JPS6398567A - Optical axis shift preventing structure of gas insulating optical current transformer - Google Patents

Optical axis shift preventing structure of gas insulating optical current transformer

Info

Publication number
JPS6398567A
JPS6398567A JP61244163A JP24416386A JPS6398567A JP S6398567 A JPS6398567 A JP S6398567A JP 61244163 A JP61244163 A JP 61244163A JP 24416386 A JP24416386 A JP 24416386A JP S6398567 A JPS6398567 A JP S6398567A
Authority
JP
Japan
Prior art keywords
optical
current transformer
magnetic field
gas
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61244163A
Other languages
Japanese (ja)
Inventor
Masaru Takimoto
勝 滝本
Akira Aoyanagi
青柳 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61244163A priority Critical patent/JPS6398567A/en
Publication of JPS6398567A publication Critical patent/JPS6398567A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent not only the shift of an optical axis but also the effect of the electromagnetic force acting on a conductor or the operating vibration of a breaker, by elastically supporting a light emitting-receiving part mount member and the structure on the side of a tank through an elastic member. CONSTITUTION:A case 19 having an optical magnetic field sensor 16 fixed thereto and a plate 22 having a light emitting-receiving part 25 fixed thereto are fixed to and supported by an insulating cylinder 21 and, further, the plate 22 is elastically supported by a supporting container 27 through rubbers 39, 40 being elastic members. Therefore, even if an excessive electromagnetic force caused by the flow of an accident current through a conductor or the operating vibration of a breaker acts to vibrate the current transformer unit 41, the optical magnetic field sensor 16 and the light transmitting-receiving part 25 integrally vibrate since they are strongly bonded to the insulating cylinder 21 having high rigidity. As a result, no relative dispalacement occurs between the sensor 16 and the part 25, so that no shift of the optical axis is generated.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は、ガス絶縁光変流器に関するものであり、特に
光磁界センサ及びその検出装置を備え、この間で光を伝
送する構成を有するガス絶縁光変流器の光軸ずれ防止構
造に係る。
Detailed Description of the Invention (Objective of the Invention) (Industrial Field of Application) The present invention relates to a gas-insulated optical current transformer, and particularly to a gas-insulated optical current transformer that is equipped with an optical magnetic field sensor and a detection device thereof, and that transmits light between them. The present invention relates to a structure for preventing optical axis deviation of a gas insulated optical current transformer having a configuration in which:

(従来の技術) 従来、ガス絶縁開閉装置に用いられるガス絶縁変流器は
、ケイ素鋼板にコイルを巻き付けて成る鉄心タイプの変
流器コアにより構成されていた。
(Prior Art) Conventionally, a gas insulated current transformer used in a gas insulated switchgear has been configured with an iron core type current transformer core made by winding a coil around a silicon steel plate.

この場合、変流器コアが徂い為、これを支える支持板、
絶縁シールド等もかなりの大きさとなり、機器が複雑且
つ大型化し、重量も大きくなってしまう。また、変流器
コアはココアで1用途にしか使用できない為、継電器用
や計測用等に複数のコアが必要となり、これも大型化の
原因となる他、コスト的にも高価となってしまう。
In this case, since the current transformer core is different, the support plate that supports it,
Insulating shields and the like also become quite large, making the equipment complex, large-sized, and heavy. In addition, since the current transformer core is cocoa and can only be used for one purpose, multiple cores are required for relays, measurements, etc., which not only causes the size to increase, but also increases the cost. .

これらの欠点に鑑み、最近では、細径性、絶縁性、無誘
導性、耐環境性等の優れた特徴を有する光ファイバーを
用いた計測技術が注目され、これを応用した光磁界セン
サにより変流器を構成する試みがなされている。
In view of these shortcomings, measurement technology using optical fibers, which have excellent characteristics such as small diameter, insulation, non-induction, and environmental resistance, has recently attracted attention. Attempts are being made to construct vessels.

第4図に、この様な光磁界センサによるガス絶縁光変流
器の例を示す。
FIG. 4 shows an example of a gas-insulated optical current transformer using such an optical magnetic field sensor.

同図において、タンク1に設けられた絶縁スペーサ3に
導体2u〜2Wが取付けられ、その接続部4近傍には導
体2u〜2Wを周回する様に光磁界センサ7が設けられ
ている。
In the figure, conductors 2u to 2W are attached to an insulating spacer 3 provided in a tank 1, and an optical magnetic field sensor 7 is provided near the connection portion 4 so as to go around the conductors 2u to 2W.

この光磁界センサ7は、第5図に示した様に、磁界強度
によりファラデー回転角を生ずる鉛ガラス等のガラスで
形成され、各コーナーに全反射面を設けたファラデー素
子11と反射ミラー12を組み合せて構成され、ファラ
デー素子透過光が光路13で示した様に、導体2vを周
回する様な構成とされ、更に、反射ミラー12により光
路を往復させることで、外部の磁界の影響を受けること
なく高精度、高感度な磁界の計測が行えるようにしたも
のである。
As shown in FIG. 5, this optical magnetic field sensor 7 is made of glass such as lead glass that produces a Faraday rotation angle depending on the strength of the magnetic field, and includes a Faraday element 11 with a total reflection surface at each corner and a reflection mirror 12. The Faraday element is configured such that the transmitted light goes around the conductor 2v as shown by the optical path 13, and the optical path is reciprocated by the reflecting mirror 12, so that it is not affected by the external magnetic field. This makes it possible to measure magnetic fields with high precision and high sensitivity.

一方、タンク1上には、この光磁界センサ7に対応する
位置に、ガス密封端子5が設(プられ、ここにレンズ、
偏光子及び検光子等から成る発受光部が内蔵されている
。そして、光磁界センサ7と発受光部の間で光が空間伝
送される様になっている。
On the other hand, a gas-sealed terminal 5 is provided on the tank 1 at a position corresponding to the optical magnetic field sensor 7, and a lens,
A light emitting/receiving section consisting of a polarizer, analyzer, etc. is built-in. Light is spatially transmitted between the optical magnetic field sensor 7 and the light emitting/receiving section.

この様に構成された光変流器の作用は次の通りである。The operation of the optical current transformer constructed in this way is as follows.

即ち、タンク1の外部に配設された検出装置10の光発
信器から、光ファイバー8によって密封端子5に導かれ
た光は、密封端子5内の発受光部において直線偏光とな
り光磁界センサ7に送られる。そして、この光はファラ
デー素子11を通過する際に磁界の大きさに応じた角度
の偏光となった後、再び密封端子5内の発受光部に送ら
れ、光ファイバー9を通って検出装置10に送られる。
That is, light guided from the optical transmitter of the detection device 10 disposed outside the tank 1 to the sealed terminal 5 via the optical fiber 8 becomes linearly polarized light at the light emitting/receiving section inside the sealed terminal 5 and is transmitted to the optical magnetic field sensor 7. Sent. When this light passes through the Faraday element 11, it becomes polarized at an angle corresponding to the magnitude of the magnetic field, and then is sent again to the light emitting/receiving section in the sealed terminal 5, and then passes through the optical fiber 9 to the detection device 10. Sent.

そして、検出装置10の光受信器によって光パワーとし
て取り出され、演算処理され、その演算処理の大きさに
比例した出力に変換される。
The light is then extracted as optical power by the optical receiver of the detection device 10, subjected to arithmetic processing, and converted into an output proportional to the magnitude of the arithmetic processing.

上述した様に、光磁界センサは絶縁性に優れる為、導体
2u〜2Wの近傍に配置でき、ガス絶縁変流器は大幅に
縮小、軽母化される。特に具体的に数値を示せば、長さ
については20%程度、直径については60%程度に縮
小されると考えられる。
As described above, since the optical magnetic field sensor has excellent insulation properties, it can be placed near the conductors 2u to 2W, and the gas insulated current transformer can be significantly downsized and lightened. In particular, if specific numerical values are given, it is thought that the length will be reduced by about 20% and the diameter will be reduced by about 60%.

また、光磁界センサは、信号の多重化が自由である為、
従来の様に、用途別に複数のコアを設けるものと違い、
1個のセンサを設けるだけで、これを多用途に使用でき
る。従って、この点において、変流器をより小型・簡略
化することが可能であり、コスト的にも安価である。
In addition, since optical magnetic field sensors can freely multiplex signals,
Unlike conventional methods, which have multiple cores for different applications,
Just by providing one sensor, it can be used for multiple purposes. Therefore, in this respect, it is possible to make the current transformer smaller and simpler, and the cost is also lower.

ところで、この様な光磁界センサを用いたガス絶縁光変
流器としては、上記の様に高圧導体側にファラデー素子
から成る光磁界センυを設け、タンク側に発受光部を直
接取付けて光を空間伝送するもの(前者)の他に、高圧
導体側にファラデー素子、偏光子、検光子、レンズ等を
ひとまとめにして構成した光磁界センサを設け、この光
磁界センサとタンク側に設けた発受光部とを光ファイバ
ーで接続し、この光ファイバーで光を伝送するものく後
者)が考えられる。しかしながら、後者については、光
ファイバーが高電界部に配される為、光ファイバーのク
ラッドと外被間にミクロボイド等が存在した場合に絶縁
不良を生ずる可能性があり、絶縁信頼性の点で問題があ
る。一方、空間伝送がなされるタイプの前者においては
、この様な欠点はなく、絶縁信頼性に優れている。従っ
て、この長所から空間伝送タイプのガス絶縁光変流器が
より有望視される。
By the way, as a gas-insulated optical current transformer using such an optical magnetic field sensor, as mentioned above, an optical magnetic field sensor υ consisting of a Faraday element is installed on the high voltage conductor side, and a light emitting/receiving part is directly attached to the tank side. In addition to the one that spatially transmits (the former), an optical magnetic field sensor consisting of a Faraday element, polarizer, analyzer, lens, etc. is installed on the high-voltage conductor side, and this optical magnetic field sensor and a light emitting sensor installed on the tank side are installed. One possibility is to connect the light receiving section with an optical fiber and transmit the light using this optical fiber (the latter). However, in the latter case, since the optical fiber is placed in a high electric field area, there is a possibility of insulation failure if microvoids exist between the cladding and the outer sheath of the optical fiber, which poses problems in terms of insulation reliability. . On the other hand, the former type, which performs spatial transmission, does not have such drawbacks and has excellent insulation reliability. Therefore, from this advantage, a space transmission type gas insulated optical current transformer is considered more promising.

なお、上記の構成は、単相型の変流器においても同様で
ある。
Note that the above configuration is the same for a single-phase current transformer.

(発明が解決しようとする問題点) ところで、上記の様な構成を有するガス絶縁光変流器に
おいては、高圧導体側に光磁界センサを設け、タンク側
に発受光部を直接取付けただけで光を空間伝送している
ため、両者の間の光軸ずれを生じやすく、導体に働く電
磁力やしゃ断器の操作振動等により生じる光軸ずれによ
り、発受光部での受光強度が大幅に変化して大きな測定
誤差を生じるという欠点があった。
(Problems to be Solved by the Invention) By the way, in the gas-insulated optical current transformer having the above-mentioned configuration, an optical magnetic field sensor is provided on the high-voltage conductor side, and a light emitting/receiving section is directly attached to the tank side. Since light is transmitted through space, optical axis misalignment between the two is likely to occur, and optical axis misalignment caused by electromagnetic force acting on the conductor, vibration from breaker operation, etc. can significantly change the received light intensity at the light emitting and receiving parts. This has the disadvantage of causing large measurement errors.

本発明は、上記の様な問題点を解消するために提案され
たもので、その目的は、導体に動く電磁力や、しゃ断器
の操作振動等の影響を受けることなく、精度の高い計測
が可能なガス絶縁光変流器を提供することである。
The present invention was proposed in order to solve the above-mentioned problems, and its purpose is to enable highly accurate measurement without being affected by electromagnetic force moving in a conductor or vibration from the operation of a circuit breaker. The object of the present invention is to provide a gas-insulated optical current transformer that is possible.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明による光軸ずれ防止構造は、ガス絶縁電気装置の
タンク内に配設された導体の周囲または内部に光磁界セ
ンサを配設し、タンク外部に配設した検出装置と光伝送
手段を介して接続された発受光部を前記光磁界センサに
対応するタンク側の位置に配置し、これら光磁界センサ
と発受光部とを絶縁物によって固定支持するとともに、
これらの間の光伝送手段を空間伝送で行うガス絶縁光変
流器において、発受光部取付部材とタンク側の構成物と
を弾性部材を介して弾性的に支持することを特徴とする
(Means for Solving the Problems) The optical axis shift prevention structure according to the present invention includes an optical magnetic field sensor disposed around or inside a conductor disposed inside a tank of a gas-insulated electrical device, and an optical magnetic field sensor disposed outside the tank. A light emitting/receiving section connected to the installed detection device via an optical transmission means is arranged at a position on the tank side corresponding to the optical magnetic field sensor, and the optical magnetic field sensor and the light emitting/receiving section are fixedly supported by an insulator. ,
A gas-insulated optical current transformer that uses spatial transmission as a light transmission means between these parts is characterized in that the light emitting/receiving part mounting member and the tank-side structure are elastically supported via an elastic member.

(作 用) 上記のごとく構成したガス絶縁光変流器において、発受
光部数イ」部材とタンク側の構成物とを弾性部材を介し
て弾性的に支持することにより振動絶縁を行い光磁界セ
ンサと発受光部との間の光軸ずれを防止し、導体に動く
電磁力や、しゃ断器の操作振動の影響を受けないように
したものである。
(Function) In the gas-insulated optical current transformer configured as described above, vibration isolation is achieved by elastically supporting the light emitting/receiving part number 1 component and the tank side components via the elastic member, and the optical magnetic field sensor This prevents optical axis misalignment between the light emitting/receiving part and the light emitting/receiving part, and prevents it from being affected by electromagnetic force moving in the conductor or the operational vibration of the breaker.

(実施例) 以上述べた様な本発明によるガス絶縁変流器の光軸ずれ
防止構造の実施例を第1図乃至第3図を用いて具体的に
説明する。
(Embodiment) An embodiment of the structure for preventing optical axis deviation of a gas insulated current transformer according to the present invention as described above will be specifically described with reference to FIGS. 1 to 3.

第1図(A) 、 (B)は、本発明による光軸ずれ防
止@造をガス絶縁単相光変流器に採用した実施例を示し
たものである。
FIGS. 1A and 1B show an embodiment in which the optical axis misalignment prevention structure according to the present invention is applied to a gas-insulated single-phase optical current transformer.

第1図において、タンク14内には導体15が配設され
、その両端には、ガス絶縁開閉装置内に配設された隣接
導体と接続する為の接続部15a、 15bが形成され
ている。導体15の略中央位置には、磁気シールド及び
電界シールドとしての機能も韮ねたケース19が取付け
られている。このケース19はケース19a1フタ19
b1絶縁リング19Gの3つの部分から構成され、ケー
ス19の2つの導体貫通部の内、一方の貫通部は溶接に
よって導体とケース19aとが固定され、他方の貫通部
は絶縁リング19Gとフタ19bを介してケース19a
に導体が固定されている。
In FIG. 1, a conductor 15 is disposed within a tank 14, and connection portions 15a and 15b are formed at both ends of the conductor for connection to adjacent conductors disposed within a gas insulated switchgear. A case 19, which also functions as a magnetic shield and an electric field shield, is attached approximately at the center of the conductor 15. This case 19 is case 19a1 lid 19
The b1 insulating ring 19G is composed of three parts, and among the two conductor penetrating parts of the case 19, one penetrating part has the conductor and the case 19a fixed by welding, and the other penetrating part has the insulating ring 19G and the lid 19b. case 19a through
The conductor is fixed to.

また、タンク14には口出し部44が形成され、この口
出し部のフランジに支持容器27がボルトで着脱自在に
固定されている。この支持容器27とケース19との間
には、ケース19及び導体15を支持するための絶縁筒
21が導体15と垂直に設けられている。
Further, an outlet portion 44 is formed in the tank 14, and the support container 27 is detachably fixed to the flange of this outlet portion with bolts. An insulating cylinder 21 for supporting the case 19 and the conductor 15 is provided between the support container 27 and the case 19 and is perpendicular to the conductor 15.

絶縁筒21の一端はボルトによりケース19に固定され
、他端は、ボルトによりイタ22に固定されている。そ
して、このイタ22がゴム39.40を介して段付ボル
ト37により前記支持容器27に固定されている。ゴム
39.40の形状を第2図(A) 、 (B)に示す。
One end of the insulating cylinder 21 is fixed to the case 19 with a bolt, and the other end is fixed to the cover 22 with a bolt. This holder 22 is fixed to the support container 27 with stepped bolts 37 via rubber 39 and 40. The shape of the rubber 39.40 is shown in FIGS. 2(A) and 2(B).

ゴム39は、各段付ボルト毎に座金38とイタ22の間
に配設し、ゴム40はその表面に突起部42を設けてガ
スシール効果をも備えた414成とし、イタ22と支持
容器27のフランジの間に配設して使用する。
The rubber 39 is arranged between the washer 38 and the cutter 22 for each stepped bolt, and the rubber 40 has a protrusion 42 on its surface to form a 414 structure that also has a gas sealing effect. It is used by disposing it between the flanges of 27.

更に、各部材の接続部にはオーリング28〜32による
ガスシール部を設けて、これらを気密状の一体光変流器
ユニツ1〜41とし、このユニット41内にタンク14
内と同圧力のSFeガス等の絶縁ガスを封入している。
Further, a gas sealing portion using O-rings 28 to 32 is provided at the connecting portion of each member to form an airtight integrated optical current transformer unit 1 to 41, and a tank 14 is installed in this unit 41.
It is filled with insulating gas such as SFe gas at the same pressure as the inside.

一方、前記ケース19内には、ファラデー素子からなる
光磁界センサ16が、導体15を周回し、且つ導体15
と接触しないように、支持台18によって固定されてい
る。この光磁界センサ16は、全反射面、反射ミラー等
を備えた断面略正方形のものである。
On the other hand, inside the case 19, a magneto-optical field sensor 16 made of a Faraday element goes around the conductor 15.
It is fixed by a support stand 18 so as not to come into contact with the. The optical magnetic field sensor 16 has a substantially square cross section and includes a total reflection surface, a reflection mirror, and the like.

また、絶縁筒21内の空間を介して対向する位置に配設
されたケース19とイタ22の対向面には、それぞれ光
通過用の孔20.23が形成されている。更に、支持容
器27内には、レンズ、偏光子、検光子等より成る発受
光部25が支持部24によりイタ22に固定され、この
発受光部25と光磁界センサ16の光出入而17とは、
光路の光軸上に対向する様に配置され、絶縁筒21内の
空間を介して光の伝送が行われる様に114成されてい
る。
In addition, holes 20 and 23 for light passage are formed in the opposing surfaces of the case 19 and the cover 22, which are disposed at opposing positions with a space in the insulating cylinder 21 interposed therebetween. Furthermore, within the support container 27, a light emitting/receiving section 25 consisting of a lens, a polarizer, an analyzer, etc. is fixed to the lens 22 by the supporting section 24, and the light emitting/receiving section 25 and the light input/output member 17 of the optical magnetic field sensor 16 are connected to each other. teeth,
114 are arranged so as to face each other on the optical axis of the optical path, and light is transmitted through the space within the insulating cylinder 21.

また、支持容器27には密i51端子26が設けられ、
この密封端子26を介して発受光部25とタンク14の
外部に設けられた検出装置36とが送光用及び受光用の
光ファイバー34.35により接続されている。
Further, the support container 27 is provided with a dense i51 terminal 26,
The light emitting/receiving section 25 and a detection device 36 provided outside the tank 14 are connected via this sealed terminal 26 by optical fibers 34 and 35 for transmitting and receiving light.

以上の様な構成を有する本実施例の作用は次の通りであ
る。即ら、光磁界センサ16を固定したケース19と、
発受光部25を固定したイタ22を絶縁筒21で固定支
持し、さらにイタ22と支持容器27とを弾性部材であ
るゴム39.40を介して弾性的に支持しているため、
もし導体15に事故電流が流れた場合に作用する過大な
電磁力や、しゃ断器の操作撮動が動いて変流器ユニット
41が加娠された場合でも、光磁界センサ16と発受光
部25(よ剛性の大きい絶縁筒21と強固に結合されて
いるから一体的に振動する。従って、前記した光磁界セ
ンサ16と発受光部25は相対的変位が無いので、光軸
のズレは生じない。
The operation of this embodiment having the above configuration is as follows. That is, a case 19 to which the optical magnetic field sensor 16 is fixed,
Since the light emitting/receiving part 25 is fixedly supported by the insulating tube 21, and the support container 27 is elastically supported by the rubber 39, 40, which is an elastic member,
Even if an excessive electromagnetic force acts when a fault current flows through the conductor 15 or the current transformer unit 41 is activated due to operation of a breaker, the optical magnetic field sensor 16 and the light emitting/receiving section 25 (Since it is firmly connected to the insulating cylinder 21, which has a higher rigidity, it vibrates as a unit. Therefore, since there is no relative displacement between the optical magnetic field sensor 16 and the light emitting/receiving section 25, the optical axis does not shift. .

また、本実施例では、ゴム40の表面に突起部42を設
けることにより、ゴム40が伸縮した場合でも良好なガ
スシール効果が1qられるようにしているため、オーリ
ング28〜32によるガスシール部と組合せて光変流器
ユニツ1〜41を気密一体化することが可能であり、ガ
ス絶縁開閉装置のアークしゃ断時や地絡事故時に発生す
る絶縁ガスの分解生成物から光変流器ユニット41内の
光学部品を保護することができる。ここで、絶縁ガスの
分解生成物が発生する可能性が少ない場合には、上述し
たオーリング28〜32によるガスシール部やゴム40
の突起部42を省略することも可能である。
Furthermore, in this embodiment, by providing the protrusions 42 on the surface of the rubber 40, a good gas sealing effect can be maintained even when the rubber 40 expands and contracts. In combination with the optical current transformer units 1 to 41, it is possible to airtightly integrate the optical current transformer units 1 to 41. It can protect the optical components inside. Here, if there is a low possibility that decomposition products of the insulating gas will be generated, the gas seal part using the O-rings 28 to 32 or the rubber 40 described above may be used.
It is also possible to omit the protrusion 42.

なお、本実施例においては、周回積分型の光磁界センサ
を使用したが、ポイント磁界測定用の小型の光磁界セン
サを使用した場合でも適用が可能である。また、本実施
例においては、タンクに着脱可能な光変流器ユニットに
本発明を適用したが、本発明は、この様な17Is成に
適用が限定されるものではなく、例えば、発受光部数イ
1部材であるイタ22とタンク14とを、弾性部材を介
して直接に固定しても良い。更に、弾性部材はゴムに限
定されるものではなく、バネ、ベローズ等を使用しても
良い。
In this embodiment, a circular integral type optical magnetic field sensor is used, but the present invention can also be applied to a case where a small optical magnetic field sensor for point magnetic field measurement is used. In addition, in this embodiment, the present invention was applied to an optical current transformer unit that is detachable from a tank, but the present invention is not limited to application to such a 17Is configuration. It is also possible to directly fix the tank 14 to the tank 14 through an elastic member. Furthermore, the elastic member is not limited to rubber, and springs, bellows, etc. may also be used.

第3図は、本発明による光軸ずれ防止構造をガス絶縁3
相光変流器に採用した実施例を示したものである。
Figure 3 shows the optical axis deviation prevention structure according to the present invention
This figure shows an example of a phase-optical current transformer.

本実施例においては、タンク43が、その内部に光変流
器ユニット41を3個配設した3相型のものであること
以外は、第1図に示したガス絶縁単相光変流器の実施例
と同一の構成であり、その作用、効果も同じである。
In this embodiment, the gas-insulated single-phase optical current transformer shown in FIG. 1 is used, except that the tank 43 is of a three-phase type in which three optical current transformer units 41 are arranged inside. This embodiment has the same structure as the embodiment, and its operation and effect are also the same.

(発明の効果〕 以上説明した様に、本発明によれば、光の空間伝送によ
り高い絶縁耐力をもたせるとともに導体に働く電磁カヤ
、しゃ断器の操作振動等の影響を受【プることなく、精
度の高い計測が可能なガス絶縁光変流器を提供すること
ができる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to provide high dielectric strength through spatial transmission of light, and to avoid being affected by electromagnetic shear acting on the conductor, operational vibration of a circuit breaker, etc. A gas insulated optical current transformer capable of highly accurate measurement can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) 、 (B)はそれぞれ本発明による光軸
ずれ防止構造をガス絶縁単相光変流器に採用した一実施
例を示す横断面図と縦断面図、第2図(A)。 (8)はそれぞれ第1図に示した実施例に使用されるゴ
ムの形状を示す正面図と断面図、第3図は本発明による
光軸ずれ防止構造をガス絶縁3相光変流器に採用した一
実施例を示す断面図、第4図(八)(B)はそれぞれ光
磁界センサを用いてガス絶縁光変流器を構成した場合の
構成例を示す正面図と側断面図、第5図は第4図のガス
絶縁光変流器に使用される光磁界センサの構成を示す斜
視図である。 1・・・タンク、2u〜2w・・・導体、3・・・絶縁
スペーサ、4・・・接続部、5・・・密封端子、6・・
・窓、7・・・光磁界センサ、 8.9・・・光ファイバー、10・・・検出装置、11
・・・ファラデー素子、12・・・反射ミラー、13・
・・光路、14・・・タンク、15・・・導体、15a
、15b・・・接続部、16・・・光磁界センサ、17
・・・先出入面、18・・・支持台、19・・・ケース
、19a・・・ケース、19b・・・フタ、19c・・
・絶縁リング、20・・・孔、21・・・絶縁筒、22
・・・イタ、23・・・孔、24・・・支持部、25・
・・発受光部、26・・・密封端子、27・・・支持容
器、28〜33・・・オーリング、34.35・・・光
ファイバー、36・・・検出装置、37・・・段付ボル
ト、38・・・座金、39、40・・・ゴム、41・・
・光変流器ユニット、42・・・突起部、43・・・タ
ンク、44・・・口出し部。 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図CA) 第  1  丁4 (β) ロ=二四−が 第2図(A) 第2図(β。 第3図 第4図 曇 第5図
FIGS. 1(A) and 1(B) are a cross-sectional view and a longitudinal sectional view, respectively, showing an embodiment in which the optical axis deviation prevention structure according to the present invention is adopted in a gas-insulated single-phase optical current transformer, and FIG. ). (8) is a front view and a sectional view showing the shape of the rubber used in the embodiment shown in Fig. 1, respectively, and Fig. 3 is a gas-insulated three-phase optical current transformer using the optical axis misalignment prevention structure according to the present invention. FIG. 4(8)(B) is a cross-sectional view showing one embodiment adopted, and FIG. FIG. 5 is a perspective view showing the configuration of an optical magnetic field sensor used in the gas insulated optical current transformer of FIG. 4. DESCRIPTION OF SYMBOLS 1...Tank, 2u~2w...Conductor, 3...Insulating spacer, 4...Connection part, 5...Sealed terminal, 6...
・Window, 7... Optical magnetic field sensor, 8.9... Optical fiber, 10... Detection device, 11
...Faraday element, 12...Reflection mirror, 13.
... Optical path, 14... Tank, 15... Conductor, 15a
, 15b... Connection portion, 16... Optical magnetic field sensor, 17
...First entry/exit surface, 18...Support stand, 19...Case, 19a...Case, 19b...Lid, 19c...
・Insulation ring, 20...hole, 21...insulation tube, 22
... Ita, 23... Hole, 24... Support part, 25.
...Light emitting and receiving section, 26... Sealed terminal, 27... Support container, 28-33... O-ring, 34.35... Optical fiber, 36... Detection device, 37... Stepped Bolt, 38...Washer, 39, 40...Rubber, 41...
- Optical current transformer unit, 42...Protrusion, 43...Tank, 44...Outlet part. Agent Patent Attorney Yudo Nori Chika Hirofumi MitsumataFigure 1 CA) 1-4 (β) RO = 24- is Figure 2 (A) Figure 2 (β. Figure 3 Figure 4 Cloud 5 figure

Claims (4)

【特許請求の範囲】[Claims] (1)ガス絶縁電気装置のタンク内に配設された導体の
周囲または内部に光磁界センサを配設し、タンク外部に
配設した検出装置と光伝送手段を介して接続された発受
光部を前記光磁界センサに対応するタンク側の位置に配
設し、これら光磁界センサと発受光部とを絶縁物によつ
て固定支持するとともに、これらの間の光伝送手段を空
間伝送で行うガス絶縁光変流器において、発受光部取付
部材とタンク側の構成物とを弾性部材を介して弾性的に
支持することにより、外部からの機械的振動を吸収して
光磁界センサと発受光部との間の光軸ずれを防止した事
を特徴とするガス絶縁光変流器の光軸ずれ防止構造。
(1) A light emitting/receiving section in which an optical magnetic field sensor is installed around or inside a conductor installed in a tank of a gas-insulated electrical device, and is connected to a detection device installed outside the tank via an optical transmission means. is arranged at a position on the tank side corresponding to the optical magnetic field sensor, and the optical magnetic field sensor and the light emitting/receiving part are fixedly supported by an insulator, and the optical transmission means between them is a gas that performs spatial transmission. In an insulated optical current transformer, by elastically supporting the light emitting/receiving part mounting member and the components on the tank side via an elastic member, external mechanical vibrations are absorbed and the optical magnetic field sensor and the light emitting/receiving part are A structure for preventing optical axis deviation of a gas insulated optical current transformer, which is characterized by preventing optical axis deviation between.
(2)導体、光磁界センサ、絶縁筒、発受光部を光ファ
イバー密封端子を配設した支持容器に弾性部材を介して
弾性的に支持して光変流器ユニットを構成し、この支持
容器をタンクに着脱自在に固定した事を特徴とする特許
請求の範囲第1項記載のガス絶縁光変流器の光軸ずれ防
止構造。
(2) An optical current transformer unit is constructed by elastically supporting a conductor, an optical magnetic field sensor, an insulating tube, and a light emitting/receiving section via an elastic member in a support container provided with an optical fiber sealed terminal, and this support container is A structure for preventing optical axis deviation of a gas insulated optical current transformer according to claim 1, characterized in that the structure is detachably fixed to a tank.
(3)弾性部材としてゴムを用いた事を特徴とする特許
請求の範囲第1項記載のガス絶縁光変流器の光軸ずれ防
止構造。
(3) A structure for preventing optical axis deviation of a gas-insulated optical current transformer according to claim 1, characterized in that rubber is used as the elastic member.
(4)弾性部材が、表面に突起部を設ける等によりガス
シール効果をも備えたものである事を特徴とする特許請
求の範囲第3項記載のガス絶縁光変流器の光軸ずれ防止
構造。
(4) Preventing optical axis deviation of the gas-insulated optical current transformer according to claim 3, characterized in that the elastic member also has a gas sealing effect by providing a protrusion on the surface, etc. structure.
JP61244163A 1986-10-16 1986-10-16 Optical axis shift preventing structure of gas insulating optical current transformer Pending JPS6398567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244163A JPS6398567A (en) 1986-10-16 1986-10-16 Optical axis shift preventing structure of gas insulating optical current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244163A JPS6398567A (en) 1986-10-16 1986-10-16 Optical axis shift preventing structure of gas insulating optical current transformer

Publications (1)

Publication Number Publication Date
JPS6398567A true JPS6398567A (en) 1988-04-30

Family

ID=17114704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244163A Pending JPS6398567A (en) 1986-10-16 1986-10-16 Optical axis shift preventing structure of gas insulating optical current transformer

Country Status (1)

Country Link
JP (1) JPS6398567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999571A (en) * 1988-04-22 1991-03-12 Matsushita Electric Industrial Co., Ltd. Current and/or voltage detector for a distribution system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999571A (en) * 1988-04-22 1991-03-12 Matsushita Electric Industrial Co., Ltd. Current and/or voltage detector for a distribution system

Similar Documents

Publication Publication Date Title
EP2308069B1 (en) Generator circuit breaker with fiber-optic current sensor
Bohnert et al. Fiber-optic current and voltage sensors for high-voltage substations
KR20070088466A (en) Optical sensor arrangement for electrical switchgear
CA2731688A1 (en) High voltage ac/dc or dc/ac converter station with fiberoptic current sensor
EP0849600A1 (en) Optical current transformer
JPH10185964A (en) Transformer
CN106896254B (en) All-fiber current transformer
JPS6398567A (en) Optical axis shift preventing structure of gas insulating optical current transformer
GB2205963A (en) Measuring current
JPS62184375A (en) Gas insulation current transformer
JP2003232815A (en) Optical current measuring device
JPH02158027A (en) Gas disconnector
JPH0611470Y2 (en) Optical current transformer for gas insulated switchgear
JPH0654330B2 (en) Current measuring device for gas insulated switchgear
JPS62278463A (en) Gas insulation current transformer
JPH09163528A (en) Optical current transformer
JPH02115771A (en) Gas insulated current transformer
JPH0741225Y2 (en) Optical transmission device
JPS62276468A (en) Gas insulating current transformer
JPH0747743Y2 (en) Current detector for gas insulated switchgear
JPS6396566A (en) Gas insulating current transformer
JPS63152827A (en) Gas breaker
JPS62250367A (en) Optical current transformer for gas insulating switchgear
JPH0593741A (en) Sensor head for optical ct
JPS59198358A (en) Photo-transformer apparatus