JPS6275362A - Optical current transformer - Google Patents

Optical current transformer

Info

Publication number
JPS6275362A
JPS6275362A JP60216652A JP21665285A JPS6275362A JP S6275362 A JPS6275362 A JP S6275362A JP 60216652 A JP60216652 A JP 60216652A JP 21665285 A JP21665285 A JP 21665285A JP S6275362 A JPS6275362 A JP S6275362A
Authority
JP
Japan
Prior art keywords
magnetic field
conductor
ring
optical
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60216652A
Other languages
Japanese (ja)
Inventor
Masaru Takimoto
勝 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60216652A priority Critical patent/JPS6275362A/en
Publication of JPS6275362A publication Critical patent/JPS6275362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To enable highly accurate measurement without being affected by a magnetic field of an adjacent phase, by forming a ring section at a part of a cylinder conductor through which current to be measured flows to detect an axial magnetic field of the cylinder conductor being generated at a hollow section. CONSTITUTION:Cylinder conductors 9u-9w in respective phases u-w are arranged in a tank 8 along the axis thereof 8 and a ring section 19 is formed at a desired position in the axial direction of the conductors 9u-9w. An optomagnetic field sensor 11 is fixed at the end of the conductors 9u-9w connected to the ring section 19 through a support base 12 so as to be positioned on the center axis of the ring section 19. An axial magnetic field of the conductors 9u-9w generated at a hollow part in the ring section 19 is detected with the sensor 11 to eliminate effects of a magnetic field of an adjacent phase thereby enabling highly accurate measurement. Thus, a smaller and lighter optical current transformer is made possible as compared with a gas insulated current transformer using a current transformer core.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、例えばガス絶縁開閉装置に用いられ、磁気光
学効果を持つ光磁界センサを、高圧側導体の一部に構成
したリング部内に配置した光変流器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is used, for example, in a gas-insulated switchgear, and includes a magneto-optical field sensor having a magneto-optical effect disposed within a ring portion formed as a part of a high-voltage side conductor. Regarding optical current transformers.

[発明の技術的背景] 従来、ガス絶縁開閉装置に用いられるガス絶縁変流器は
、ケイ素鋼板にコイルを巻き付けて成る鉄心タイプの変
流器コアにより構成されていた。
[Technical Background of the Invention] Conventionally, gas-insulated current transformers used in gas-insulated switchgear have been constructed with an iron-core type current transformer core made by winding a coil around a silicon steel plate.

この様な従来のガス絶縁変流器の一例を、第8図(A>
、(B)に示す3相一括型のガス絶縁3相変流器を例に
とって説明する。
An example of such a conventional gas insulated current transformer is shown in Figure 8 (A>
, (B) will be explained by taking as an example a three-phase collective type gas-insulated three-phase current transformer.

円筒形のタンク1内にはU、V、W相の3相の導体2u
〜2Wが配設されている。タンク1の前後には絶縁スペ
ーサ3が設けられ、これによって導体2u〜2Wが支持
されている。タンク1は、その軸に垂直に前後に分割さ
れ、前方にあって本来の径を有するタンク1aと、後方
にあって変流器コア4の寸法分だけ径が大きくされたタ
ンク1bとから構成されている。このタンク1bの内側
端部の導体2u〜2Wの延長上にそれぞれ変流器コアが
設置されている。そして、この変流器コア4の前方(即
ち、後方のタンク1bの端部)には支持板5が設けられ
、変流器コア4の内側にはこれと連結して絶縁シールド
6が設けられ、これらにより、変流器コア4の支持、及
び導体20〜2Wと絶縁がなされている。更に、タンク
1の下部には、変流器コア4の電流を引き出す為の密封
端子7が設けられている。
Inside the cylindrical tank 1 are three-phase conductors 2u of U, V, and W phases.
~2W is installed. Insulating spacers 3 are provided before and after the tank 1, and the conductors 2u to 2W are supported by these spacers. The tank 1 is divided into front and rear parts perpendicular to its axis, and consists of a tank 1a at the front having the original diameter and a tank 1b at the rear having a diameter increased by the dimension of the current transformer core 4. has been done. Current transformer cores are installed on the extensions of the conductors 2u to 2W at the inner end of the tank 1b, respectively. A support plate 5 is provided in front of the current transformer core 4 (that is, at the end of the rear tank 1b), and an insulating shield 6 is provided inside the current transformer core 4 in connection with this. , these support the current transformer core 4 and provide insulation from the conductors 20 to 2W. Furthermore, a sealed terminal 7 is provided at the bottom of the tank 1 for drawing out the current from the current transformer core 4.

ところで、この様なガス絶縁変流器においては、各相に
設ける変流器コア4が重い為、これを支える支持板5、
絶縁シールド6等もかなりの大きさとなり、しかも3相
一括型ではこれらを3箇所に設ける為に様器が複雑、大
形化し、重量も大きくなってしまう。また、変流器コア
4は1コアで1用途にしか使用できない為、継電器用や
計測用など各用途に応じて複数の変流器コア4が必要と
なり、これも大形化の原因となり、コスト的にも高価と
なってしまう。
By the way, in such a gas insulated current transformer, since the current transformer core 4 provided in each phase is heavy, a support plate 5, which supports it, is required.
The insulating shield 6 and the like are also quite large, and in a three-phase all-in-one type, they are provided in three locations, making the device complicated, large, and heavy. In addition, since one current transformer core 4 can only be used for one purpose, multiple current transformer cores 4 are required for each purpose, such as for relays and measurements, which also causes an increase in size. It also becomes expensive.

これらの欠点に鑑み、最近では、細径性、絶縁性、無誘
導性、耐環境性等の優れた特徴を有する光ファイバーを
用いた計測技術が注目され、これを応用した光磁界セン
サにより変流器を構成する試みがなされている。
In view of these shortcomings, measurement technology using optical fibers, which have excellent characteristics such as small diameter, insulation, non-induction, and environmental resistance, has recently attracted attention. Attempts are being made to construct vessels.

