JPH0546161B2 - - Google Patents
Info
- Publication number
- JPH0546161B2 JPH0546161B2 JP59211404A JP21140484A JPH0546161B2 JP H0546161 B2 JPH0546161 B2 JP H0546161B2 JP 59211404 A JP59211404 A JP 59211404A JP 21140484 A JP21140484 A JP 21140484A JP H0546161 B2 JPH0546161 B2 JP H0546161B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- magnetic field
- current transformer
- optical
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims description 73
- 230000003287 optical effect Effects 0.000 claims description 54
- 238000001514 detection method Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Installation Of Bus-Bars (AREA)
- Gas-Insulated Switchgears (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、例えば3相一括型のガス絶縁開閉装
置に用いられる変流器に係り、特に磁気光学効果
を持つ光磁界センサによつて構成したガス絶縁変
流器に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a current transformer used, for example, in a three-phase integrated type gas-insulated switchgear, and in particular, a current transformer configured with a magneto-optical field sensor having a magneto-optical effect. Regarding gas insulated current transformers.
従来、例えば3相一括型のガス絶縁開閉装置に
用いられるガス絶縁3相変流器は、ケイ素鋼板に
コイルを巻き付けて成る鉄心タイプの変流器コア
により構成されている。
Conventionally, a gas-insulated three-phase current transformer used, for example, in a three-phase all-in-one type gas-insulated switchgear is configured with an iron-core type current transformer core made by winding a coil around a silicon steel plate.
この様な従来のガス絶縁3相変流器の一例を第
3図に基いて説明する。円筒形のタンク1内には
u,v,w相の3相の導体2u〜2wが配設され
ている。タンク1の前後には絶縁スペーサ3が設
けられ、これによつて導体2u〜2wが支持され
ている。タンク1は、その軸に垂直に前後に分割
され、前方にあつては本来の径を有するタンク1
aと、後方にあつて変流器コア4の寸法分だけ径
が大きくされたタンク1bとから構成されてい
る。このタンク1bの内側端部の導体2u〜2w
の延長上に夫々変流器コアが設置されている。そ
して、この変流器コア4の前方(即ち、後方のタ
ンク1bの端部)には支持板5が設けられ、変流
器コア4の内側にはこれと連結して絶縁シールド
6が設けられ、これらにより、変流器コア4の支
持、及び導体2u〜2wとの絶縁がなされてい
る。更に、タンク1の下部には、変流器コア4の
電流を引き出す為の密封端子7が設けられてい
る。 An example of such a conventional gas-insulated three-phase current transformer will be explained with reference to FIG. Three-phase conductors 2u to 2w of u, v, and w phases are arranged in a cylindrical tank 1. Insulating spacers 3 are provided before and after the tank 1, and the conductors 2u to 2w are supported by these. The tank 1 is divided into front and rear parts perpendicular to its axis, with the tank 1 having the original diameter at the front.
a, and a tank 1b located at the rear and having a diameter increased by the dimension of the current transformer core 4. Conductors 2u to 2w at the inner end of this tank 1b
A current transformer core is installed on each extension. A support plate 5 is provided in front of the current transformer core 4 (that is, at the end of the rear tank 1b), and an insulating shield 6 is provided inside the current transformer core 4 in connection with this. , these support the current transformer core 4 and insulate it from the conductors 2u to 2w. Furthermore, a sealed terminal 7 is provided at the bottom of the tank 1 for drawing out the current from the current transformer core 4.
ところで、この様なガス絶縁3相変流器におい
ては、3箇所に設ける変流器コアが重い為、これ
を支える支持板、絶縁シールド等もかなりの大き
さとなり、これらを3箇所に設ける為に機器が複
雑・大型化し、重量も大きくなつてしまう。ま
た、変流器コアは1コアで1用途にしか使用でき
ない為、継電器用や計測用などに複数のコアが必
要となり、これも大型化の原因となり、コスト的
にも高価となつてしまう。 By the way, in such a gas-insulated three-phase current transformer, the current transformer cores installed at three locations are heavy, so the supporting plates, insulation shields, etc. that support them are also quite large, and in order to install these at three locations, As a result, equipment becomes more complex, larger, and heavier. Furthermore, since one current transformer core can be used for only one purpose, multiple cores are required for relays, measurements, etc., which also causes an increase in size and increases cost.
これらの欠点に鑑み、最近では、細径性、絶縁
性、無誘導性、耐環境性等の優れた特徴を有する
光フアイバーを用いた計測技術が注目され、これ
を応用した光磁界センサにより変流器を構成する
試みがなされている。 In view of these shortcomings, measurement technology using optical fibers, which have excellent characteristics such as small diameter, insulation, non-induction, and environmental resistance, has recently attracted attention, and optical magnetic field sensors that apply this have attracted attention. Attempts have been made to construct a flow vessel.
第4図及び第5図により、この様な光磁界セン
サを用いたガス絶縁3相変流器の一例を説明す
る。 An example of a gas-insulated three-phase current transformer using such an optical magnetic field sensor will be explained with reference to FIGS. 4 and 5.
タンク1内に配設された3相の導体2u〜2w
には、その高電界側に光磁界センサ8が設けら
れ、この延長上のタンク1外側には、密封端子7
が設けられている。光磁界センサ8は、ZnSe等
のフアラデー素子を主体として偏光子、1/4波長
板、検光子等から構成され、密封端子7は光送信
器LEDと、光受信器PD及び演算子OPからなる検
出装置10に光フアイバーケーブル9を介して接
続されている。ここで、光磁界センサ8は、第5
図の如く、各導体2u〜2wの周囲にそれぞれ複
数個づつ設けられ、導体の軸を中心とした同心円
接線方向の磁界を計測し、その周回積分の近似式
からアンペールの定理に基いて中心導体の電流を
計測する様になつている。 Three-phase conductors 2u to 2w arranged in tank 1
is provided with an optical magnetic field sensor 8 on its high electric field side, and a sealed terminal 7 is installed on the outside of the tank 1 on this extension.
is provided. The optical magnetic field sensor 8 mainly consists of a Faraday element such as ZnSe, a polarizer, a 1/4 wavelength plate, an analyzer, etc., and the sealed terminal 7 consists of an optical transmitter LED, an optical receiver PD, and an operator OP. It is connected to a detection device 10 via an optical fiber cable 9. Here, the optical magnetic field sensor 8 is the fifth
As shown in the figure, a plurality of magnetic fields are provided around each of the conductors 2u to 2w, and the magnetic field in the concentric tangential direction centered on the axis of the conductor is measured, and based on the approximation formula of the circumferential integral, based on Ampere's theorem, the central conductor is It is designed to measure the current.
このガス絶縁3相変流器の作用は次の通りであ
る。即ち、密封端子7を介して光送信器から光磁
界センサ8に光が送られると、この光はまず偏光
子を通り、ランダム偏光から直線偏光になり、1/
4波長板で位相変調を受けて円偏光となる。そし
て、フアラデー素子を通過する際に磁界の大きさ
に応じた楕円偏光となつて、検光子で強度変調さ
れて再び密封端子7に戻り、これに接続された検
出装置に送られた光受信器によつて光パワーとし
て取り出して、演算処理によつて磁界の大きさに
比例した出力が取り出される。 The operation of this gas-insulated three-phase current transformer is as follows. That is, when light is sent from the optical transmitter to the optical magnetic field sensor 8 via the sealed terminal 7, this light first passes through a polarizer, changes from random polarization to linear polarization, and becomes 1/
It undergoes phase modulation with a four-wave plate and becomes circularly polarized light. When passing through the Faraday element, it becomes elliptically polarized light according to the magnitude of the magnetic field, is intensity-modulated by the analyzer, returns to the sealed terminal 7, and is sent to the optical receiver connected to the detection device. is extracted as optical power, and an output proportional to the magnitude of the magnetic field is extracted through arithmetic processing.
光磁界センサは絶縁性に優れる為、上記の如く
導体2u〜2wの近傍に配置でき、また密封端子
7も小型化できる。その結果、ガス絶縁3相変流
器は大幅に縮小、軽量化される。特に具体的に数
値を示せば、長さについては20%程度、直径につ
いては60%程度に縮小された実例がある。また、
光磁界センサは、信号の多重化が自由である為、
従来の様に、使用用途別に複数のコアを設けるも
のと違い、1つのセンサを設けるだけで、これを
多用途に使用できる。従つて、この点において、
変流器をより小型化・簡略化することが可能であ
り、コスト的にも安価である。 Since the optical magnetic field sensor has excellent insulation properties, it can be placed near the conductors 2u to 2w as described above, and the sealed terminal 7 can also be miniaturized. As a result, the gas-insulated three-phase current transformer is significantly smaller and lighter. Specifically, there are examples where the length was reduced by about 20% and the diameter by about 60%. Also,
Optical magnetic field sensors can freely multiplex signals, so
Unlike the conventional technology, which requires multiple cores for different uses, just one sensor is provided and can be used for multiple purposes. Therefore, in this regard,
It is possible to further downsize and simplify the current transformer, and the cost is also low.
