JPS639544B2 - - Google Patents

Info

Publication number
JPS639544B2
JPS639544B2 JP57202083A JP20208382A JPS639544B2 JP S639544 B2 JPS639544 B2 JP S639544B2 JP 57202083 A JP57202083 A JP 57202083A JP 20208382 A JP20208382 A JP 20208382A JP S639544 B2 JPS639544 B2 JP S639544B2
Authority
JP
Japan
Prior art keywords
weight
parts
graft copolymer
maleimide
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57202083A
Other languages
Japanese (ja)
Other versions
JPS5993747A (en
Inventor
Keiji Nakagawa
Tadao Fukumoto
Masayuki Tanaka
Akihiko Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20208382A priority Critical patent/JPS5993747A/en
Publication of JPS5993747A publication Critical patent/JPS5993747A/en
Publication of JPS639544B2 publication Critical patent/JPS639544B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱性および耐衝撃性にすぐれた熱
可塑性樹脂組成物に関するものである。さらに詳
しくはゴム状重合体にマレイミド単位を有する共
重合体をグラフトさせたマレイミド系グラフト共
重合体を含有する熱可塑性樹脂組成物に関するも
のである。 スチレン系樹脂の耐熱性改善に関する検討は従
来から数多く行なわれており、例えばアクリロニ
トリル―ブタジエン―スチレン共重合体(ABS
樹脂)の耐熱性を向上すべく、スチレンの一部ま
たは全部にα―メチルスチレンを用いた共重合体
の検討がなされているがα―メチルスチレン系共
重合体は熱安定性が十分でなく、熱変形温度を向
上させようとα―メチルスチレンの含有率を高く
すると、共重合体の熱分解温度が低下するという
欠点がある。 一方スチレンと無水マレン酸の共重合体をイミ
ド化してなるマレイミド系グラフト共重合体は高
い熱変形温度と熱分解温度を有しており、これを
ゴム状重合体をベースとするグラフト共重合体に
配合することにより熱安定性のすぐれた樹脂組成
物を得ることが提案されている(米国特許第
3642949号明細書および特開昭57−125242号公
報)。しかし、この組成物は耐衝撃性が十分でな
く、耐衝撃性を満足させるためにグラフト共重合
体の配合量をふやすと熱変形温度が著しく低下す
るという問題がある。 そこで本発明者らは熱変形温度に代表される耐
熱性と耐衝撃強度に代表される耐衝撃性が均衡し
てすぐれた熱可塑性成形材料の取得を目的として
鋭意検討した結果、ゴム状重合体にマレイミド単
位を有する共重合体をグラフトさせたマレイミド
系グラフト共重合体に対し特定のグラフト共重合
体およびビニル系重合体を配合することにより、
上記目的が効果的に達成できることを見出し、本
発明に到達した。 すなわち本発明は(A)ゴム状重合体5〜40重量部
の存在下に芳香族ビニル系単量体50〜80重量%、
無水マレイン酸5〜50重量%およびこれと共重合
可能なビニル系単量体0〜30重量%からなる単量
体混合物60〜95重量部をグラフト重合してなるグ
ラフト共重合体をアンモニアまたは第一級アミン
と反応せしめて得られるマレイミド系グラフト共
重合体10〜60重量部、(B)ゴム状重合体20〜80重量
%の存在下に芳香族ビニル系単量体およびシアン
化ビニル単量体からなる単量体混合物80〜20重量
%をグラフト重合してなるグラフト共重合体5〜
30重量部、および(C)芳香族ビニル系単量体または
これと共重合可能な他のビニル系単量体を重合し
てなるビニル系重合体10〜85重量部を(A)、(B)およ
び(C)の合計が100重量部となるように配合してな
る熱可塑性樹脂組成物を提供するものである。 本発明においてマレイミド系グラフト共重合体
(A)およびグラフト共重合体(B)の構成成分であるゴ
ム状重合体とは、ガラス転移温度が−10℃以下の
ゴム状を有する重合体であり、例えばポリブタジ
エンゴム、アクリロニトリル―ブタジエン共重合
体ゴム(NBR)、スチレン―ブタジエン共重合体
ゴム(SBR)等のジエン系ゴム、ポリブチルア
クリレート、ポリプロピルアクリレート等のアク
リル系ゴムおよびエチレン―プロピレン―ジエン
系ゴム(EPDM)等が挙げられる。ただし、マ
レイミド系グラフト共重合体(A)におけるゴム状重
合体と芳香族ビニル系単量体、無水マレイン酸お
よび他のビニル系単量体からなる単量体混合物と
の割合は重要であり、ゴム状重合体5〜40重量部
とくに10〜35重量部の存在下に、上記単量体混合
物95〜60重量部、とくに90〜65重量部を重合する
ことが必要である。ここでゴム状重合体の割合が
5重量部未満では得られる組成物の耐衝撃性が十
分でなく、また逆に40重量部を越えると、得られ
る組成物の機械的強度が低下するため好ましくな
い。 また、本発明のマレイミド系グラフト共重合体
(A)を構成する単量体混合物中の無水マレイン酸の
割合は特に重要であり、5〜50重量%とくに10〜
45重量%の範囲が好ましい。無水マレイン酸が5
重量%未満では、イミド化して得られるマレイミ
ド系グラフト共重合体ひいては本発明の組成物の
熱変形温度が著しく低く、50重量%を越えると、