第9図(A>、(B)及び第10図に従って、この様な
光磁界センサを用いた従来の光変流器の一例を説明する
。タンク8内にはU、V、Wの各相の円筒導体9u〜9
w  (以下、総称して9とする)がタンク78の軸方
向に沿って平行に配設されている。前記各円筒導体9の
軸方向の所望の位置には、コイル状導体を配設するため
の空間が形成され、この空間には、棒状の導体を少なく
とも2タ一ン巻回したコイル状導体10が配置され、こ
の両端部は前記導体9の端部に対してボルト14によっ
て固定されている。このコイル状導体10内の中空部分
には、円筒導体9の軸方向の磁界に対して最大感度を持
つ球に、光磁界センサ11が配置されている。この光磁
界センサ11は、直線状の磁界を計測する一方向型のセ
ンサで、Zn5e等のファラデー素子を主体として偏光
子、検光子等から構成され、その形状も円筒導体9の軸
方向に沿った真直ぐな棒状体をしている。この光磁界セ
ンサ11は、コイル状導体10に接続された円筒導体9
の端部に対して支持台12を介して、コイル状導体10
の中心軸上に位置する様に固定されている。
An example of a conventional optical current transformer using such an optical magnetic field sensor will be explained according to FIG. 9 (A>, (B) and FIG. 10). Cylindrical conductor 9u~9
w (hereinafter collectively referred to as 9) are arranged in parallel along the axial direction of the tank 78. A space for arranging a coiled conductor is formed at a desired position in the axial direction of each of the cylindrical conductors 9, and a coiled conductor 10 in which a rod-shaped conductor is wound at least two turns is formed in this space. are arranged, and both ends thereof are fixed to the ends of the conductor 9 by bolts 14. In the hollow part of this coiled conductor 10, an optical magnetic field sensor 11 is arranged in a sphere having maximum sensitivity to the magnetic field in the axial direction of the cylindrical conductor 9. The optical magnetic field sensor 11 is a unidirectional sensor that measures a linear magnetic field, and is mainly composed of a Faraday element such as Zn5e, a polarizer, an analyzer, etc., and its shape also follows the axial direction of the cylindrical conductor 9. It has a straight rod-shaped body. This optical magnetic field sensor 11 includes a cylindrical conductor 9 connected to a coiled conductor 10.
The coiled conductor 10
It is fixed so that it is located on the central axis of.

一方、タンク8の外部には、ガス絶縁開閉装置制御盤内
に収納され、光発信器13a、光受信器13b及び演算
器130とから構成されている検出装置13が配設され
、この検出装置13と前記タンク8内の光磁界センサ1
1は光フアイバーケーブル15によって光学的に接続さ
れている。この場合、光フィバケーブル15は、密封端
子16の部分でタンク8に対しガス気密の状態で貫通し
、円筒導体9の壁面に開口した挿入孔17、及び円筒導
体9の端部及びコイル状導体10の端部に設けた挿入孔
18を通って光磁界センサ11に接続されている。
On the other hand, a detection device 13 is disposed outside the tank 8 and is housed in a gas-insulated switchgear control panel and is composed of an optical transmitter 13a, an optical receiver 13b, and a calculator 130. 13 and the optical magnetic field sensor 1 in the tank 8
1 are optically connected by an optical fiber cable 15. In this case, the optical fiber cable 15 penetrates the tank 8 at the sealed terminal 16 in a gas-tight manner, and has an insertion hole 17 opened in the wall surface of the cylindrical conductor 9, and an end portion of the cylindrical conductor 9 and a coiled conductor. The optical magnetic field sensor 11 is connected to the optical magnetic field sensor 11 through an insertion hole 18 provided at the end of the optical sensor 10 .

なお、第9図(B)に示す様に、光磁界センサ11の配
設箇所、即ちコイル状導体10の位置は、各相の円筒導
体9ごとにこの長手方向にほぼコイル状導体10の長さ
分ずらして配置されている。
As shown in FIG. 9(B), the location of the magneto-optical field sensor 11, that is, the position of the coiled conductor 10, is approximately equal to the length of the coiled conductor 10 in the longitudinal direction of each cylindrical conductor 9 of each phase. They are placed slightly apart.

このように構成された光変流器の作用は次の通りである
。検出装置13の光発信器13aから光フアイバケーブ
ル15によりタンク8内に導かれた光は、光磁界センサ
11内において偏光子によって直線偏光となり、ファラ
デー素子に入射される。そして、通電によりコイル状導
体10内に軸方向の磁界が発生し、このファラデー素子
に加わる磁界の大きさに比例した角度だけファラデー素
子入射光の偏波面が回転した後、検光子を透過して偏波
面の回転に依存した強度となった光が再び光フアイバケ
ーブル15を通って光受信器13bに入力され、演算器
13Cから電気信号として取出される。この場合、第1
0図に示す様に円筒導体9の部分では電流11が導体の
軸方向に流れ、それに伴って円筒導体9の周囲には、そ
の軸方向と直角な成分の磁界φ1が発生するが、前記電
流L1はコイル状導体10では旋回しながら流れる電流
12となるため、コイル部空間の磁界φ2の向きは円筒
導体9の軸方向とほぼ平行で同軸状となり、隣接相の導
体を流れる電流L3による磁界φ3とは直交する関係に
あり、隣接相の磁界の影響を受けることがない。また、
コイル状導体10の導体のターン数を少なくとも2ター
ン設けることにより、各ターン間におけるコイル状導体
10内の磁界の方向が直線状となり、隣接相の磁界の影
響を効果的に排除でき、従って精度の高い電流測定が可
能となる利点を有する。
The operation of the optical current transformer constructed in this way is as follows. Light guided from the optical transmitter 13a of the detection device 13 into the tank 8 via the optical fiber cable 15 becomes linearly polarized light by a polarizer in the optical magnetic field sensor 11, and is incident on a Faraday element. Then, an axial magnetic field is generated in the coiled conductor 10 by energization, and after the polarization plane of the light incident on the Faraday element is rotated by an angle proportional to the magnitude of the magnetic field applied to the Faraday element, the light is transmitted through the analyzer. The light whose intensity depends on the rotation of the plane of polarization is again input to the optical receiver 13b through the optical fiber cable 15, and is extracted as an electrical signal from the arithmetic unit 13C. In this case, the first
As shown in Figure 0, a current 11 flows in the axial direction of the cylindrical conductor 9, and a magnetic field φ1 with a component perpendicular to the axial direction is generated around the cylindrical conductor 9. Since L1 is a current 12 that flows while rotating in the coiled conductor 10, the direction of the magnetic field φ2 in the coil space is approximately parallel and coaxial with the axial direction of the cylindrical conductor 9, and the magnetic field due to the current L3 flowing through the conductor of the adjacent phase It is perpendicular to φ3 and is not affected by the magnetic field of the adjacent phase. Also,
By providing at least two turns of the conductor of the coiled conductor 10, the direction of the magnetic field within the coiled conductor 10 between each turn becomes linear, and the influence of the magnetic field of the adjacent phase can be effectively eliminated, thus improving accuracy. This has the advantage that high current measurement is possible.

[背景技術の問題点] ところが、前述した従来の光変流器では、電流通電性能
の立場から考えると、主回路としての円筒導体9の一部
に配置したコイル状導体10においても円筒導体9が有
する通電性能、即ち定格電流のみならず短時間の過大な
る事故電流をも通電できる能力を有する事が必要となる
。この為、コイル状導体10を高導電性の部材にて形成
し、且つコイル状導体10の導体線径は前記事故電流を
短時間通電するに充分な大きさとする事が必要不可欠と
なる。
[Problems with the Background Art] However, in the conventional optical current transformer described above, from the viewpoint of current carrying performance, even in the coiled conductor 10 disposed in a part of the cylindrical conductor 9 as the main circuit, the cylindrical conductor 9 It is necessary to have current carrying performance, that is, the ability to carry not only the rated current but also an excessive fault current for a short period of time. For this reason, it is essential that the coiled conductor 10 be made of a highly conductive material and that the conductor wire diameter of the coiled conductor 10 be large enough to carry the fault current for a short time.

ここで、コイル状導体10の製作方法としては丸棒の素
材を巻き上げる方法が一般的であるが、前記の条件を満
たす線径の大きな丸棒を巻き上げてコイル状導体10を
製作した場合、そのコイル状導体10の外径は主回路と
しての円筒導体9の外径よりも大きくなる事は避けられ
ない。そして、相間絶縁即ちコイル状導体10と他相の
主回路導体間の絶縁耐力及び対地間絶縁即ちコイル状導
体10と接地されたタンク8間の絶縁耐力を考えると、
3相にコイル状導体10を配置する母線範囲内において
、3相導体の相間距離及びタンク8の径を周囲の母線の
諸寸法に対して大きくとらなければならなくなる。また
、コイル状導体10のターン間に作用する電磁吸引力や
円筒導体9の熱伸縮等に対してコイル状導体10のター
ン間絶縁を維持し、必要なターン数を常に確保する為に
、ターン間には適当な間隔を設ける必要があり、その分
、コイル状導体10の長手方向寸法も大きくなってしま
う。さらに、コイル状導体10におけるジュール熱によ
る発熱を抑え充分なる通電性能を持たせる為には、コイ
ル状導体10の部材として銅等の高導電性低損失の素材
を使用する事が必要十分条件となるが、前述のようにコ
イル状導体10が大形である為、型口の増大を招く結果
となる。
Here, the method of manufacturing the coiled conductor 10 is generally to wind up a round bar material, but when the coiled conductor 10 is manufactured by winding up a round bar with a large wire diameter that satisfies the above conditions, It is inevitable that the outer diameter of the coiled conductor 10 is larger than the outer diameter of the cylindrical conductor 9 as the main circuit. Considering the interphase insulation, that is, the dielectric strength between the coiled conductor 10 and the main circuit conductor of the other phase, and the grounding insulation, that is, the dielectric strength between the coiled conductor 10 and the grounded tank 8,
Within the busbar range in which the coiled conductors 10 are disposed in three phases, the interphase distance of the three-phase conductors and the diameter of the tank 8 must be made larger than the dimensions of the surrounding busbars. In addition, in order to maintain insulation between turns of the coiled conductor 10 against electromagnetic attraction force acting between the turns of the coiled conductor 10 and thermal expansion and contraction of the cylindrical conductor 9, etc., and to always ensure the required number of turns, It is necessary to provide an appropriate interval therebetween, and the longitudinal dimension of the coiled conductor 10 increases accordingly. Furthermore, in order to suppress heat generation due to Joule heat in the coiled conductor 10 and provide sufficient current carrying performance, it is necessary and sufficient to use a highly conductive and low loss material such as copper as a member of the coiled conductor 10. However, as described above, since the coiled conductor 10 is large, this results in an increase in the mold opening.

これらの事は、前述したガス絶縁変流器に代って光磁界
センサにて構成された変流器をガス絶縁開閉装置に適用
する主要なメリットの一つである変流器の小形化、低重
量化の意図に反するものである。
These things are one of the main advantages of applying a current transformer configured with an optical magnetic field sensor to a gas-insulated switchgear instead of the gas-insulated current transformer described above, which is the miniaturization of the current transformer. This goes against the intention of reducing weight.

[発明の目的] 本発明は、前述の問題点を解消するために提案されたも
ので、その目的は隣接相の磁界の影響を受けることなく
精度の高い計測が可能で、しかも小形、軽量化が可能と
なる光変流器を提供することにある。
[Object of the invention] The present invention was proposed to solve the above-mentioned problems, and its purpose is to enable highly accurate measurement without being affected by magnetic fields of adjacent phases, and to be compact and lightweight. The purpose of this invention is to provide an optical current transformer that enables this.

[発明の概要コ 本発明は、前記目的を達成するため、被測定電流が流れ
る円筒導体の一部にリング状導体よりなるリング部を形
成し、このリング部内の中空部に、前記円筒導体の軸方
向の磁界を発生させ、前記リング部内の中空部の中心に
軸方向に沿って配設した一方向型の光磁界センサで検出
することにより、隣接相で発生する導体軸と垂直方向の
磁界に影響されることなく、計測を可能にしたものであ
る。
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention forms a ring portion made of a ring-shaped conductor in a part of a cylindrical conductor through which a current to be measured flows, and a hollow portion of the cylindrical conductor is formed in a hollow portion within the ring portion. By generating an axial magnetic field and detecting it with a unidirectional optical magnetic field sensor arranged along the axial direction at the center of the hollow part in the ring part, the magnetic field perpendicular to the conductor axis generated in the adjacent phase is detected. This makes it possible to measure without being influenced by

[発明の実施例] 以下、本発明の実施例について第1図〜第7図を参照し
て説明する。
[Embodiments of the Invention] Examples of the present invention will be described below with reference to FIGS. 1 to 7.

