JPS6394813A - Magnetic field orientation extruder - Google Patents

Magnetic field orientation extruder

Info

Publication number
JPS6394813A
JPS6394813A JP61240792A JP24079286A JPS6394813A JP S6394813 A JPS6394813 A JP S6394813A JP 61240792 A JP61240792 A JP 61240792A JP 24079286 A JP24079286 A JP 24079286A JP S6394813 A JPS6394813 A JP S6394813A
Authority
JP
Japan
Prior art keywords
carbide
die
magnetic field
superhard material
extrusion molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61240792A
Other languages
Japanese (ja)
Inventor
Satoru Nakatsuka
哲 中塚
Masaharu Abe
雅治 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP61240792A priority Critical patent/JPS6394813A/en
Publication of JPS6394813A publication Critical patent/JPS6394813A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/147Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle
    • B29C48/1472Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle at the die nozzle exit zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/142Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration using force fields, e.g. gravity or electrical fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To contrive to improve the dimensional stability and (BH)max of a formed body by a method wherein a magnetically anisotropic resin magnet is extruded through a die, which is made by using a die of superhard material or the surface of which is covered by a superhard material. CONSTITUTION:In a former to manufacture an anisotropic resin magnet by magnetic field-orientation extrusion, a gap 3 is formed by yokes 1 and 1', which are made of magnetic material, and non-magnetic material 2 and 2' and a die made of superhard material is employed for extrusion. Said superhard material is selected from chromium carbide, titanium carbide, niobium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, tantalum carbide and titanium nitride. Thus, the wear resistance of the die is remarkably enhanced and its durability is improved and at the same time the dimensional stability of a formed item is improved. Further, since material with a large saturation magnetization can be employed as yoke material, very strong magnetic field is ensured, and consequently a formed body with large (BH)max can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は新規な磁場配向押出成形機に関し、更に詳しく
は、ダイの耐久性が改善され、寸法安定性及び(BH)
maxの向上した成形体を提供する磁場配向押出成形機
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a novel magnetically oriented extrusion molding machine, and more particularly, it relates to a novel magnetically oriented extrusion molding machine with improved die durability, dimensional stability and (BH).
The present invention relates to a magnetically oriented extrusion molding machine that provides a molded product with improved max.

「従来技術と問題点」 従来、磁場配向押出成形により異方性樹脂磁石を製造す
るための成形機としては、例えば第1図に示す如く、磁
性材からなるヨーク(1)、(1′)及び非磁性材(2
)、(2′)とにより空隙(3)が形成され、その外側
に外部ヨーク(4)、(4′)が配され、該ヨーク(4
)、(4′)の周囲にはそれぞれ励磁コイル(5)、(
5′)が配設されている。
"Prior Art and Problems" Conventionally, as a molding machine for manufacturing anisotropic resin magnets by magnetic field oriented extrusion molding, as shown in FIG. and non-magnetic material (2
), (2') form a gap (3), and external yokes (4), (4') are arranged outside the gap (3).
) and (4') are surrounded by excitation coils (5) and (4'), respectively.
5') are provided.

しかし乍ら、上記磁性材としては355C,S45C,
5KD4.5KD5.5KD6.5KD11、鉄コバル
トその他の各種合金が用いられるが、空隙の磁場を大き
くする目的でこれらの磁性材の飽和磁化(4πIs)を
大きくせんとして該材料中の炭素量を減らすと材料が柔
らかくなり、該材料により形成されるダイの耐摩耗性が
低下し、その結果ダイの耐久性が低下するばかりでな(
、得られた成形体の寸法安定性が悪くなり、商品価値を
低下せしめることになる。これとは逆に、ダイの耐久性
、成形品の寸法安定性を高めようとして材料中の炭素量
を増加させると、飽和磁化が低下する結果となる。かく
して、従来の押出成形機においては、この二律背反する
2つの要請を満たすところに解決策を求めざるを得ず、
従来の成形機では飽和磁化は精々5000ガウス程度ま
でであり、空隙の磁場は不十分であり、従って成形体の
磁気異方性(配向性)において必ずしも満足すべき状態
とは言い難い。
However, the above magnetic materials include 355C, S45C,
5KD4.5KD5.5KD6.5KD11, iron cobalt and other various alloys are used, but in order to increase the magnetic field of the air gap, it is possible to increase the saturation magnetization (4πIs) of these magnetic materials and reduce the amount of carbon in the material. As the material becomes softer, the wear resistance of the die formed from the material decreases, which not only reduces the durability of the die (
, the dimensional stability of the obtained molded product deteriorates, resulting in a decrease in commercial value. On the contrary, if the amount of carbon in the material is increased in an attempt to improve the durability of the die and the dimensional stability of the molded product, the saturation magnetization will decrease. Therefore, with conventional extrusion molding machines, we have no choice but to seek a solution that satisfies these two contradictory requirements.
In conventional molding machines, the saturation magnetization is at most about 5000 Gauss, and the magnetic field in the air gap is insufficient, so it cannot be said that the magnetic anisotropy (orientation) of the molded product is necessarily in a satisfactory state.