溶融温度が高くなりすぎ、成形性が著しくそこな
われるため好ましくない。 マレイミド系グラフト共重合体(A)、グラフト共
重合体(B)およびビニル系共重合体(C)に用いられる
芳香族ビニル系単量体としては、スチレン、α―
メチルスチレン、ビニルトルエン、P―メチルス
チレン、P―t―ブチルスチレン、クロロスチレ
ン等のスチレン単量体及びその置換単量体であ
り、これらの中でもとくにスチレンおよびα―メ
チルスチレンの使用が好ましい。またこれと共重
合可能な他のビニル系単量体としては、アクリロ
ニトリル、メタクリロニトリル、α―クロロアク
リロニトリル等に代表されるシアン化ビニル単量
体、アクリル酸メチル、メタアクリル酸メチル等
に代表される(メタ)アクリル酸エステル単量体
などが挙げられ、中でもアクリロニトリル、メタ
アクリル酸メチルが特に好ましく使用される。 本発明のグラフト共重合体(B)を構成するシアン
化ビニル単量体には、アクリロニトリル、メタア
クリロニトリル、α―クロロアクリロニトリル等
が挙げられ、中でもアクリロニトリルが好まし
い。 マレイミド系グラフト共重合体(A)は、ゴム状重
合体の存在下で芳香族ビニル系単量体、無水マレ
イン酸およびこれらと共重合可能な他のビニル系
単量体からなる単量体混合物を溶液、炭化水素溶
液および塊状溶融のいずれかの状態で重合し、し
かる後アンモニアまたは第1級アミンと反応さ
せ、無水マレイン酸単位をマレイミド単位に変換
せしめることにより得られるが、特に有機溶媒中
において0〜75℃の温度でアンモニアまたは第1
級アミンと反応させた後、有機溶媒を除去し、次
いで150℃以上の温度で加熱脱水閉環せしめる方
法が好ましい。ここで用いる第1級アミンの具体
例としては、メチルアミン、エチルアミン、n―
プロピルアミン、iso―プロピルアミン、ブチル
アミン、アニリン、トリルアミン、ナフチルアミ
ンおよびハロゲン置換アニリンなどがあげられ
る。 またグラフト共重合体(B)は通常の乳化重合で製
造でき、ビニル系共重合体(C)は通常の懸濁重合、
乳化重合、塊状重合、溶液重合等によつて製造す
ることができる。 本発明の樹脂組成物は上記マレイミド系グラフ
ト共重合体(A)、グラフト共重合体(B)およびビニル
系共重合体(C)の3者を配合することにより得られ
るが、これらの配合割合は、(A)が10〜60重量部と
くに15〜55重量部、(B)が5〜30重量部とくに10〜
25重量部および(C)が10〜85重量部とくに15〜80重
量部(合計100重量部)なる範囲から選択される。
ここでマレイミド系グラフト共重合体(A)の配合量
が10重量部未満では、熱変形温度がきわめて低い
組成物しか得られず、60重量部を越えると、引張
強度に代表される機械的強度が著しく低下するた
め好ましくない。またグラフト共重合体(B)の配合
量が5重量部未満では耐衝撃強度が十分でなく30
重量部を越えると引張強度に代表される機械的強
度が低下するため好ましくない。 また、本発明の熱可塑性樹脂組成物に対し、さ
らに他の重合体を配合することによつて種々の特
性を発揮させることができる。このような重合体
としては、ナイロンに代表されるようなポリアミ
ド系重合体、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレートに代表されるようなポリ
エステル系重合体、ポリカーボネート、ポリアセ
タールなどが挙げられる。 上記マレイミド系グラフト共重合体(A)、グラフ
ト共重合体(B)およびビニル系共重合体(C)の配合方
法には特に制限はなく、例えば粉粒状の重合体を
予め混合し、または混合せず所望の量比で押出機
に供給し溶融混合する方法などが採用される。 なお、本発明の熱可塑性樹脂組成物には通常の
ヒンダードフエノール系酸化防止剤、リン系酸化
防止剤およびイオウ系酸化防止剤を添加して熱安
定性をさらに向上させたり、滑剤を添加して流動
性をさらに良くすることもできる。また目的に合
わせて、ガラス繊維、炭素繊維等の繊維補強剤、
無機充填剤、着色剤、顔料、導電性材料等を配合
することもできる。また本発明の樹脂組成物にテ
トラブロモビスフエノールA、デカブロモビフエ
ニールエーテル、臭素化ポリカーボネート等の一
般のハロゲン化有機化合物系難燃剤を三酸化アン
チモンとともに混合することによつて難燃化が可
能である。 以上説明したように、本発明の熱可塑性樹脂組
成物は熱変形温度に代表される耐熱性および衝撃
強度に代表される機械的性質のバランスがすぐれ
ており、これらの特性を生かした種々の用途に適
用が期待される。 以下、参考例および実施例によつて本発明をさ
らに説明する。なお参考例、実施例中の熱変形温
度はASTM D―648―56、アイゾツト衝撃強度
はASTM D―256―56Method A、引張破断強
度はASTM 638―61Tにしたがつて測定した。
また、部数は重量部、%は重量%を表わす。 参考例 1 〔マレイミド系グラフト共重合体(A―1)の
調製〕 撹拌機および還流コンデンサーを備えた重合槽
に、ポリブタジエンゴム“ジエンNF―55A”(旭
化成(株)製)25部とスチレン59.6部を仕込み、系内
を窒素ガスで置換した後、室温で一昼夜撹拌し、
ゴムをスチレンに溶解させた。これに、メチルエ
チルケトン71.4部およびベンゾイルパーオキサイ
ド(開始剤)0.3部を仕込み、溶解させた。 一方別に、無水マレイン酸40.4部をメチルエチ
ルケトン45.2部に溶解させた溶液を調製した。槽
内温度を80℃にした後、無水マレイン酸―メチル
エチルケトン溶液を21.4部/hrの速さで4時間重
合槽へ供給した。供給終了後、更に2時間80℃に
保持し、その後冷却して乳白色の粘稠な液体を得
た。反応液をサンプリングし、未反応の単量体の
定量をガスクロマトグラフイーで行ない、無水マ
レイン酸は検出されず、重合率は94%であつた。
反応後にアニリン25.4部およびメチルエチルケト
ン25.4部を加え、室温で30分間反応させた。この
反応液をトルエン中へ添加し、固形分を別乾燥