第1図(A>、(B)は本発明の一実施例の要部のみを
示す正断面図および側断面図であり、これから明らかよ
うにタンク8内には、U、V、W相の各相の円筒導体9
0〜9w  (以下総称してつとする)がタンク8の軸
方向に沿って平行に配設されている。前記各円筒導体9
の軸方向の所望の位置には、次に述べるリング部19が
形成されている。このリング部19は第2図(A)、(
B)及び第3図(A)、(B)の正面図、側面図に示す
様に、リング状導体19aと絶縁板1つす。
FIGS. 1A and 1B are a front sectional view and a side sectional view showing only the main parts of an embodiment of the present invention, and as is clear from these, there are U, V, and W phases in the tank 8. Cylindrical conductor 9 for each phase
0 to 9w (hereinafter collectively referred to as one) are arranged in parallel along the axial direction of the tank 8. Each of the cylindrical conductors 9
A ring portion 19, which will be described below, is formed at a desired position in the axial direction. This ring portion 19 is shown in FIG.
As shown in the front and side views of FIGS. 3B) and 3A and 3B, there is a ring-shaped conductor 19a and one insulating plate.

19Cによって構成されている。ここで、リング状導体
19aは、リング部19の両側に配設した円筒導体9の
一方からリング状導体19aに流入して他方の円筒導体
9に流出する電流がこの部分で約1ターンを形成する様
に環状導体の一部にギャップ19dを設けたものである
。また、絶縁板19b、19cは、円筒導体9の熱伸縮
等により導体軸方向や円周方向に作用する外力に対して
、リング状導体19aのターン部分と円筒導体9の絶縁
及びリング状導体19aに設けたギヤツブ19d部分の
絶縁を維持する為に取付けたものである。前記リング部
19内の中空部分には、円筒導体9の軸方向の磁界に対
して最大感度を持つ様に、光磁界センサ11が配置され
ている。この光磁界センサ11は軸方向の磁界を計測す
る一方向型のセンサで、Zn Se等のファラデー素子
を主体として偏光子、検光子等から構成され、その形状
も円筒導体9の軸方向に沿った真直ぐな棒状体をしてい
る。この光磁界センサ11は、リング部1つに接続され
た円筒導体9の端部に対して支持台12を介して、リン
グ部19の中心軸上に位置する様に固定されている。
It is composed of 19C. Here, in the ring-shaped conductor 19a, a current flowing from one of the cylindrical conductors 9 disposed on both sides of the ring portion 19 into the ring-shaped conductor 19a and flowing out to the other cylindrical conductor 9 forms about one turn in this part. A gap 19d is provided in a part of the annular conductor so that the conductor has a gap 19d. In addition, the insulating plates 19b and 19c insulate the turn portion of the ring-shaped conductor 19a and the cylindrical conductor 9, and protect the ring-shaped conductor 19a from external forces acting in the axial direction and circumferential direction of the cylindrical conductor 9 due to thermal expansion and contraction of the cylindrical conductor 9. This was installed in order to maintain the insulation of the gear 19d section. An optical magnetic field sensor 11 is arranged in a hollow portion within the ring portion 19 so as to have maximum sensitivity to the magnetic field in the axial direction of the cylindrical conductor 9. The optical magnetic field sensor 11 is a unidirectional sensor that measures the magnetic field in the axial direction, and is mainly composed of a Faraday element such as ZnSe, as well as a polarizer, an analyzer, etc., and its shape also follows the axial direction of the cylindrical conductor 9. It has a straight rod-shaped body. This optical magnetic field sensor 11 is fixed to the end of a cylindrical conductor 9 connected to one ring part via a support base 12 so as to be located on the central axis of the ring part 19.

一方、タンク8の外部には、ガス絶縁開閉装置制御盤内
に収納され、光発信器13a、光受信器13b及び演算
器13Cとから構成されている検出装@13が配設され
、この検出装置13と前記タンクB内の光磁界センサ1
1は光フアイバーケーブル15によって光学的に接続さ
れている。この場合光フアイバーケーブル15は、密封
端子16の部分でタンク8に対しガス気密の状態で貫通
し、円筒導体9の壁面に開口した挿入孔17、及び円筒
導体9の端部に設けた挿入孔18を通って光磁界センサ
11に接続されている。
On the other hand, a detection device @13 is disposed outside the tank 8 and is housed in a gas-insulated switchgear control panel and is composed of an optical transmitter 13a, an optical receiver 13b, and a computing unit 13C. Device 13 and the optical magnetic field sensor 1 in the tank B
1 are optically connected by an optical fiber cable 15. In this case, the optical fiber cable 15 penetrates the tank 8 at the sealed terminal 16 in a gas-tight manner, and has an insertion hole 17 opened in the wall of the cylindrical conductor 9 and an insertion hole provided at the end of the cylindrical conductor 9. It is connected to the optical magnetic field sensor 11 through 18.

なお、第1図(B)に示す様に、光磁界センサ11の配
設箇所、即ち、リング部″19の位置は、各相の導体ご
とに導体の軸方向にUV相(又はVW相)の相間距離の
1/門倍の間隔だけずらして配置されている。
As shown in FIG. 1(B), the location of the magneto-optical field sensor 11, that is, the position of the ring portion "19, is set in the UV phase (or VW phase) in the axial direction of the conductor for each phase conductor. They are staggered by an interval equal to 1/gate times the phase-to-phase distance.