しかし、この様な従来の変流器では、各光磁界
センサが検知する磁界の方向は、導体の軸を中心
とした同心円接線方向であるため、3相一括母線
の様に近接して他相の導体が配置されていると、
隣接相による導体軸方向と垂直な成分の影響を受
け易い。即ち、第6図において、u相の導体2u
の電流を考えると、図中の磁力線φがv相、w相
の導体2u〜2wを横切るため、v相、w相の導
体近傍においては各相の導体自身によつて生じる
磁界に、このu相の導体2uの電流による磁界が
合成される。このことは、v相、w相の導体2
v,2wを考えた場合も同様であり、各導体の磁
界は、複雑な様相を呈している。従つて、導体近
傍に、当該導体の電流と位相を計測する光磁界セ
ンサを設ける際には、他相磁界の影響を排除しな
ければ、計測データの精度は大幅に低下する。
However, in such conventional current transformers, the direction of the magnetic field detected by each optical magnetic field sensor is the tangential direction of a concentric circle centered on the axis of the conductor. When the conductors are arranged,
Easily affected by components perpendicular to the conductor axis direction due to adjacent phases. That is, in FIG. 6, the u-phase conductor 2u
Considering the current of The magnetic fields due to the currents in the phase conductors 2u are combined. This means that the v-phase and w-phase conductors 2
The same is true when considering v and 2w, and the magnetic field of each conductor has a complicated aspect. Therefore, when an optical magnetic field sensor is provided near a conductor to measure the current and phase of the conductor, the accuracy of the measured data will be significantly reduced unless the effects of other phase magnetic fields are eliminated.
特に、事故電流は、平常時の電流の25倍にも達
することもあり、その磁界は距離に反比例して小
さくなるとはいえ、隣接相の光磁界センサの測定
制度に影響を与えることは避けられない。 In particular, the fault current can reach up to 25 times the normal current, and although the magnetic field decreases in inverse proportion to the distance, it is inevitable that it will affect the measurement accuracy of the optical magnetic field sensor of the adjacent phase. do not have.
この様に、光磁界センサを導体の周囲に設置
し、磁界の導体軸方向と垂直な成分についての周
回積分を行つている従来の変流器では、隣接相の
磁界によつて計測相の磁界が歪むため、それが計
測誤差となつて現れ、精度の高い計測が実施でき
ない問題点があつた。 In this way, in a conventional current transformer in which an optical magnetic field sensor is installed around a conductor and circuit integration is performed for the component perpendicular to the conductor axis direction of the magnetic field, the magnetic field of the measurement phase is affected by the magnetic field of the adjacent phase. Since the image is distorted, this appears as a measurement error, creating a problem in which highly accurate measurements cannot be carried out.
また、導体の周囲に光磁界センサを配置して周
回積分を行うものでは、光磁界センサの分だけ導
体周囲が突出する上、精度を向上するための導体
の全周囲を取巻く様に光磁界センサを配置する
と、それだけ大型の光磁界センサを使用する必要
があり、センサの製作が極めて困難になり、また
重量も増大する欠点があつた。 In addition, when a magneto-optical field sensor is arranged around a conductor to perform circuit integration, the area around the conductor protrudes by the amount of the magneto-optical sensor, and in order to improve accuracy, the magneto-optical field sensor is placed around the entire circumference of the conductor. In this case, it is necessary to use a larger optical magnetic field sensor, which makes manufacturing the sensor extremely difficult and increases its weight.
更に、光磁界センサは、受動素子であり、入射
光用と出力用にそれぞれ1乃至2本の光フアイバ
ーケーブルが必要であり、従来型の様にセンサの
数が多いとケーブルの本数も増大し、3相一括母
線全体としてみると、その接続箇所や接地タンク
貫通部のガス気密部が増加し、構成機器の部品点
数の増大や信頼性の低下を招く欠点もあつた。 Furthermore, the optical magnetic field sensor is a passive element and requires one or two optical fiber cables for the incident light and the output, and if there are many sensors like in the conventional type, the number of cables will also increase. When looking at the three-phase collective bus as a whole, the number of gas-tight parts at its connection points and through the ground tank has increased, resulting in an increase in the number of component parts and a decrease in reliability.
上記の様な従来技術の問題点を解消するために
発明者は先に、隣接相の磁界の影響を受けること
なく精度の高い計測が可能で、しかも周回積分を
必要とすることなく一方向センサを使用し、部品
点数が少なく信頼性の高いガス絶縁3相変流器を
開発した。 In order to solve the problems of the prior art as described above, the inventor first developed a unidirectional sensor that enables highly accurate measurement without being affected by the magnetic field of adjacent phases, and that does not require circular integration. We have developed a highly reliable gas-insulated three-phase current transformer with a small number of parts.
即ち各相の導体の光磁界センサ配設部分に内部
が中空となつたコイル部を形成し、このコイル部
内に導体の軸方向の磁界を発生させ、この磁界を
コイル部内に軸方向に沿つて配設した一方向型の
光磁界センサで検出することにより、隣接相で発
生する導体軸と垂直方向の磁界に影響されること
なく、計測を実施する様にしたものである。 In other words, a hollow coil section is formed in the part of the conductor of each phase where the optical magnetic field sensor is installed, a magnetic field is generated in the axial direction of the conductor within this coil section, and this magnetic field is transmitted along the axial direction within the coil section. By detecting with a unidirectional optical magnetic field sensor provided, measurement is performed without being influenced by the magnetic field generated in the adjacent phase in the direction perpendicular to the conductor axis.
特に、コイル部を少なくとも2ターン以上形成
することにより、コイル部内に形成される磁界の
方向を、導体の軸方向と極力一致させることによ
り、光磁界センサによる軸方向の磁界の検出が高
精度で行える様にしたものである。 In particular, by forming the coil part with at least two turns or more, the direction of the magnetic field formed in the coil part is made to match the axial direction of the conductor as much as possible, so that the optical magnetic field sensor can detect the axial magnetic field with high precision. It was made so that it could be done.
しかしながら前述したコイル部内に光磁界セン
サを収納した変流器は、課電部であるコイル部と
これが収納されるタンクとの絶縁距離の関係上、
コイル導体断面を大きくとれないため、大電流通
電への適用を考えたとき、コイル部の温度上昇を
所定値以内に抑えることができない可能性のある
ことが懸念される。即ち6000A/8000A等の大電
流定格の場合導体をAlで形成し、コイル部をCu
等高導電材料を用いて形成してもコイル部の温度
上昇値が規定値を越えてしまう可能性があり、こ
の問題点を解決することが要望される。 However, the above-mentioned current transformer in which the optical magnetic field sensor is housed in the coil section has problems due to the insulation distance between the coil section, which is the energizing section, and the tank in which it is housed.
Since the cross section of the coil conductor cannot be made large, there is a concern that the temperature rise in the coil portion may not be suppressed within a predetermined value when considering application to large current energization. In other words, for large current ratings such as 6000A/8000A, the conductor is made of Al and the coil part is made of Cu.
Even if it is formed using a uniformly conductive material, there is a possibility that the temperature rise value of the coil portion will exceed a specified value, and it is desired to solve this problem.
本発明は上記要望を満足させるためになされた
もので、コイル部内に光磁界センサを収納したも
のに於て、特にコイル部の温度上昇を抑制するこ
とができるガス絶縁変流器を得ることを目的とす
るものである。
The present invention has been made in order to satisfy the above-mentioned needs, and aims to provide a gas-insulated current transformer that can suppress the temperature rise in the coil section, in particular, in a device in which an optical magnetic field sensor is housed in the coil section. This is the purpose.
かかる目的を達成するために本発明によれば、
コイル部に近接する導体に、コイル部の熱を積極
的に近接導体に伝達させてコイル部の温度上昇を
抑制させる熱吸引手段具体的にはヒートパイプ等
を設けるようにしたものである。
According to the present invention, in order to achieve such an objective,
The conductor close to the coil section is provided with a heat suction means, specifically a heat pipe, etc., for actively transmitting the heat of the coil section to the adjacent conductor and suppressing the rise in temperature of the coil section.
以下、本発明の第1の一実施例を第1図及び第
2図A,Bに従つて具体的に説明する。
Hereinafter, a first embodiment of the present invention will be specifically described with reference to FIG. 1 and FIGS. 2A and 2B.
第2図A,Bは、光磁界センサとタンク側の検
出装置との信号の伝送を、光フアイバーケーブル
を使用することなく、タンク内の空間をそのまま
利用して行う空間伝送型の変流器に本発明を適用
した実施例である。また3相一括型のものについ
て説明する。 Figures 2 A and B show a space transmission type current transformer that uses the space inside the tank as it is to transmit signals between the optical magnetic field sensor and the detection device on the tank side, without using fiber optic cables. This is an example in which the present invention is applied to. Also, a three-phase all-in-one type will be explained.
この実施例において、3相一括型接地タンク1
1内には、u,v,wの各相の導体12u〜12
wがタンク11の軸方向に沿つて平行に配設され
ている。これら各導体12は、筒状の中空導体で
あつて、その光磁界センサの配設部には、内部が
中空となつたコイル部13が前記導体12の軸方
向に沿つて形成されている。このコイル部13
は、棒状の導体を少なくとも2ターン巻回して形
成している。このコイル部13内の中空部分に
は、導体12の軸方向の磁界に対して最大感度を
持つ様に、フアラデー素子を有する光磁界センサ
14を配置している。 In this embodiment, a three-phase collective grounding tank 1
1 includes conductors 12u to 12 for each phase of u, v, and w.
w are arranged in parallel along the axial direction of the tank 11. Each of these conductors 12 is a cylindrical hollow conductor, and a coil portion 13 having a hollow interior is formed along the axial direction of the conductor 12 in the portion where the optical magnetic field sensor is disposed. This coil part 13
is formed by winding a rod-shaped conductor with at least two turns. An optical magnetic field sensor 14 having a Faraday element is disposed in the hollow portion of the coil portion 13 so as to have maximum sensitivity to the magnetic field in the axial direction of the conductor 12.
この光磁界センサ14は、直線状の磁界を計測
する一方向型のセンサで、その形状も導体12の
軸方向に沿つた真直ぐな棒状体をしている。ま
た、この光磁界センサ14は、コイル部13に接
続された円筒状導体12の端部に固着しコイル部
13内に突出させた支持台15を介して、コイル
部13の中心軸上に位置する様に固定している。
この光磁界センサ14の支持台15側の端部側面
には、タンク11に固定された検出装置16とセ
ンサの軸方向(導体の軸方向)間に送受信される
光を屈曲させるプリズム14aを、更に光磁界セ
ンサ14の支持台とは反対側の端部にはプリズム
14aからの光の反射面14bを設けている。 The optical magnetic field sensor 14 is a unidirectional sensor that measures a linear magnetic field, and its shape is a straight rod along the axial direction of the conductor 12. The optical magnetic field sensor 14 is positioned on the central axis of the coil section 13 via a support 15 that is fixed to the end of the cylindrical conductor 12 connected to the coil section 13 and protrudes into the coil section 13. It is fixed as follows.
A prism 14a that bends the light transmitted and received between the detection device 16 fixed to the tank 11 and the axial direction of the sensor (the axial direction of the conductor) is attached to the side surface of the end of the optical magnetic field sensor 14 on the support stand 15 side. Furthermore, a reflective surface 14b for light from the prism 14a is provided at the end of the optical magnetic field sensor 14 opposite to the support base.
タンク11に固定された検出装置16はタンク
11を貫通する密封端子17部分に設けられ、光
発振器(発光ダイオード)LEDと光受信器(フ
オトダイオード)PD及び演算子16aとから構
成されている。 A detection device 16 fixed to the tank 11 is provided at a sealed terminal 17 that penetrates the tank 11, and is composed of an optical oscillator (light emitting diode) LED, an optical receiver (photodiode) PD, and an operator 16a.
ここでコイル部13に接続される円筒状導体1
2について更に詳述する。第1図及び第2図Bに
於て、第1の実施例をコイル部13の左側の導体
で、また第2の実施例を右側の導体で説明する。
第1の実施例では中空状導体の内部にヒートパイ
プ120Aを収納している。ヒートパイプは導体
12の端部即ちコイル部13側に密着させるよう
にして配置してある。また第2の実施例では、導
体12とコイル部13との接続に、導体を形成す
るヒートパイプ120Bを接続したものである。
従つてコイル部13はヒートパイプ120Bを介
して導体12と接続されるものである。 Here, the cylindrical conductor 1 connected to the coil part 13
2 will be explained in more detail. In FIG. 1 and FIG. 2B, the first embodiment will be explained using the conductor on the left side of the coil portion 13, and the second embodiment will be explained using the conductor on the right side.
In the first embodiment, a heat pipe 120A is housed inside a hollow conductor. The heat pipe is placed in close contact with the end of the conductor 12, that is, on the side of the coil portion 13. Further, in the second embodiment, a heat pipe 120B forming a conductor is connected to the connection between the conductor 12 and the coil portion 13.
Therefore, the coil portion 13 is connected to the conductor 12 via the heat pipe 120B.
この様な構成を有する本実施例の変流器におい
て検出装置16の光発信器LEDから発した光は、
図示しない偏光子により直線偏波され、その直線
偏光がタンク11内を空間伝送して、プリズム1
4aから光磁界センサ14内に入射し、次いで反
射面14bにて光磁界センサ14内に送込まれ
る。そして、光磁界センサ14のフアラデー素子
において、そこに加わる磁界により所定のフアラ
デー角回転した後、プリズム14aを介して再び
空間伝送され、光受信器PDに光量変化として入
力され、演算子16aから電気信号として取出さ
れる。 In the current transformer of this embodiment having such a configuration, the light emitted from the optical transmitter LED of the detection device 16 is as follows.
The linearly polarized light is linearly polarized by a polarizer (not shown), and the linearly polarized light is spatially transmitted inside the tank 11, and the prism 1
The light enters the optical magnetic field sensor 14 from 4a, and then is sent into the optical magnetic field sensor 14 at the reflective surface 14b. Then, in the Faraday element of the optical magnetic field sensor 14, after being rotated by a predetermined Faraday angle due to the magnetic field applied thereto, it is spatially transmitted again via the prism 14a, inputted to the optical receiver PD as a change in the amount of light, and electrically transmitted from the operator 16a. Extracted as a signal.
この様な本実施例の変流器においては、第1図
に示す様に導体12の部分では電流i1が導体の軸
方向に流れ、それに伴つて導体12の周囲には、
その軸中心まわりに磁界φ1が発生するが、コイ
ル部13では施回しながら流れる電流i2が存在す
るため、コイル内部空間の磁界φ2の向きは導体
12の軸方向とほぼ平行で同軸状となり、隣接相
の導体を流れる電流i3による磁界φ3とは直交する
関係にあり、隣接相の磁界の影響を受けることが
ない。特に、本実施例では、コイル部13の導体
のターン数を少なくとも2ターン設けることによ
り、各ターン間におけるコイル部13内の磁界の
方向を直線状としたので、隣接相の磁界の影響を
効果的に排除できる。 In the current transformer of this embodiment, as shown in FIG .
A magnetic field φ 1 is generated around the center of the axis, but since there is a current i 2 flowing while rotating in the coil portion 13, the direction of the magnetic field φ 2 in the internal space of the coil is almost parallel to the axial direction of the conductor 12 and is coaxial. Therefore, it is perpendicular to the magnetic field φ 3 due to the current i 3 flowing through the conductor of the adjacent phase, and is not affected by the magnetic field of the adjacent phase. In particular, in this embodiment, by providing at least two turns in the conductor of the coil portion 13, the direction of the magnetic field within the coil portion 13 between each turn is made linear, so that the influence of the magnetic field of the adjacent phase is effectively reduced. can be excluded.
一方導体12並びにコイル部13の通電時の温
度上昇を考えるとき、コイル部13の温度上昇
は、これを接続する導体12に比較して通電容量
の点から温度上昇が著しい。しかしながら本発明
にあつてはコイル部13の両側にコイル部13か
らの発熱を積極的に移動させうる熱吸引手段であ
るヒートパイプ120A,120Bが夫々設けら
れているので、全体としてコイル部の温度上昇を
抑制することができ、大電流定格の変流器として
使用することが可能となる。 On the other hand, when considering the temperature rise in the conductor 12 and the coil portion 13 when energized, the temperature rise in the coil portion 13 is more significant than that of the conductor 12 connecting the coil portion 13 from the viewpoint of current carrying capacity. However, in the present invention, heat pipes 120A and 120B, which are heat suction means capable of actively transferring heat generated from the coil section 13, are provided on both sides of the coil section 13, so that the temperature of the coil section as a whole increases. It is possible to suppress the increase in current, and it becomes possible to use it as a current transformer with a large current rating.
以上の様に、本発明によるガス絶縁変流器は、
導体を少なくとも2ターン巻回して成るコイル部
によつて、導体の軸方向と平行な磁界を発生さ
せ、これを光磁界センサで検出して電流の計測を
実施し、コイル部の熱を、コイル部を接続する導
体に積極的に移動させるものであるが、その構成
は、図示のものに限定されるものではない。 As described above, the gas insulated current transformer according to the present invention has
A magnetic field parallel to the axial direction of the conductor is generated by a coil section made of at least two turns of a conductor, which is detected by an optical magnetic field sensor to measure the current. The configuration is not limited to that shown in the drawings.
例えば、コイル部の導体のターン数は、2ター
ンに限らず、ターン数を多くすれば光磁界センサ
部分の磁界強度を大きくすることができるので、
その分他相磁界の影響が少なくなり、多少光磁界
センサの光軸とコイル中心軸とのずれがあつても
高精度の磁界測定を行うことができる。 For example, the number of turns of the conductor in the coil part is not limited to two turns; if the number of turns is increased, the magnetic field strength in the optical magnetic field sensor part can be increased.
The influence of other phase magnetic fields is correspondingly reduced, and even if there is some misalignment between the optical axis of the optical magnetic field sensor and the coil center axis, highly accurate magnetic field measurement can be performed.
また、3相一括型の変流器について説明したが
単相変流器であつてもよいことは勿論である。 Moreover, although the three-phase current transformer has been described, it goes without saying that a single-phase current transformer may also be used.
更に3相一括型の場合各導体の軸方向に少なく
ともコイル部長だけコイル部をずらして配置する
ことも可能である。この場合にはコイル径の小形
化が可能となる。 Furthermore, in the case of a three-phase all-in-one type, it is also possible to arrange the coil portions to be shifted in the axial direction of each conductor by at least the length of the coil portion. In this case, it is possible to reduce the coil diameter.
以上の様に、本発明によれば、導体の一部に形
成したコイル部内に一方向型の光磁界センサを設
け、コイル部を接続した導体におけるコイル部に
接近した部位に熱吸引手段を設けるという簡単な
構成により、高精度の計測を行え且つ大電流定格
にも適用しうるガス絶縁変流器の提供が可能とな
る。尚、コイル部を構成する導体を少なくとも2
ターン形成して、コイル部内に導体の軸方向に沿
つた直線状の磁界が発生する様にすることにより
3相一括型の場合には他相の磁界の影響を受ける
ことなく、しかも一方向型の光磁界センサの使用
が可能となる効果がある。
As described above, according to the present invention, a unidirectional type optical magnetic field sensor is provided in a coil portion formed in a part of a conductor, and a heat suction means is provided in a portion of the conductor to which the coil portion is connected, which is close to the coil portion. With this simple configuration, it is possible to provide a gas insulated current transformer that can perform highly accurate measurements and can also be applied to large current ratings. In addition, at least two conductors constituting the coil part
By forming a turn to generate a linear magnetic field along the axial direction of the conductor within the coil, in the case of a three-phase all-in-one type, it is not affected by the magnetic field of other phases, and moreover, it is a unidirectional type. This has the effect of enabling the use of optical magnetic field sensors.
また、光磁界センサとして一方向型のものを使
用することで、光磁界センサの小型化及び製作の
容易化が達成され、更に光磁界センサの削減によ
りこれに接続するフアイバーケーブルの本数も少
なくなるので、変流器の構成の単純化が計れる効
果もある。 In addition, by using a unidirectional type magneto-optical field sensor, the size of the magneto-optical field sensor can be made smaller and easier to manufacture.Furthermore, by reducing the number of magneto-optical sensors, the number of fiber cables connected to it can also be reduced. Therefore, it has the effect of simplifying the configuration of the current transformer.
第1図は本発明によるガス絶縁変流器の磁界の
状態を示す斜視図、第2図A,Bは本発明の一実
施例を示す断面図及び側面図、第3図A,Bは従
来の変流器コアを用いたガス絶縁3相変流器を示
す正面図と側面図、第4図A,Bは光磁界センサ
を使用したガス絶縁3相変流器の一例を示す正面
図と側面図、第5図は周回積分による光磁界セン
サを使用したガス絶縁3相変流器の断面図、第6
図はガス絶縁3相変流器における他相磁界の影響
を示す断面図である。
1,1a,1b…タンク、2u〜2w…導体、
3…絶縁スペーサ、4…変流器コア、5…支持
板、6…絶縁シールド、7…密封端子、8…光磁
界センサ、9…光フアイバーケーブル、10…検
出装置、11…タンク、12…筒状導体、13…
コイル部、14…光磁界センサ、15…支持台、
16…検出装置、16a…演算子、17…密封端
子、20…ボルト、21…光フアイバーケーブ
ル、22…密封端子、23,24…挿入孔、
LED…光発信器、PD…光受信器、120A,1
20B…ヒートパイプ。
FIG. 1 is a perspective view showing the state of the magnetic field of a gas-insulated current transformer according to the present invention, FIGS. 2A and B are sectional views and side views showing one embodiment of the present invention, and FIGS. 3A and B are conventional Figures 4A and 4B are front and side views showing an example of a gas-insulated three-phase current transformer using a current transformer core. A side view, Fig. 5 is a cross-sectional view of a gas-insulated three-phase current transformer using an optical magnetic field sensor based on orbital integration, and Fig. 6
The figure is a cross-sectional view showing the influence of other-phase magnetic fields on a gas-insulated three-phase current transformer. 1, 1a, 1b...Tank, 2u~2w...Conductor,
3... Insulating spacer, 4... Current transformer core, 5... Support plate, 6... Insulating shield, 7... Sealed terminal, 8... Optical magnetic field sensor, 9... Optical fiber cable, 10... Detecting device, 11... Tank, 12... Cylindrical conductor, 13...
Coil part, 14... Optical magnetic field sensor, 15... Support stand,
16... Detection device, 16a... Operator, 17... Sealed terminal, 20... Volt, 21... Optical fiber cable, 22... Sealed terminal, 23, 24... Insertion hole,
LED...Optical transmitter, PD...Optical receiver, 120A, 1
20B...Heat pipe.
Claims (1)
に導体を配設し、この導体には少なくとも2ター
ン巻回して内部が中空となつた導電性のコイル部
を形成し、このコイル部内に導体の軸方向の磁界
を発生させるようになし、このコイル部内に前記
軸方向の磁界を検出する一方向型の光磁界センサ
を配設し、 タンク上又はタンク外部には、光発信器と光受
信器及び演算子とから成る各相の検出装置を配設
し、この検出装置と前記光磁界センサとの間で光
を伝送する構成となし、前記コイル部に近接する
導体にはコイル部の温度上昇を抑制するための熱
吸引手段を施こしたことを特徴とするガス絶縁変
流器。 2 検出装置と光磁界センサとの光の伝送手段
が、光の空間伝送によるものである特許請求の範
囲第1項記載のガス絶縁変流器。 3 各相のコイル部が、導体の軸方向に沿つて少
なくともコイル部長だけずれた位置に配設されて
いる特許請求の範囲第1項記載のガス絶縁変流
器。 4 導体に施こした熱吸引手段が、導体内に収納
配置したヒートパイプである特許請求の範囲第1
項記載のガス絶縁変流器。 5 導体に施こした熱吸引手段が、導体のコイル
部に接続される部分をヒートパイプにより構成し
たものである特許請求の範囲第1項記載のガス絶
縁変流器。[Claims] 1. A conductor is placed in a tank filled with an insulating gas such as SF 6 gas, and the conductor is wound at least two turns to form a hollow conductive coil portion. A magnetic field in the axial direction of the conductor is generated within this coil section, and a unidirectional optical magnetic field sensor for detecting the magnetic field in the axial direction is disposed within this coil section, and there is no magnetic field on or outside the tank. , a detection device for each phase consisting of an optical transmitter, an optical receiver, and an operator is disposed, and the configuration is such that light is transmitted between the detection device and the optical magnetic field sensor, and the detection device is arranged close to the coil section. A gas insulated current transformer characterized in that the conductor is provided with heat suction means for suppressing temperature rise in the coil section. 2. The gas insulated current transformer according to claim 1, wherein the light transmission means between the detection device and the optical magnetic field sensor is based on spatial transmission of light. 3. The gas insulated current transformer according to claim 1, wherein the coil portions of each phase are disposed at positions shifted by at least the length of the coil along the axial direction of the conductor. 4. Claim 1, wherein the heat suction means applied to the conductor is a heat pipe housed within the conductor.
Gas insulated current transformer as described in Section. 5. The gas insulated current transformer according to claim 1, wherein the heat suction means applied to the conductor comprises a heat pipe in a portion connected to a coil portion of the conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59211404A JPS6192107A (en) | 1984-10-11 | 1984-10-11 | Gas insulating current transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59211404A JPS6192107A (en) | 1984-10-11 | 1984-10-11 | Gas insulating current transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6192107A JPS6192107A (en) | 1986-05-10 |
JPH0546161B2 true JPH0546161B2 (en) | 1993-07-13 |
Family
ID=16605396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59211404A Granted JPS6192107A (en) | 1984-10-11 | 1984-10-11 | Gas insulating current transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6192107A (en) |
-
1984
- 1984-10-11 JP JP59211404A patent/JPS6192107A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6192107A (en) | 1986-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2308145B1 (en) | High voltage ac/dc or dc/ac converter station with fiberoptic current sensor | |
JP2011529675A (en) | Generator circuit breaker with fiber optic current sensor | |
CN101449174B (en) | Optical fiber current sensor having sum detection | |
US5295207A (en) | Optical apparatus for measuring current in a grounded metal-clad installation | |
RU2321000C2 (en) | Fiber-optic current transformer | |
KR100996138B1 (en) | 3-phase Batch GIS Spacer using Optical Fiber Current Sensor | |
JPS60203863A (en) | Gas-insulated three-phase current transformer | |
JPH0546161B2 (en) | ||
JP3836146B2 (en) | Current measurement method for turbine generator | |
JPS62276468A (en) | Gas insulating current transformer | |
JPH10142265A (en) | Optical current transformer | |
JPS60207070A (en) | Gas insulating current transformer | |
JPS60207071A (en) | Gas insulating current transformer | |
JPS60202365A (en) | Gas-insulated electrical appliance | |
JP3347449B2 (en) | Optical current measuring device | |
JPH05164787A (en) | Light-applied rectifier | |
JP2673010B2 (en) | Supporting insulator with optical CT | |
JPS6275362A (en) | Optical current transformer | |
JPS60207068A (en) | Gas insulating current transformer | |
JPS60202364A (en) | Gas-insulated electrical apparatus | |
JPS60207067A (en) | Gas insulating three-phase current transformer | |
JPS61215966A (en) | Current transformer device | |
JPS62159053A (en) | Optical current transformer | |
JPH0654330B2 (en) | Current measuring device for gas insulated switchgear | |
JPS62184375A (en) | Gas insulation current transformer |