した。これをブラベンダーを用いて250℃15分間
混練し、イミド閉環を行なわせ、ゴム18%、N―
フエニルマレイミド48%を含有するマレイミド系
グラフト共重合体(A―1)を調製した。 参考例 2 〔マレイミド系グラフト共重合体(A―2)の
調製〕 参考例1と同様の重合槽にポリブタジエンゴム
“ジエンNF―55A”(旭化成(株)製)20部とスチレ
ン50.6部を仕込み、系内を窒素ガスで置換した
後、室温で一昼夜撹拌し、ゴムをスチレンに溶解
させた。これにメチルエチルケトン71.4部および
ベンゾイルパーオキサイド(開始剤)0.3部を仕
込み溶解させた。一方別に、無水マレイン酸47.6
部をメチルエチルケトン53.3部に溶解させた溶液
を調製した。槽内温度を80℃にした後、無水マレ
イン酸―メチルエチルケトン溶液を25.2部/hrの
速さで4時間重合槽へ供給した。供給終了後、更
に2時間80℃に保持し、その後冷却して乳白色の
粘稠な液体を得た。反応液をサンプリングし、未
反応の単量体をガスクロマトグラフイーで定量し
たところ、無水マレイン酸は検出されず重合率は
95%であつた。反応後にアニリン25.4部およびメ
チルエチルケトン28.6部を加え室温で30分間反応
させた。この反応液をトルエン中へ添加し、固形
分を別乾燥した。これをブランベンダーを用い
て270℃15分間混練し、イミド閉環を行なわせ、
ゴム13%、N―フエニルマレイミド56%を含有す
るマレイミド系グラフト共重合体(A―2)を調
製した。 実施例 1 参考例1、2で調製したマレイミド系グラフト
共重合体A―1,2、ゴム含有量60%のスチレン
―ブタジエン―アクリロニトリルグラフト共重合
体(ABS)およびスチレン―アクリロニトリル
共重合体(アクリロニトリル28%)(SAN)を表
―1の配合比にしたがい、押出機で溶融押出後、
射出成形して得られた試験片の物性を測定した。
熱変形温度、アイゾツト衝撃強度および引張破断
強度の測定結果を表―1に配合比とともに示し
た。
The present invention relates to a thermoplastic resin composition having excellent heat resistance and impact resistance. More specifically, the present invention relates to a thermoplastic resin composition containing a maleimide-based graft copolymer obtained by grafting a copolymer having maleimide units onto a rubber-like polymer. Many studies have been conducted to improve the heat resistance of styrenic resins. For example, acrylonitrile-butadiene-styrene copolymer (ABS
Copolymers using α-methylstyrene as part or all of styrene have been studied in order to improve the heat resistance of resins), but α-methylstyrene copolymers do not have sufficient thermal stability. However, if the content of α-methylstyrene is increased in an attempt to improve the heat distortion temperature, there is a drawback that the thermal decomposition temperature of the copolymer decreases. On the other hand, a maleimide-based graft copolymer made by imidizing a copolymer of styrene and maleic anhydride has a high heat distortion temperature and thermal decomposition temperature. It has been proposed to obtain a resin composition with excellent thermal stability by blending the
3642949 and Japanese Patent Application Laid-Open No. 125242/1983). However, this composition does not have sufficient impact resistance, and when the amount of graft copolymer blended is increased in order to satisfy the impact resistance, there is a problem that the heat distortion temperature is significantly lowered. Therefore, the present inventors conducted extensive research with the aim of obtaining a thermoplastic molding material with a balance between heat resistance, represented by heat distortion temperature, and impact resistance, represented by impact strength. By blending a specific graft copolymer and vinyl polymer with a maleimide graft copolymer grafted with a copolymer having maleimide units,
The inventors have discovered that the above object can be effectively achieved and have arrived at the present invention. That is, the present invention comprises (A) 50 to 80 parts by weight of an aromatic vinyl monomer in the presence of 5 to 40 parts by weight of a rubbery polymer;
A graft copolymer obtained by graft polymerizing 60 to 95 parts by weight of a monomer mixture consisting of 5 to 50% by weight of maleic anhydride and 0 to 30% by weight of a vinyl monomer copolymerizable with maleic anhydride is prepared by adding ammonia or Aromatic vinyl monomer and vinyl cyanide monomer in the presence of 10 to 60 parts by weight of a maleimide graft copolymer obtained by reacting with a primary amine and 20 to 80 parts by weight of (B) rubbery polymer. Graft copolymer 5 ~ obtained by graft polymerizing 80 ~ 20% by weight of a monomer mixture consisting of
(A), (B ) and (C) in a total amount of 100 parts by weight. In the present invention, maleimide-based graft copolymer
The rubbery polymer that is a component of (A) and the graft copolymer (B) is a rubbery polymer with a glass transition temperature of -10°C or lower, such as polybutadiene rubber, acrylonitrile-butadiene copolymer, etc. Examples include diene rubbers such as composite rubber (NBR) and styrene-butadiene copolymer rubber (SBR), acrylic rubbers such as polybutyl acrylate and polypropyl acrylate, and ethylene-propylene-diene rubber (EPDM). However, the ratio of the rubbery polymer to the monomer mixture consisting of the aromatic vinyl monomer, maleic anhydride and other vinyl monomers in the maleimide graft copolymer (A) is important; It is necessary to polymerize from 95 to 60 parts by weight, in particular from 90 to 65 parts by weight, of the above monomer mixture in the presence of from 5 to 40 parts by weight, in particular from 10 to 35 parts by weight, of the rubbery polymer. If the proportion of the rubbery polymer is less than 5 parts by weight, the resulting composition will not have sufficient impact resistance, and if it exceeds 40 parts by weight, the mechanical strength of the resulting composition will decrease, which is preferable. do not have. Furthermore, the maleimide-based graft copolymer of the present invention
The proportion of maleic anhydride in the monomer mixture constituting (A) is particularly important, 5 to 50% by weight, especially 10 to 50% by weight.
A range of 45% by weight is preferred. Maleic anhydride is 5
If the amount is less than 50% by weight, the heat distortion temperature of the maleimide-based graft copolymer obtained by imidization and thus the composition of the present invention will be extremely low; if it exceeds 50% by weight,
This is not preferable because the melting temperature becomes too high and moldability is significantly impaired. The aromatic vinyl monomers used in the maleimide graft copolymer (A), graft copolymer (B), and vinyl copolymer (C) include styrene, α-
These include styrene monomers such as methylstyrene, vinyltoluene, P-methylstyrene, P-t-butylstyrene, and chlorostyrene, and substituted monomers thereof, and among these, styrene and α-methylstyrene are particularly preferred. Other vinyl monomers that can be copolymerized with this include vinyl cyanide monomers such as acrylonitrile, methacrylonitrile, and α-chloroacrylonitrile, methyl acrylate, and methyl methacrylate. Among them, acrylonitrile and methyl methacrylate are particularly preferably used. The vinyl cyanide monomer constituting the graft copolymer (B) of the present invention includes acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and the like, with acrylonitrile being preferred. Maleimide graft copolymer (A) is a monomer mixture consisting of an aromatic vinyl monomer, maleic anhydride, and other vinyl monomers copolymerizable with these in the presence of a rubbery polymer. It can be obtained by polymerizing either in solution, hydrocarbon solution or bulk melt, and then reacting with ammonia or a primary amine to convert maleic anhydride units into maleimide units, especially in an organic solvent. ammonia or primary at a temperature of 0 to 75 °C
A preferred method is to react with a class amine, remove the organic solvent, and then perform dehydration and ring closure by heating at a temperature of 150°C or higher. Specific examples of primary amines used here include methylamine, ethylamine, n-
Examples include propylamine, iso-propylamine, butylamine, aniline, tolylamine, naphthylamine and halogen-substituted aniline. In addition, the graft copolymer (B) can be produced by ordinary emulsion polymerization, and the vinyl copolymer (C) can be produced by ordinary suspension polymerization.
It can be produced by emulsion polymerization, bulk polymerization, solution polymerization, etc. The resin composition of the present invention is obtained by blending the maleimide-based graft copolymer (A), the graft copolymer (B), and the vinyl-based copolymer (C). (A) is 10 to 60 parts by weight, especially 15 to 55 parts by weight, and (B) is 5 to 30 parts by weight, especially 10 to 60 parts by weight.
25 parts by weight and (C) from 10 to 85 parts by weight, particularly from 15 to 80 parts by weight (total 100 parts by weight).
If the blending amount of the maleimide graft copolymer (A) is less than 10 parts by weight, only a composition with an extremely low heat distortion temperature will be obtained; if it exceeds 60 parts by weight, mechanical strength such as tensile strength This is not preferable because it causes a significant decrease in Furthermore, if the amount of graft copolymer (B) is less than 5 parts by weight, the impact strength will not be sufficient.
If the amount exceeds 1 part by weight, mechanical strength represented by tensile strength decreases, which is not preferable. Moreover, various properties can be exhibited by further blending other polymers with the thermoplastic resin composition of the present invention. Examples of such polymers include polyamide polymers such as nylon, polyester polymers such as polyethylene terephthalate and polybutylene terephthalate, polycarbonates, and polyacetals. There are no particular restrictions on the method of blending the maleimide-based graft copolymer (A), graft copolymer (B), and vinyl-based copolymer (C). Instead, a method is adopted in which they are supplied to an extruder at a desired ratio and melt-mixed. In addition, the thermoplastic resin composition of the present invention may be added with ordinary hindered phenolic antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants to further improve thermal stability, or may be added with lubricants. It is also possible to further improve fluidity. Depending on the purpose, fiber reinforcing agents such as glass fiber and carbon fiber,
Inorganic fillers, colorants, pigments, conductive materials, etc. can also be blended. Furthermore, flame retardation can be achieved by mixing general halogenated organic compound flame retardants such as tetrabromobisphenol A, decabromobiphenyl ether, brominated polycarbonate, etc. with antimony trioxide into the resin composition of the present invention. It is. As explained above, the thermoplastic resin composition of the present invention has an excellent balance of heat resistance, typified by heat distortion temperature, and mechanical properties, typified by impact strength, and can be used in a variety of applications that take advantage of these properties. It is expected to be applied to The present invention will be further explained below using reference examples and examples. In the Reference Examples and Examples, the heat distortion temperature was measured in accordance with ASTM D-648-56, the Izot impact strength was measured in accordance with ASTM D-256-56Method A, and the tensile strength at break was measured in accordance with ASTM 638-61T.
In addition, the number of parts means parts by weight, and the number of parts means percent by weight. Reference Example 1 [Preparation of maleimide-based graft copolymer (A-1)] In a polymerization tank equipped with a stirrer and a reflux condenser, 25 parts of polybutadiene rubber "Diene NF-55A" (manufactured by Asahi Kasei Corporation) and 59.6 parts of styrene were added. After purging the system with nitrogen gas, it was stirred at room temperature all day and night.
Rubber was dissolved in styrene. To this, 71.4 parts of methyl ethyl ketone and 0.3 parts of benzoyl peroxide (initiator) were charged and dissolved. Separately, a solution was prepared by dissolving 40.4 parts of maleic anhydride in 45.2 parts of methyl ethyl ketone. After the temperature inside the tank was set to 80°C, a maleic anhydride-methyl ethyl ketone solution was supplied to the polymerization tank at a rate of 21.4 parts/hr for 4 hours. After the supply was completed, the mixture was kept at 80° C. for another 2 hours, and then cooled to obtain a milky white viscous liquid. The reaction solution was sampled, and unreacted monomers were quantified by gas chromatography. No maleic anhydride was detected, and the polymerization rate was 94%.
After the reaction, 25.4 parts of aniline and 25.4 parts of methyl ethyl ketone were added, and the mixture was allowed to react at room temperature for 30 minutes. This reaction solution was added to toluene, and the solid content was dried separately. This was kneaded for 15 minutes at 250°C using a Brabender to perform imide ring closure, resulting in 18% rubber and N-
A maleimide-based graft copolymer (A-1) containing 48% phenylmaleimide was prepared. Reference Example 2 [Preparation of maleimide-based graft copolymer (A-2)] In the same polymerization tank as in Reference Example 1, 20 parts of polybutadiene rubber "Diene NF-55A" (manufactured by Asahi Kasei Corporation) and 50.6 parts of styrene were charged. After purging the system with nitrogen gas, the mixture was stirred at room temperature all day and night to dissolve the rubber in styrene. To this, 71.4 parts of methyl ethyl ketone and 0.3 parts of benzoyl peroxide (initiator) were charged and dissolved. Meanwhile separately, maleic anhydride 47.6
A solution was prepared by dissolving 53.3 parts of methyl ethyl ketone. After the temperature inside the tank was set to 80°C, a maleic anhydride-methyl ethyl ketone solution was supplied to the polymerization tank at a rate of 25.2 parts/hr for 4 hours. After the supply was completed, the mixture was kept at 80° C. for another 2 hours, and then cooled to obtain a milky white viscous liquid. When the reaction solution was sampled and the unreacted monomer was quantified by gas chromatography, maleic anhydride was not detected and the polymerization rate was low.
It was 95%. After the reaction, 25.4 parts of aniline and 28.6 parts of methyl ethyl ketone were added and reacted at room temperature for 30 minutes. This reaction solution was added to toluene, and the solid content was dried separately. This was kneaded using a bran bender at 270°C for 15 minutes to perform imide ring closure.
A maleimide-based graft copolymer (A-2) containing 13% rubber and 56% N-phenylmaleimide was prepared. Example 1 Maleimide-based graft copolymers A-1 and A-2 prepared in Reference Examples 1 and 2, styrene-butadiene-acrylonitrile graft copolymer (ABS) with a rubber content of 60%, and styrene-acrylonitrile copolymer (acrylonitrile After melt-extruding 28%) (SAN) using an extruder according to the blending ratio in Table 1,
The physical properties of the test pieces obtained by injection molding were measured.
The measurement results of heat distortion temperature, Izot impact strength and tensile strength at break are shown in Table 1 along with the blending ratio.

【表】 表―1から明らかなように、本発明の組成物No.
1〜3は熱変形温度、アイゾツト衝撃強度および
引張破断強度が均衡してすぐれているのに対し
て、マレイミド系グラフト共重合体(A)とグラフト
共重合体(B)あるいは共重合体(C)の組成物の場合
(No.4、5)、本発明の配合比を外れる場合(No.
7)、グラフト共重合体(B)と共重合体(C)の組成物
の場合(No.6)およびマレイミドを含有する共重
合体とグラフト共重合体(B)の組成物の場合(No.
8)は、熱変形温度、アイゾツト衝撃強度および
引張破断強度のいずれかが劣る組成物しか得られ
ない。
[Table] As is clear from Table 1, composition No. of the present invention.
Nos. 1 to 3 are excellent in thermal distortion temperature, Izot impact strength, and tensile breaking strength in a well-balanced manner, whereas maleimide-based graft copolymer (A), graft copolymer (B), or copolymer (C) ) (Nos. 4 and 5), and cases where the blending ratio of the present invention is not met (Nos. 4 and 5).
7) In the case of a composition of graft copolymer (B) and copolymer (C) (No. 6) and in the case of a composition of a maleimide-containing copolymer and graft copolymer (B) (No. .
In case 8), only a composition can be obtained which is inferior in any one of heat distortion temperature, Izod impact strength and tensile strength at break.

Claims (1)

【特許請求の範囲】 1 (A) ゴム状重合体5〜40重量部の存在下に芳
香族ビニル系単量体50〜80重量%、無水マレイ
ン酸5〜50重量%およびこれらと共重合可能な
ビニル系単量体0〜30重量%からなる単量体混
合物60〜95重量部をグラフト重合してなるグラ
フト共重合体をアンモニアまたは第一級アミン
と反応せしめて得られるマレイミド系グラフト
共重合体10〜60重量部、 (B) ゴム状重合体20〜80重量%の存在下に芳香族
ビニル系単量体およびシアン化ビニル単量体か
らなる単量体混合物80〜20重量%をグラフト重
合してなるグラフト共重合体5〜30重量部およ
び (C) 芳香族ビニル系単量体またはこれと共重合可
能な他のビニル系単量体を重合してなるビニル
系重合体10〜85重量部を(A)、(B)および(C)の合計
が100重量部となるように配合してなる熱可塑
性樹脂組成物。
[Scope of Claims] 1 (A) 50 to 80% by weight of an aromatic vinyl monomer, 5 to 50% by weight of maleic anhydride, and copolymerizable with these in the presence of 5 to 40 parts by weight of a rubbery polymer. A maleimide-based graft copolymer obtained by graft polymerizing 60-95 parts by weight of a monomer mixture consisting of 0-30% by weight of a vinyl monomer with ammonia or a primary amine. (B) Grafting 80-20% by weight of a monomer mixture consisting of an aromatic vinyl monomer and a vinyl cyanide monomer in the presence of 20-80% by weight of a rubbery polymer. 5 to 30 parts by weight of a graft copolymer obtained by polymerization and (C) 10 to 85 parts by weight of a vinyl polymer obtained by polymerizing an aromatic vinyl monomer or another vinyl monomer copolymerizable therewith. A thermoplastic resin composition containing (A), (B) and (C) in a total of 100 parts by weight.
JP20208382A 1982-11-19 1982-11-19 Thermoplastic resin composition Granted JPS5993747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20208382A JPS5993747A (en) 1982-11-19 1982-11-19 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20208382A JPS5993747A (en) 1982-11-19 1982-11-19 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS5993747A JPS5993747A (en) 1984-05-30
JPS639544B2 true JPS639544B2 (en) 1988-02-29

Family

ID=16451676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20208382A Granted JPS5993747A (en) 1982-11-19 1982-11-19 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5993747A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100104A (en) * 1980-12-13 1982-06-22 Denki Kagaku Kogyo Kk Preparation of thermoplastic polymer
JPS57125241A (en) * 1981-01-28 1982-08-04 Denki Kagaku Kogyo Kk Heat-resistant resin composition
JPS58101141A (en) * 1981-12-11 1983-06-16 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS58185642A (en) * 1982-04-23 1983-10-29 Denki Kagaku Kogyo Kk Thermoplastic resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100104A (en) * 1980-12-13 1982-06-22 Denki Kagaku Kogyo Kk Preparation of thermoplastic polymer
JPS57125241A (en) * 1981-01-28 1982-08-04 Denki Kagaku Kogyo Kk Heat-resistant resin composition
JPS58101141A (en) * 1981-12-11 1983-06-16 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS58185642A (en) * 1982-04-23 1983-10-29 Denki Kagaku Kogyo Kk Thermoplastic resin composition

Also Published As

Publication number Publication date
JPS5993747A (en) 1984-05-30

Similar Documents

Publication Publication Date Title
JPH068374B2 (en) Thermoplastic resin composition
JPS6314740B2 (en)
JP3052985B2 (en) Thermoplastic resin composition with excellent impact resistance
JPS58101141A (en) Thermoplastic resin composition
JPH0725979B2 (en) Thermoplastic resin composition
JP3405478B2 (en) Thermoplastic resin composition
JPS639544B2 (en)
JPH0530861B2 (en)
JPS6347744B2 (en)
KR100361161B1 (en) Thermoplastic resin composition having excellent impact strength
JP2949699B2 (en) Thermoplastic resin composition
JPH05179096A (en) Aromatic polycarbonate resin composition
JPH09216980A (en) Resin composition
JPH06329855A (en) Thermoplastic resin composition
JPS6346780B2 (en)
JP2672336B2 (en) Flame retardant resin composition
JPH08143737A (en) Thermoplastic resin composition
JPH06885B2 (en) Heat resistant resin composition
JP2000017137A (en) Multiphase copolymer-containing resin composition
JP2656803B2 (en) Thermoplastic resin composition
JPS6345740B2 (en)
JPH0262585B2 (en)
JPH0337254A (en) Thermoplastic resin composition
JPS62179553A (en) Thermoplastic resin composition
JPH03221554A (en) Thermoplastic resin composition