このように構成された光度流器の作用は次の通りである
。検出装置13の光発信器13aから光フアイバーケー
ブル15によりタンク8内に導かれた光は、光磁界セン
サ11に内においてい光子によって直線部光となり、フ
ァラデー素子に入射される。そして、通電によりリング
部19内に軸方向の磁界が発生し、このファラデー素子
に加わる磁界の大きさに比例した角度だけファラデー素
子入射光の喝波面が回転した後、検光子を透過して偏波
面の回転に依存した強度となった光が再び光フアイバー
ケーブル15を通って光受信器13bに入力され、演算
器13cから電気信号として取出される。この場合、円
筒導体9の部分では電流が軸方向に流れ、それに伴って
軸方向と直角な成分をもつ磁界が発生するが、リング部
19においては電流が旋回しながら流れるため、この電
流によってリング中空部分に発生する磁界は円筒導体9
の軸方向とほぼ平行で同軸状となり、他相の円筒導体を
流れる電流による磁界とは直交する関係となることから
、これらの磁界の影響を受けることはない。しかし、他
相に配置したリング部19を流れる電流によって発生す
る磁界は、自相のリング中空部分においても軸方向の成
分を含むと考えられるため、この影響が問題となる。
The operation of the photometric flow device configured as described above is as follows. Light guided from the optical transmitter 13a of the detection device 13 into the tank 8 via the optical fiber cable 15 is converted into linear light by photons entering the optical magnetic field sensor 11, and is incident on the Faraday element. Then, an axial magnetic field is generated in the ring part 19 by energization, and after the excitation plane of the light incident on the Faraday element rotates by an angle proportional to the magnitude of the magnetic field applied to the Faraday element, it is transmitted through the analyzer and polarized. The light whose intensity depends on the rotation of the wavefront is again input to the optical receiver 13b through the optical fiber cable 15, and is extracted as an electrical signal from the calculator 13c. In this case, the current flows in the axial direction in the cylindrical conductor 9, and a magnetic field with a component perpendicular to the axial direction is generated accordingly, but since the current flows in the ring part 19 while rotating, this current causes the ring to The magnetic field generated in the hollow part is the cylindrical conductor 9
The conductor is substantially parallel and coaxial with the axial direction of the conductor, and is perpendicular to the magnetic field caused by the current flowing through the cylindrical conductor of the other phase, so it is not affected by these magnetic fields. However, since the magnetic field generated by the current flowing through the ring portion 19 disposed in the other phase is considered to include an axial component even in the ring hollow portion of the own phase, this influence poses a problem.

ここで、このことについて第4図を参照して説明する。This will now be explained with reference to FIG.

第4図(A)、(B)はリング状導体を流れる電流によ
る磁界の特性を説明するための図であり、いま他相リン
グ状導体20を流れる電流を線電流で近似すると、他相
リング導体20から離れた点Qにおける磁界の大きさH
r、HOは次式で与えられる。
FIGS. 4(A) and 4(B) are diagrams for explaining the characteristics of the magnetic field due to the current flowing through the ring-shaped conductor. If the current flowing through the other-phase ring-shaped conductor 20 is approximated by a line current, then the other-phase ring-shaped conductor 20 The magnitude of the magnetic field H at a point Q away from the conductor 20
r and HO are given by the following equation.

ただし、Iは他相リング状導体2oを流れる電流の大き
さ、aは他相リング状導体20の半径、rは他相リング
状導体20の中心Pから点Qまでの距離、θは点Pと点
Qを結ぶ直線がリング状導体20の中心軸となす角であ
る。
Here, I is the magnitude of the current flowing through the other-phase ring-shaped conductor 2o, a is the radius of the other-phase ring-shaped conductor 20, r is the distance from the center P of the other-phase ring-shaped conductor 20 to point Q, and θ is the point P The straight line connecting point Q and Q is the angle formed with the central axis of the ring-shaped conductor 20.

また、リング状導体20の中心Pの発生する磁界は軸方
向の成分をもち、その大きさHaは次式よって、第4図
(A>において、他相リング状導体20を流れる電流に
よって自相リング状導体21の中心部、即ち光磁界セン
サ配設部に生じる磁界の軸方向成分H1及び軸方向と直
角な方向の成分H2は、(IL(2i式を変形してHO
に対する比で表わすと次式となる。
In addition, the magnetic field generated by the center P of the ring-shaped conductor 20 has an axial component, and its magnitude Ha is calculated from the following equation. The axial component H1 and the component H2 in the direction perpendicular to the axial direction of the magnetic field generated in the central part of the ring-shaped conductor 21, that is, in the optical magnetic field sensor installation part, are expressed as
Expressed as a ratio to , the following equation is obtained.

(x”+12.> a2) ただし、1は相間距離、Xはリング状導体配設部の軸方
向のずれである。
(x”+12.>a2) However, 1 is the interphase distance, and X is the axial deviation of the ring-shaped conductor arrangement portion.

第4図(B)は(3)式をもとに×/1に対する磁界H
r /Hロ、H2/Haの特性を求め、それを図示した
ものである。リング状導体19aの中心に位置する光磁
界センサ11は、軸方向の磁界に対して最大感度を持つ
様に配置されるので、ここでは軸方向磁界成分H1/H
+のみに着目すれば、Hl /HOはx/Jl=o、即
ち、2つのリング状導体20.21を並べて配置した時
に最大となり、x/Jlが大きくなるに従ってH1/H
1+ は次第に減少しTx /Jl= 1 /(Vなる
点でHt /Ha =Oとなり、ざらにx/J、が大き
くなると磁界の方向が反転してHl /HOは僅かに増
加した後減少を始めx /Jl−+ωにおいてOとなる
。よって、光磁界センサ11を含むリング部19の位置
を相間距離の1/r’i倍の間隔だけ導体の軸方向にず
らして配置する事で、隣接相のリング状導体を流れる電
流によって発生する磁界の影響を全く受けずに自相の電
流を精度良く計測する事が可能となる。
Figure 4 (B) shows the magnetic field H for ×/1 based on equation (3).
The characteristics of r/Hb and H2/Ha are obtained and illustrated. The optical magnetic field sensor 11 located at the center of the ring-shaped conductor 19a is arranged so as to have maximum sensitivity to the axial magnetic field, so here, the axial magnetic field component H1/H
Focusing only on +, Hl/HO becomes maximum when x/Jl=o, that is, when two ring-shaped conductors 20 and 21 are arranged side by side, and as x/Jl increases, H1/H
1+ gradually decreases, and at the point where Tx /Jl = 1 / (V, Ht /Ha = O, and as x / J becomes larger, the direction of the magnetic field is reversed and Hl /HO increases slightly and then decreases. It becomes O at the beginning x/Jl-+ω.Therefore, by shifting the position of the ring part 19 including the optical magnetic field sensor 11 in the axial direction of the conductor by an interval equal to 1/r'i times the interphase distance, the adjacent It becomes possible to accurately measure the current of the own phase without being affected by the magnetic field generated by the current flowing through the ring-shaped conductor of the phase.

本実施例では、U、V、W各相の円筒導体9が2等辺3
角形状に配設されているので、リング部19の位置を相
間距離の1 / n−倍の間隔だけずらして配置すると
いう条件をU、V、W相全てに対して満足させる事は出
来ない。
In this embodiment, the cylindrical conductor 9 of each phase of U, V, and W has isosceles 3
Since they are arranged in a rectangular shape, it is not possible to satisfy the condition that the positions of the ring portions 19 are shifted by an interval of 1/n- times the interphase distance for all U, V, and W phases. .

しかし、例えば、第5図(A>、(B)に示すように、
■相のリング部1つに対するU、W相のリング部19の
位置をUV相(= VW相)の相間距離の1/(j倍の
間隔だけ導体軸方向にずらした場合を考えると、UV相
間、VW相間での他相リング部19の電流による磁界の
影響は全く無くなる。
However, for example, as shown in FIG. 5 (A>, (B)),
Considering the case where the position of the ring part 19 of the U and W phases with respect to one ring part of the phase is shifted in the conductor axis direction by an interval of 1/(j times the interphase distance of the UV phase (= VW phase), the UV The influence of the magnetic field due to the current in the other-phase ring portion 19 between the phases and between the VW phases is completely eliminated.

一方、UW相間に対しては、U相とW相のリング部19
の導体軸方向のずれはUW相の相間距離に一致し、この
時の他相リング部1つの電流による磁界の大きさは第4
図(B)でx/f=1における値となる。
On the other hand, for the UW phase, the ring part 19 of the U phase and W phase
The deviation in the conductor axis direction corresponds to the interphase distance of the UW phase, and the magnitude of the magnetic field due to the current in one of the other phase ring parts at this time is the fourth
In Figure (B), this is the value when x/f=1.

ここで、275kV3相一括母線に本実施例の光変流器
を適用した場合について試算するとU、 V相はく又は
V、W相)に配設したリング部19のずれの大きさは2
00m+程度と小ざく、また、UW相間において他相リ
ング部の電流による磁界の影響で生じる電流測定誤差は
、他相に事故電流、即ち平常時の25倍程度の大電流が
流れた場合でも0.3%程度となり、隣接相の磁界の影
響をほとんど受けない。
Here, when the optical current transformer of this embodiment is applied to a 275kV three-phase collective bus, the magnitude of the deviation of the ring portion 19 disposed in the U and V phase foils or the V and W phases is 2.
In addition, the current measurement error caused by the influence of the magnetic field due to the current in the ring section of the other phase between the UW phases is 0 even when a fault current, that is, a large current about 25 times the normal flow, flows in the other phase. .3%, and is hardly affected by the magnetic field of the adjacent phase.

さらに、リング状導体19aを銅等の高導電性の部材に
より構成すれば、隣接相の磁界によってリング状導体1
9a内を誘導電流が流れ、この誘導電流が作る磁界が前
記隣接相の磁界の多くを相殺することから、リング状導
体19aは一種の磁気シールドとして作用し、本実施例
の効果はさらに顕著となる。
Furthermore, if the ring-shaped conductor 19a is made of a highly conductive material such as copper, the ring-shaped conductor 19a is
An induced current flows through the ring-shaped conductor 19a, and the magnetic field created by this induced current cancels out most of the magnetic field of the adjacent phase, so the ring-shaped conductor 19a acts as a kind of magnetic shield, and the effect of this embodiment is even more remarkable. Become.

また、本実施例におけるリング状導体19aは、第2図
(A>、(B)、第3図(A)、(B)に示すように平
板又は丸棒状の素材から切削加工で容易に製作する事が
でき、さらに、−例として説明した従来の光変流器で使
用したコイル状導体に比較して大幅に小形化、軽量化さ
れる。これについて、具体的に数値を示すと、導体部の
外径唄ついては70%程度、長さについては35%程度
、重量については35%程度に縮少化する事が可能であ
る。
Further, the ring-shaped conductor 19a in this embodiment can be easily manufactured by cutting from a flat plate or round bar-shaped material as shown in FIGS. Furthermore, it is significantly smaller and lighter than the coiled conductor used in the conventional optical current transformer explained as an example. It is possible to reduce the outer diameter of the part by about 70%, the length by about 35%, and the weight by about 35%.

そして、リング状導体19aの断面形状を矩形とする事
で、中空部内光磁界センサ取付位置の磁界の方向を直線
状とし、さらに、リング状導体19aの内径を小さくす
る事で磁界が強まるため、コイル状導体の場合とほぼ同
様の電流測定感度が得られる。
By making the cross-sectional shape of the ring-shaped conductor 19a rectangular, the direction of the magnetic field at the mounting position of the optical magnetic field sensor inside the hollow part is made linear, and by making the inner diameter of the ring-shaped conductor 19a smaller, the magnetic field is strengthened. Almost the same current measurement sensitivity as with a coiled conductor is obtained.

次にリング部の他の配置例につき第6図(A)。Next, FIG. 6(A) shows another arrangement example of the ring portion.

(B)、第7図(A)、(B)に従って説明する。(B), and FIGS. 7(A) and (B).

第6図(A)、(B)に示す配置例においては、■相の
リング部に対するU、W相のリング部の位置はIIV相
(= VW相)の相間距離の1/(7倍の間隔だけ導体
軸方向にずらして配置しているが、■相とW相のリング
部の配置位置の導体軸方向のずれは0である。このため
、第5図(A)、(B)の配置例に比べて光変流器の長
さ方向の寸法を更に小さくできるが、UW相間での他相
リング部による磁界の影響は大きくなる。また、第7図
(A)。
In the arrangement example shown in Fig. 6 (A) and (B), the position of the ring part of the U and W phases with respect to the ring part of the ■ phase is 1/(7 times) the interphase distance of the IIV phase (= VW phase). Although they are arranged shifted by the distance in the conductor axial direction, the deviation in the conductor axial direction of the arrangement positions of the ring parts of the ■ phase and W phase is 0. Therefore, the difference in the conductor axial direction in the position of the Although the lengthwise dimension of the optical current transformer can be further reduced compared to the arrangement example, the influence of the magnetic field due to the other-phase ring portion between the UW phases increases.Furthermore, FIG. 7(A).

(B)に示す配置例では、各相のリング部19を導体軸
方向にずらさずに並べて配置しているため、光変流器の
長さ方向の寸法は最も小さいが、その反面、隣接相の磁
界の影響は他の配置方法に比べて最も大きくなる。しか
しながら、リング状導体19aを並べて配置した場合に
おいて、隣接相のリング状導体19aの電流が自相のリ
ング状導体19a内の中空部に作る磁界の軸方向成分が
第4図(B)に示すようにリング状導体の半径aと相間
側miの比率の3乗に比例し、しがもリング状導体19
aの径は相間距離に比べて充分小さくすることが可能で
あるため、第6図(A)、(B)、第7図(A)、(B
)に示すリング部1つの配置方法を適用しても顕著な隣
接相による磁界の回避効果が期待できる。実際、これら
の配置方法を275kV3相一括母線に適用し、隣接相
に事故電流が流れた場合の電流測定誤差を試算すると、
第6図(A)、(B)の配置方法の場合で2%程度、第
7図(A>、(B)の配置方法の場合で5%程度と、実
用上充分な誤差範囲内にある。
In the arrangement example shown in (B), the ring portions 19 of each phase are arranged side by side without shifting in the conductor axis direction, so the lengthwise dimension of the optical current transformer is the smallest. The influence of the magnetic field is the largest compared to other placement methods. However, when the ring-shaped conductors 19a are arranged side by side, the axial component of the magnetic field created by the current of the ring-shaped conductor 19a of the adjacent phase in the hollow part of the ring-shaped conductor 19a of the own phase is shown in FIG. 4(B). As shown in FIG.
Since the diameter of a can be made sufficiently small compared to the interphase distance, the diameter of
Even if the method of arranging one ring part shown in ) is applied, a remarkable effect of avoiding magnetic fields due to adjacent phases can be expected. Actually, when we apply these arrangement methods to a 275kV three-phase collective bus and calculate the current measurement error when a fault current flows to the adjacent phase, we get the following:
The error is approximately 2% in the case of the arrangement method shown in Figures 6 (A) and (B), and approximately 5% in the case of the arrangement method shown in Figure 7 (A>, (B)), which is within a sufficient error range for practical purposes. .

[発明の効果] 以上の様に本発明によれば、被測定電流が流れる円筒導
体の一部にリング状導体よりなるリング部を形成し、こ
のリング部内中空部に発生した円筒導体の軸方向の磁界
を一方向型の光磁界センサで検出するという簡単な構成
により、隣接相の磁界の影響を排除して高精度の計測を
行え、しがも従来の変流器コアを用いたガス絶縁変流器
に比べて大幅に小形、軽量化が可能な光変流器を提供で
きる。
[Effects of the Invention] As described above, according to the present invention, a ring part made of a ring-shaped conductor is formed in a part of the cylindrical conductor through which the current to be measured flows, and the axial direction of the cylindrical conductor generated in the hollow part of the ring part is The simple configuration of detecting the magnetic field with a unidirectional optical magnetic field sensor eliminates the influence of the magnetic field of the adjacent phase and enables highly accurate measurement, while still using a gas-insulated current transformer core. It is possible to provide an optical current transformer that is significantly smaller and lighter than current transformers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)は本発明による光変流器の一実施
例の要部のみを示す正断面図及び側断面図、第2図(A
)、(B)及び第3図(A)。 (B)はそれぞれ同実施例のリング部の構成を示す正面
図、側面図及び正面図、側面図、第4図(A>、(B)
はそれぞれ同実施例のリング状導体を流れる電流による
磁界の特性を示す説明図、第5図(A)、(B)〜第7
図(A)、(B)はそれぞれ同実施例のリング部の異る
配置例を示す正断面図、側断面図〜正断面図、側断面図
、第8図(A)、(B)は従来の変流器コアを用いたガ
ス絶縁変流器を示す正面図及び側断面図、第9図(A)
、(B)は従来の光変流器の一例の要部の゛みを示す正
断面図と側断面図、第10図はコイル部近傍の磁界の状
態を示す斜視図である。 1.1a、1b・・・タンク、2u 〜2W−・・導体
、3・・・絶縁スペーサ、4・・・変流器コア、5・・
・支持板、6・・・絶縁シールド、7・・・密封端子、
8・・・タンク、90〜9W・・・円筒導体、10・・
・コイル部、11・・・光磁界センサ、12・・・支持
台、13・・・検出装置、13a・・・光発信器、13
b・・・光受信器、13C・・・演算器、14・・・ボ
ルト、15・・・光フアイバーケーブル、16・・・密
封端子、17.18・・・挿入孔、19・・・リング部
、19a・・・リング状導体、19b。 19C・・・絶縁板、19d・・・ギャップ、20・・
・他相リング状導体、21・・・自相リング状導体。 出願人代理人 弁理士 鈴江武彦 (A) 第1図 第2図 第3図 (A) (B) 第4図 第5図 第6図 第7図 (A)            (B)第8図 (A) 第9図
FIGS. 1(A) and 1(B) are a front sectional view and a side sectional view showing only the essential parts of an embodiment of an optical current transformer according to the present invention, and FIG.
), (B) and Figure 3 (A). (B) is a front view, a side view, a front view, a side view, and Fig. 4 (A>, (B) respectively showing the structure of the ring part of the same example.
are explanatory diagrams showing the characteristics of the magnetic field due to the current flowing through the ring-shaped conductor of the same example, and FIGS. 5(A), (B) to 7
Figures (A) and (B) are a front sectional view, a side sectional view to a front sectional view, and a side sectional view showing different arrangement examples of the ring portion of the same embodiment, respectively. Front view and side sectional view showing a gas insulated current transformer using a conventional current transformer core, FIG. 9(A)
, (B) are a front sectional view and a side sectional view showing main parts of an example of a conventional optical current transformer, and FIG. 10 is a perspective view showing the state of a magnetic field near a coil portion. 1.1a, 1b... Tank, 2u ~ 2W-... Conductor, 3... Insulating spacer, 4... Current transformer core, 5...
・Support plate, 6... Insulation shield, 7... Sealed terminal,
8...Tank, 90~9W...Cylindrical conductor, 10...
- Coil part, 11... Optical magnetic field sensor, 12... Support stand, 13... Detection device, 13a... Optical transmitter, 13
b... Optical receiver, 13C... Arithmetic unit, 14... Volt, 15... Optical fiber cable, 16... Sealed terminal, 17.18... Insertion hole, 19... Ring Part, 19a... Ring-shaped conductor, 19b. 19C...Insulating plate, 19d...Gap, 20...
・Other-phase ring-shaped conductor, 21... Self-phase ring-shaped conductor. Applicant's representative Patent attorney Takehiko Suzue (A) Figure 1 Figure 2 Figure 3 (A) (B) Figure 4 Figure 5 Figure 6 Figure 7 (A) (B) Figure 8 (A) Figure 9

Claims (5)

【特許請求の範囲】[Claims] (1)SF_6ガス等の絶縁ガスが封入されたタンク内
に円筒導体を配設した電気機器において、被測定電流に
よつて生ずる磁界を光磁界センサで検出し、電流の大き
さを光信号に変換して測定する光変流器において、被測
定電流が流れる前記円筒導体の一部にリング状導体より
成るリング部を形成し、このリング部内の中空部に前記
円筒導体の軸方向の磁界を発生させ、前記リング部内の
中空部の中心に前記軸方向の磁界を検出する一方向型の
光磁界センサを配置した事を特徴とする光変流器。
(1) In electrical equipment in which a cylindrical conductor is placed in a tank filled with an insulating gas such as SF_6 gas, the magnetic field generated by the current to be measured is detected by an optical magnetic field sensor, and the magnitude of the current is converted into an optical signal. In an optical current transformer that converts and measures current, a ring part made of a ring-shaped conductor is formed in a part of the cylindrical conductor through which the current to be measured flows, and a magnetic field in the axial direction of the cylindrical conductor is applied to a hollow part in the ring part. An optical current transformer characterized in that a unidirectional optical magnetic field sensor is disposed at the center of a hollow portion in the ring portion to detect the magnetic field in the axial direction.
(2)リング状導体の断面形状を矩形とし、かつ内外径
を通電能力が維持できる範囲内で可能な限り小さくした
事を特徴とする特許請求の範囲第(1)項記載の光変流
器。
(2) The optical current transformer according to claim (1), characterized in that the cross-sectional shape of the ring-shaped conductor is rectangular, and the inner and outer diameters are made as small as possible within a range that can maintain current carrying capacity. .
(3)リング状導体を銅等の高導電性の部材により構成
した事を特徴とする特許請求の範囲第(1)項記載又は
第(2)項記載の光変流器。
(3) The optical current transformer according to claim (1) or (2), wherein the ring-shaped conductor is made of a highly conductive member such as copper.
(4)円筒導体が多相構成であつて、各円筒導体に対応
して設けられる光磁界センサを含むリング部を、円筒導
体の軸方向に対して同じ位置となるように並べて配置し
た事を特徴とする特許請求の範囲第(1)項又は第(2
)項記載の光変流器。
(4) The cylindrical conductor has a multi-phase configuration, and the ring parts including the optical magnetic field sensors provided corresponding to each cylindrical conductor are arranged side by side at the same position in the axial direction of the cylindrical conductor. Claims (1) or (2) characterized in
Optical current transformer described in ).
(5)円筒導体が多相構成であつて、このうち少なくと
も1組の隣接する円筒導体に対して設けられる光磁界セ
ンサを含むリング部の位置を、相間距離の1/√2倍の
間隔だけ円筒導体の軸方向にずらして配置した事を特徴
とする特許請求の範囲第(1)項又は第(2)項記載の
光変流器。
(5) The cylindrical conductors have a multiphase configuration, and the ring portion including the optical magnetic field sensor provided for at least one set of adjacent cylindrical conductors is positioned at an interval of 1/√2 times the interphase distance. The optical current transformer according to claim 1 or 2, characterized in that the cylindrical conductor is displaced in the axial direction of the cylindrical conductor.
JP60216652A 1985-09-30 1985-09-30 Optical current transformer Pending JPS6275362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216652A JPS6275362A (en) 1985-09-30 1985-09-30 Optical current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216652A JPS6275362A (en) 1985-09-30 1985-09-30 Optical current transformer

Publications (1)

Publication Number Publication Date
JPS6275362A true JPS6275362A (en) 1987-04-07

Family

ID=16691804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216652A Pending JPS6275362A (en) 1985-09-30 1985-09-30 Optical current transformer

Country Status (1)

Country Link
JP (1) JPS6275362A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850470A (en) * 1981-09-19 1983-03-24 Mitsubishi Electric Corp Measuring device for electric current

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850470A (en) * 1981-09-19 1983-03-24 Mitsubishi Electric Corp Measuring device for electric current

Similar Documents

Publication Publication Date Title
US20170146572A1 (en) Current sensor and device for measuring an electrical current
US20120001645A1 (en) Combined electrical variable detection device
US6680665B2 (en) Three-phase current transformer
CN100505120C (en) Dry type mutual inductor with optical signal output
US5295207A (en) Optical apparatus for measuring current in a grounded metal-clad installation
AU2013231500B2 (en) Measuring transducer arrangement
CN201716359U (en) Non-contact electronic type voltage sampling device
JPS6275362A (en) Optical current transformer
CN102222558B (en) Optical current mutual inductor and optoelectronic information processor thereof
JPS60203863A (en) Gas-insulated three-phase current transformer
JP2011196812A (en) Optical-fiber-containing insulating spacer
KR20210044462A (en) Current measuring and gas insulated switchgear having the same
JP2673010B2 (en) Supporting insulator with optical CT
JPH0546161B2 (en)
JPS60207071A (en) Gas insulating current transformer
JPH04161860A (en) Current-signal detecting apparatus
JPS59198360A (en) Optical current transformer apparatus
JPH0628709Y2 (en) Cable testing equipment
JPS58165615A (en) 3-phase simultaneous bus
JPS60207069A (en) Gas insulating current transformer
JPH10160763A (en) Current measuring structure
JPH03215760A (en) Earth detector
JPS62276468A (en) Gas insulating current transformer
JPH0450663A (en) Current measuring device
JPS60202365A (en) Gas-insulated electrical appliance