「問題点を解決するための手段」 本発明はかかる実情に鑑み、上記問題点を解消すべく鋭
意研究の結果、本発明に到達したものである。
"Means for Solving the Problems" In view of the above circumstances, the present invention was achieved as a result of intensive research to solve the above problems.

即ち、本発明の第1は磁場配向押出成形により磁気異方
性樹脂磁石を製造する押出成形機において、超硬材から
なるダイを用いたことを特徴とする磁場配向押出成形機
を、本発明の第2は磁場配向押出成形により磁気異方性
樹脂磁石を製造する押出成形機において、ダイの表面を
超硬材で被覆したことを特徴とする磁場配向押出成形機
をそれぞれ内容とするものである。
That is, the first aspect of the present invention is an extrusion molding machine for producing magnetically anisotropic resin magnets by magnetic field oriented extrusion molding, which is characterized in that a die made of a superhard material is used. The second is an extrusion molding machine for producing magnetically anisotropic resin magnets by magnetic field oriented extrusion molding, each of which includes a magnetic field oriented extrusion molding machine characterized in that the surface of the die is coated with a superhard material. be.

本発明を図面に基づいて説明すると、第2図は本発明の
実施態様を示す要部断面図で、(6)は超硬材からなる
ダイ、(1)、(1′)は磁性材からなるヨーク、(2
)、(2′)は非磁性材、(3)は空隙である。
To explain the present invention based on the drawings, Fig. 2 is a cross-sectional view of the main part showing an embodiment of the present invention, in which (6) is a die made of carbide material, (1) and (1') are made of magnetic material. Naru York, (2
), (2') are non-magnetic materials, and (3) is an air gap.

本発明に用いられる超硬材としては、クロム・カーバイ
ド、チタン・カーバイド、ニオブ・カーバイド、バナジ
ウム・カーバイド、タングステン・カーバイド、モリブ
デン・カーバイド、クンタル・カーバイドチタン・ナイ
トライド、その他が挙げられる。また、これらの中から
必要に応して耐蝕性の材料を選択することも容易である
The superhard materials used in the present invention include chromium carbide, titanium carbide, niobium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, quantal carbide titanium nitride, and others. Moreover, it is also easy to select a corrosion-resistant material from these materials as necessary.

本発明に用いられる磁性材は耐摩耗性や、あるいは耐蝕
性を考慮する必要がないので、飽和磁化の大きい磁性材
を使用することが出来、例えば5S41、SI QC,
525C,530C,545C,555C及び鉄コバル
ト合金(鉄60%、コバル)40%を基準として、その
他少量のバナジウムを含むいわゆるパーメンジュール)
、その他を挙げることが出来る。
Since the magnetic material used in the present invention does not require consideration of wear resistance or corrosion resistance, magnetic materials with high saturation magnetization can be used, such as 5S41, SI QC,
Based on 525C, 530C, 545C, 555C and iron-cobalt alloy (60% iron, 40% cobal), other so-called permendur containing small amounts of vanadium)
, and others can be mentioned.

本発明に用いられる非磁性材としては5LI3304等
のオーステナイト系ステンレス、銅ベリリウム合金、ハ
イマンガン鋼等が例示される。
Examples of the nonmagnetic material used in the present invention include austenitic stainless steel such as 5LI3304, copper beryllium alloy, and high manganese steel.

ダイを構成する超硬材の厚さは余り厚くなると磁気回路
を乱す虞れがあり、また余り薄過ぎると耐摩耗性が不十
分となるので、10μm〜10mの範囲が好適である。
If the thickness of the cemented carbide material constituting the die is too thick, there is a risk of disturbing the magnetic circuit, and if it is too thin, the wear resistance will be insufficient, so a range of 10 μm to 10 m is preferable.

該超硬材は該超硬材とは異なる材質のダイ表面に、例え
ばCVD、PVD、イオンブレーティング法等によって
コーティングしてもよく、また、該超硬材であらかじめ
ダイを製作しておき、別途該超硬材とは異なる材質で製
作しておいたダイに挿入固定してもよい。特にコーティ
ングする超硬材としては、TiC,TiN、、Ti  
(CN) 、TiB、ZrC,ZrN、Zr (CN)
 、TaC。
The superhard material may be coated on the surface of a die made of a material different from the superhard material, for example, by CVD, PVD, ion blating, etc., or the die may be prepared in advance from the superhard material, It may be inserted and fixed into a die made separately from a material different from the carbide material. In particular, the carbide materials to be coated include TiC, TiN, Ti
(CN), TiB, ZrC, ZrN, Zr (CN)
, TaC.

TaB2、TaN、Alz O:+ 、Zrz O+ 
、Zrot 、S i、 N3、WC,、NbC,、N
bN、その他の中から採用される。
TaB2, TaN, Alz O:+, Zrz O+
,Zrot ,S i, N3,WC,,NbC,,N
bN, will be selected from among others.

第3図乃至第5図はそれぞれ本発明の他の実施態様を示
し、(6)(6’)は超硬材からなるダイ、(3)は空
隙である。
FIGS. 3 to 5 each show other embodiments of the present invention, in which (6) and (6') are dies made of cemented carbide, and (3) is a void.

本発明に使用される樹脂としては公知のポリマーが用い
られ、例えばEVA、ポリアミド、PP、PE、PVC
、アクリル樹脂、メタクリル樹脂、塩素化ポリエチレン
樹脂、PET、PBT、PP51ポリカーボネート等が
単独又は混合して用いられる。本発明に使用される磁性
粉としてはマグネトプラムバイト型のSr又はBaフェ
ライト及び希土類金属を含む金属間化合物磁性粉が好適
である。添加剤としては公知のものがその目的に応じて
用いられる。即ち、磁性粉の分散性については使用する
樹脂に応じて適当な表面処理剤が用いられ、例えばシラ
ン系カップリング剤、チタネート系カンプリング剤、ジ
ルコアルミネート系カップリング剤、高級脂肪酸及びそ
の金属塩、フォスフオン酸エステル等がこれに含まれる
。また安定性向上剤、抗酸化剤、紫外線吸収剤、滑剤等
の添加剤もその目的に応じて、また樹脂との関連に応じ
て適宜使用される。
Known polymers are used as the resin used in the present invention, such as EVA, polyamide, PP, PE, PVC.
, acrylic resin, methacrylic resin, chlorinated polyethylene resin, PET, PBT, PP51 polycarbonate, etc. may be used alone or in combination. As the magnetic powder used in the present invention, an intermetallic compound magnetic powder containing a magnetoplumbite type Sr or Ba ferrite and a rare earth metal is suitable. Known additives can be used depending on the purpose. That is, for the dispersibility of magnetic powder, an appropriate surface treatment agent is used depending on the resin used, such as silane coupling agents, titanate camping agents, zircoaluminate coupling agents, higher fatty acids and their metals. These include salts, phosphonic acid esters, and the like. Additives such as stability improvers, antioxidants, ultraviolet absorbers, and lubricants are also used as appropriate depending on the purpose and the relationship with the resin.

「実施例」 以下、本発明を実施例に基づいて説明するが、本発明は
これらにより何ら制限されるものではない。
"Examples" The present invention will be described below based on Examples, but the present invention is not limited to these in any way.

実施例1−3、比較例1〜2 鐘淵化学製軟質塩ビ「カネビニルコンパウンドH180
MJに対して、ストロンチウムフェライトを体積含率で
66%になるように加え、混線機にてペレット化した。
Example 1-3, Comparative Examples 1-2 Soft PVC “Kane Vinyl Compound H180” manufactured by Kanebuchi Chemical Co., Ltd.
Strontium ferrite was added to MJ at a volume content of 66%, and pelletized using a mixer.

次いで、第1表に示す材質で作成した磁場配向押出成型
機を用い、該ベレットを約160℃で磁場配向押出成形
した。
Next, the pellets were magnetically oriented extrusion molded at about 160° C. using a magnetically oriented extrusion molding machine made of the materials shown in Table 1.

ダイ部分の摩耗及び得られた成形体の最大エネルギー積
は第1表に示した通りであった。
The abrasion of the die portion and the maximum energy product of the obtained compact were as shown in Table 1.

「作用・効果」 畝上の通り、本発明によればダイの耐摩耗性は大巾に高
められ、従ってダイの耐久性が改善されるとともに、成
形品の寸法安定性が向上する。更にはヨーク材料として
飽和磁化の大きい材料、例えば20000ガウス以上の
ものも用いることができるので、非常に強い磁場を確保
でき、磁気異方性の大きい、従って(BH)maxの大
きい成形体を得ることができる。
"Action/Effect" As mentioned above, according to the present invention, the wear resistance of the die is greatly increased, and therefore the durability of the die is improved, and the dimensional stability of the molded product is improved. Furthermore, since it is possible to use a material with a large saturation magnetization, for example, 20,000 Gauss or more, as the yoke material, a very strong magnetic field can be secured, and a molded product with a large magnetic anisotropy and therefore a large (BH)max can be obtained. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の押出成形機を示す概要図、第2図、第3
図、第4図及び第5図は、それぞれ本発明の押出成形機
の実施態様を示す要部断面図である。 1.1′・・・ヨーク(磁性材) 2.2′・・・非磁性材 3  ・・・空隙 4.4′・・・外部ヨーク 5.5′・・・励磁コイル 6.6′・・・超硬材からなるダイ 第4図 第5図 園擦A・
Figure 1 is a schematic diagram showing a conventional extrusion molding machine, Figures 2 and 3
Figures 4 and 5 are sectional views of essential parts, respectively, showing embodiments of the extrusion molding machine of the present invention. 1.1'... Yoke (magnetic material) 2.2'... Non-magnetic material 3... