持ち支持させる。
In such a flange connection portion of the annular tank, a plurality of insulators 9 having elastic force are respectively arranged on the outer peripheral surface of the metal flange 3b on the side of the one tubular tank 1b, and the optical fiber is attached to the insulator 9. An annular case 10 in which the sensor 12 is housed so as to circulate around the central conductor 2 is electrically insulated and cantilevered.

【0021】この場合、環状のケース10は、金属リン
グ5の外周面に対して適宜の間隔を存して配置されてい
る。
In this case, the annular case 10 is arranged at an appropriate distance from the outer peripheral surface of the metal ring 5.

【0022】一方、光ファイバーセンサ12が収納され
た環状のケース10の開口部は、内部空間を気密に保つ
ために例えばレーザ溶接により金属製のカバー11で閉
塞され、ケース10内は、乾燥空気・窒素・不活性ガス
で満たすか、あるいは真空状態に保たれている。
On the other hand, the opening of the annular case 10 accommodating the optical fiber sensor 12 is closed by a metal cover 11 by, for example, laser welding in order to keep the internal space airtight, and the inside of the case 10 is filled with dry air. Filled with nitrogen / inert gas or kept in vacuum.

【0023】このような構成とすれば、光ファイバーセ
ンサ12を収納した環状のケース10は、開閉装置など
の環状タンクのフランジ接続端部に組込まずに金属フラ
ンジ3bの外周面に取付けられた弾性力を有する絶縁体
9に片持ち支持させて遮断器や断路器の振動が伝達し難
い構造としているので、遮断器や断路器の開閉時に発生
する振動が極端に減衰して光ファイバーセンサ12に伝
達される。この場合、遮断器や断路器の振動は、高周波
で極短時間に発生する衝撃振動に類しているが、この衝
撃振動の尖塔値を弾性力を有する支持部材9により効果
的に減衰させることができる。支持部材として用いられ
る絶縁体9の具体例として、例えばシリコーンゴムがあ
る。ゴム一般は、衝撃を減衰しながらケースの変形性を
保持する有効な弾性体であるが、シリコーンゴムでは、
更に耐劣化特性にも優れているからである。
With such a structure, the annular case 10 accommodating the optical fiber sensor 12 is elastically attached to the outer peripheral surface of the metal flange 3b without being incorporated into the flange connection end of the annular tank such as the switchgear. Since it has a structure in which the vibration of the circuit breaker or the disconnecting switch is difficult to be transmitted by being cantilevered by the insulator 9 having, the vibration generated when the circuit breaker or the disconnecting switch is opened and closed is extremely attenuated and transmitted to the optical fiber sensor 12. It In this case, the vibration of the circuit breaker or the disconnecting switch is similar to the shock vibration generated at a high frequency in a very short time, but the peak value of this shock vibration can be effectively damped by the support member 9 having an elastic force. You can A specific example of the insulator 9 used as the support member is silicone rubber. Generally rubber is an effective elastic body that retains the deformability of the case while damping the impact, but with silicone rubber,
Further, it is also excellent in deterioration resistance.

【0024】したがって、サニャック型光CTセンサの
ように振動加速度の影響を受けやすいセンサを採用して
も、振動による誤差を最小限に抑えることができ、高精
度の電流計測が可能となる。
Therefore, even if a sensor such as the Sagnac type optical CT sensor which is easily influenced by the vibration acceleration is adopted, the error due to the vibration can be suppressed to the minimum and the current can be measured with high accuracy.

【0025】また、光ファイバーセンサ12と中心導体
2との間の空間には、絶縁スペーサ4の外周面側に金属
リング5が設けられていても、金属フランジ3a,3b
相互間は絶縁リング8により電気的に絶縁され、金属フ
ランジ3a、金属リング5及び金属フランジ3bを通し
て中心導体2から発生する磁界による誘導電流が流れな
いので、光ファイバーセンサ12を透過する光が受ける
ファラデー効果に伴う偏光状態に与える影響による誤差
要因がなく、高精度の電流計測ができる。
Further, in the space between the optical fiber sensor 12 and the central conductor 2, even if the metal ring 5 is provided on the outer peripheral surface side of the insulating spacer 4, the metal flanges 3a and 3b are provided.
They are electrically insulated from each other by an insulating ring 8 and an induced current due to a magnetic field generated from the central conductor 2 does not flow through the metal flange 3a, the metal ring 5 and the metal flange 3b. There is no error factor due to the effect on the polarization state associated with the effect, and high-precision current measurement can be performed.

【0026】さらに、光ファイバーセンサ12の周囲の
雰囲気が水分などのファイバーを劣化させる成分から保
護されているために、高精度の電流計測ができると共
に、光ファイバーセンサ12の長寿命化を達成できる。
また、環状のケース12のカバー11を気密シール構造
としてオーリングなどを使わずにレーザ溶接により密閉
する構造を採用しているため、ケースのサイズを非常に
コンパクトにすることができる。
Furthermore, since the atmosphere around the optical fiber sensor 12 is protected from components such as moisture that deteriorate the fiber, it is possible to measure the current with high accuracy and to extend the life of the optical fiber sensor 12.
Further, since the cover 11 of the ring-shaped case 12 has an airtight sealing structure which is hermetically sealed by laser welding without using an O-ring or the like, the size of the case can be made very compact.

【0027】ここで、レーザ溶接を採用した理由は、一
般の抵抗溶接などではケースが加熱されて光ファイバー
センサ12を劣化、あるいは破損させてしまうが、レー
ザ溶接の場合には母材に対して低温溶接が可能なためで
ある。
Here, the reason why laser welding is adopted is that the case is heated in ordinary resistance welding and the like, which deteriorates or damages the optical fiber sensor 12, but in the case of laser welding, the temperature is lower than that of the base material. This is because welding is possible.

【0028】図2は本発明の第2の実施の形態を示す断
面図で、図1と同一部分には同一符号を付してその説明
を省略し、ここでは異なる点について述べる。
FIG. 2 is a sectional view showing a second embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Only different points will be described here.

【0029】第2の実施の形態は、図2に示すように金
属フランジ3a,3b間を導電性カバーあるいはシャン
トバー14で電気的に接続するようにしたもので、他の
部分については第1の実施の形態と同様の構成である。
In the second embodiment, as shown in FIG. 2, the metal flanges 3a and 3b are electrically connected by a conductive cover or a shunt bar 14, and the other portions are the first. The configuration is similar to that of the above embodiment.

【0030】このような構成とすれば、多点接地系のガ
ス絶縁開閉装置の光学式電流計測装置として好適であ
る。すなわち、第1の実施の形態では、管状タンク間を
絶縁スペーサ4で電気的に絶縁しているため、一点接地
系のガス絶縁開閉装置には適応であるが、ガス絶縁開閉
装置の管状タンク間を電気的に接続する必要がある多点
接地系のガス絶縁開閉装置には適さない。
With such a structure, it is suitable as an optical current measuring device for a gas-insulated switchgear of a multipoint grounding system. That is, in the first embodiment, the tubular tanks are electrically insulated from each other by the insulating spacers 4 and therefore are suitable for the gas insulated switchgear of the single-point grounding system. It is not suitable for gas-insulated switchgear of multi-point grounding system that needs to be electrically connected.

【0031】しかし、第2の実施の形態では、導電性カ
バーあるいはシャントバー14によって、ガス絶縁開閉
装置の管状タンク間を電気的に接続できるため、多点接
地系のガス絶縁開閉装置として好適である。また、一点
接地系のガス絶縁開閉装置用としても好適である。
However, in the second embodiment, since the tubular tanks of the gas insulated switchgear can be electrically connected by the conductive cover or the shunt bar 14, the gas insulated switchgear of the multipoint grounding system is suitable. is there. It is also suitable for a gas-insulated switchgear of a single-point ground system.

【0032】図3は本発明の第3の実施の形態を示す断
面図で、図1と同一部分には同一符号を付して説明す
る。
FIG. 3 is a sectional view showing a third embodiment of the present invention. The same parts as those in FIG.

【0033】図3において、1a,1bは内部に中心導
体2が長手方向に沿って配設される管状のタンクで、こ
れら管状のタンク1a,1bはそれぞれの接続端部に有す
る金属フランジ3a,3b間に環状の絶縁フランジ13
を介挿してこれらはボルト7により一体的に締結されて
いる。
In FIG. 3, 1a and 1b are tubular tanks in which the central conductor 2 is arranged along the longitudinal direction, and these tubular tanks 1a and 1b are metal flanges 3a, which are provided at their respective connection ends. An annular insulating flange 13 between 3b
These are integrally fastened by bolts 7 by inserting.

【0034】なお、金属フランジ3a,3bと接する絶
縁フランジ13の両端面部にはオーリング6が挿入さ
れ、タンク内部が気密に保持されている。
The O-rings 6 are inserted into both end portions of the insulating flange 13 which is in contact with the metal flanges 3a and 3b to keep the inside of the tank airtight.

【0035】この絶縁フランジ13を用いた環状タンク
のフランジ接続端部においても、絶縁フランジ13を挟
んだ金属フランジ相互間が電気的に絶縁できるので、第
1の実施の形態における絶縁リング8が不要となる。
Even at the flange connection end of the annular tank using the insulating flange 13, the metal flanges sandwiching the insulating flange 13 can be electrically insulated from each other, so that the insulating ring 8 in the first embodiment is unnecessary. Becomes

【0036】このような構成の環状タンク1a,1bの
フランジ接続部において、一方の管状タンク1bの金属
フランジ3bの外周面に複数個の弾性力を有する絶縁体
9をそれぞれ配設し、この絶縁体9に光ファイバーセン
サ12を収納した環状のケース10を片持ち支持させ
て、電気的に絶縁して取付けられている。
In the flange connection portion of the annular tanks 1a and 1b having such a structure, a plurality of insulators 9 having elastic force are arranged on the outer peripheral surface of the metal flange 3b of the one tubular tank 1b, respectively, and the insulation is obtained. An annular case 10 accommodating an optical fiber sensor 12 is supported by a body 9 in a cantilevered manner, and is electrically insulated and attached.

【0037】この場合、環状のケース10は、絶縁フラ
ンジ13の外周面に対して適宜の間隔を存して配置され
ている。
In this case, the annular case 10 is arranged at an appropriate distance from the outer peripheral surface of the insulating flange 13.

【0038】一方、光ファイバーセンサ12が収納され
た環状のケース10の開口部は、内部空間を気密に保つ
ためにレーザ溶接により金属製のカバー11で閉塞さ
れ、ケース10内は、乾燥空気・窒素・不活性ガスで満
たすか、あるいは真空状態に保たれている。
On the other hand, the opening of the annular case 10 accommodating the optical fiber sensor 12 is closed by a metal cover 11 by laser welding in order to keep the internal space airtight, and the inside of the case 10 is dry air / nitrogen. • Filled with an inert gas or kept in a vacuum.

【0039】このような構成としても、第1の実施の形
態と全く同様の作用効果を得ることができる。
Even with such a structure, it is possible to obtain the same effects as those of the first embodiment.

【0040】なお、本実施の形態に対しても、第2の実
施の形態と同様に金属フランジ3a,3b間を導電性カ
バーあるいはシャントバー14で電気的に接続するよう
にしてもよいことは言うまでもない。
Also in this embodiment, the metal flanges 3a and 3b may be electrically connected by a conductive cover or a shunt bar 14 as in the second embodiment. Needless to say.

【0041】[0041]

【発明の効果】以上述べたように本発明によれば、ガス
開閉装置などの遮断器や断路器の振動の影響を受けにく
いセンサ支持構造としたので、センサの長寿命化を図る
ことができると共に、コンパクトで高精度で計測可能な
光学式電流計測装置を提供できる。
As described above, according to the present invention, since the sensor support structure is less susceptible to the vibration of the circuit breaker or the disconnecting switch of the gas switchgear, the life of the sensor can be extended. At the same time, it is possible to provide an optical current measuring device that is compact and can measure with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光学式電流計測装置の第1の実施
の形態を適用した環状タンクのフランジ接続部を示す断
面図。
FIG. 1 is a cross-sectional view showing a flange connection part of an annular tank to which a first embodiment of an optical current measuring device according to the present invention is applied.

【図2】本発明による光学式電流計測装置の第2の実施
の形態を適用した環状タンクのフランジ接続部を示す断
面図。
FIG. 2 is a cross-sectional view showing a flange connection portion of an annular tank to which the second embodiment of the optical current measuring device according to the present invention is applied.

【図3】本発明による光学式電流計測装置の第3の実施
の形態を適用した環状タンクのフランジ接続部を示す断
面図。
FIG. 3 is a sectional view showing a flange connection portion of an annular tank to which an optical current measuring device according to a third embodiment of the present invention is applied.

【図4】従来の光学式電流計測装置を適用した環状タン
クのフランジ接続部を示す断面図。
FIG. 4 is a cross-sectional view showing a flange connection portion of an annular tank to which a conventional optical current measuring device is applied.

【符号の説明】[Explanation of symbols]

1a,1b…環状タンク 2…中心導体 3a,3b…金属フランジ 4…絶縁スペーサ 5…金属リング 6…オーリング 7…ボルト 8…絶縁リング 9…絶縁体 10…ケース 11…カバー 12…光ファイバーケーブル 13…絶縁フランジ 1a, 1b ... annular tank 2 ... Central conductor 3a, 3b ... Metal flange 4 ... Insulating spacer 5 ... Metal ring 6… O-ring 7 ... bolt 8 ... Insulation ring 9 ... Insulator 10 ... Case 11 ... Cover 12 ... Optical fiber cable 13 ... Insulation flange

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の管状タンクを各々の接続端部に有
する金属フランジ相互間を金属リングを介挿して接続し
てなる密閉タンク内に絶縁ガスを充填すると共に、その
長手方向に通電導体を配置し、且つこの通電導体を支持
すると共に前記密閉タンク内をガス区分する絶縁スペー
サの外周部を前記金属フランジ相互間の前記金属リング
の内周側に介挿して取付けたガス絶縁機器において、 前記金属フランジの片側と前記金属リングとの間に絶縁
リングを配設して前記絶縁スペーサを挟んだ金属フラン
ジ間を絶縁すると共に、前記通電導体の回りを周回させ
且つ透過する光が受ける偏光状態に基づいて前記通電導
体に流れる電流を計測するための光ファイバーセンサを
環状のケースに収納し、このケースを前記一方の金属フ
ランジの外周面に取付けられた支持部材に片持ち支持さ
せて設けたことを特徴とする光学式電流計測装置。
1. An insulating gas is filled in a sealed tank formed by connecting metal flanges having a plurality of tubular tanks at their respective connection end portions with a metal ring interposed therebetween, and a conducting conductor is provided in the longitudinal direction thereof. A gas-insulated device in which an outer peripheral portion of an insulating spacer that is arranged and supports the current-carrying conductor and that divides gas in the closed tank is inserted and attached to an inner peripheral side of the metal ring between the metal flanges, An insulating ring is arranged between one side of the metal flange and the metal ring to insulate between the metal flanges sandwiching the insulating spacer, and circulates around the current-carrying conductor, and is in a polarization state in which the transmitted light receives. Based on this, an optical fiber sensor for measuring the current flowing through the current-carrying conductor is housed in an annular case, and this case is attached to the outer peripheral surface of the one metal flange. Optical current measuring device was kicked were the support member cantilevered, characterized in that provided.
【請求項2】 複数の管状タンクを各々の接続端部に有
する金属フランジ相互間に絶縁フランジを介挿して接続
してなる密閉タンク内に絶縁ガスを充填すると共に、そ
の長手方向に通電導体を配置したガス絶縁機器におい
て、 前記通電導体に流れる電流を、前記通電導体の回りを周
回させ且つ透過する光が受ける偏光状態に基づいて前記
通電導体に流れる電流を計測するための光ファイバーセ
ンサを環状のケースに収納し、このケースを前記一方の
金属フランジの外周面に取付けられた支持部材に片持ち
支持させて設けたことを特徴とする光学式電流計測装
置。
2. A closed tank, which is formed by connecting an insulating flange between metal flanges having a plurality of tubular tanks at respective connection ends, is filled with an insulating gas, and a conducting conductor is provided in a longitudinal direction thereof. In the arranged gas-insulated equipment, an optical fiber sensor for measuring the current flowing through the current-carrying conductor based on the polarization state in which the current flowing through the current-carrying conductor is circulated around the current-carrying conductor and the light passing therethrough is received. An optical current measuring device, characterized by being housed in a case, and being cantilevered by a supporting member attached to the outer peripheral surface of the one metal flange.
【請求項3】 請求項1又は請求項2に記載の光学式電
流計測装置において、前記支持部材は、光ファイバーセ
ンサを収納した環状のケースを弾性力を有する絶縁体で
構成されたことを特徴とする光学式電流計測装置。
3. The optical current measuring device according to claim 1 or 2, wherein the supporting member is formed of an insulator having an elastic force in an annular case accommodating an optical fiber sensor. An optical current measuring device.
【請求項4】 請求項1又は請求項2に記載の光学式電
流計測装置において、光ファイバーセンサを収納した環
状のケースは、気密構造にして内部を乾燥空気・窒素・
不活性ガスで満たすか、あるいは真空状態に保持された
ことを特徴とする光学式電流計測装置。
4. The optical current measuring device according to claim 1, wherein the annular case accommodating the optical fiber sensor has an airtight structure, and the inside is dry air / nitrogen.
An optical current measuring device characterized by being filled with an inert gas or being kept in a vacuum state.
【請求項5】 請求項4記載の光学式電流計測装置にお
いて、前記環状のケースは、金属製でファイバーセンサ
を収納する開口部にカバーを溶接して気密シールが施さ
れたことを特徴とする光学式電流計測装置。
5. The optical current measuring device according to claim 4, wherein the annular case is made of metal and is hermetically sealed by welding a cover to an opening for housing the fiber sensor. Optical current measuring device.
【請求項6】 請求項1乃至請求項5のいずかに記載の
光学式電流計測装置において、前記金属フランジ相互間
を電気的に接続する接続部材が配設されることを特徴と
する光学式電流計測装置。
6. The optical current measuring device according to claim 1, further comprising: a connecting member for electrically connecting the metal flanges to each other. Current measuring device.
JP2002034255A 2002-02-12 2002-02-12 Optical current measuring device Pending JP2003232815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034255A JP2003232815A (en) 2002-02-12 2002-02-12 Optical current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034255A JP2003232815A (en) 2002-02-12 2002-02-12 Optical current measuring device

Publications (1)

Publication Number Publication Date
JP2003232815A true JP2003232815A (en) 2003-08-22

Family

ID=27776818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034255A Pending JP2003232815A (en) 2002-02-12 2002-02-12 Optical current measuring device

Country Status (1)

Country Link
JP (1) JP2003232815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223129A1 (en) * 2007-12-21 2010-09-01 ABB Research Ltd. Gas-insulated switchgear device with optical current sensor
JP2011128092A (en) * 2009-12-21 2011-06-30 Japan Ae Power Systems Corp Single-phase optical current transformer
KR101318597B1 (en) * 2010-03-19 2013-10-15 도꼬 덴끼 가부시끼가이샤 Optical-fiber-containing insulating spacer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223129A1 (en) * 2007-12-21 2010-09-01 ABB Research Ltd. Gas-insulated switchgear device with optical current sensor
JP2011128092A (en) * 2009-12-21 2011-06-30 Japan Ae Power Systems Corp Single-phase optical current transformer
WO2011078096A1 (en) * 2009-12-21 2011-06-30 株式会社日本Aeパワーシステムズ Single-phase optical current transformer
US20120262150A1 (en) * 2009-12-21 2012-10-18 Hitachi, Ltd. Single-Phase Optical Current Transformer
CN102933972A (en) * 2009-12-21 2013-02-13 株式会社日立制作所 Single-phase optical current transformer
US8933686B2 (en) 2009-12-21 2015-01-13 Hitachi, Ltd. Single-phase optical current transformer
CN102933972B (en) * 2009-12-21 2015-11-25 株式会社日立制作所 single-phase optical current transformer
KR101318597B1 (en) * 2010-03-19 2013-10-15 도꼬 덴끼 가부시끼가이샤 Optical-fiber-containing insulating spacer

Similar Documents

Publication Publication Date Title
US5202812A (en) Apparatus for detecting faults on power transmission lines
JP5180376B2 (en) Generator circuit breaker with fiber optic current sensor
JP3355579B2 (en) Current and voltage converters for metal-filled gas-insulated high-voltage devices
JP2008534939A (en) Optical sensor device for switchgear
CA2731688A1 (en) High voltage ac/dc or dc/ac converter station with fiberoptic current sensor
AU2013231500B2 (en) Measuring transducer arrangement
JPH10185961A (en) Light current transformer
EP1103059B1 (en) Pole of a circuit breaker with an integrated optical current sensor
US5295207A (en) Optical apparatus for measuring current in a grounded metal-clad installation
JP2003232815A (en) Optical current measuring device
JP5461260B2 (en) Insulated spacer with built-in optical fiber
JPH09215135A (en) Gas insulated machine and insulating spacer
JPH09163528A (en) Optical current transformer
JPH06222086A (en) Single-phase voltage detector
JPS59110303A (en) Shortcircuit defect detector for enclosed electric device
JP3270234B2 (en) Optical current measuring device
KR20100079345A (en) Gas insulated switchgear
JPH10142265A (en) Optical current transformer
JPS6396566A (en) Gas insulating current transformer
JP2011075410A (en) Transformer for photoelectric field sensor type instrument
JPS60202365A (en) Gas-insulated electrical appliance
KR20210044462A (en) Current measuring and gas insulated switchgear having the same
JPH0546161B2 (en)
JP2011085466A (en) Air-cooled optical current transformer
JPS6398567A (en) Optical axis shift preventing structure of gas insulating optical current transformer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040805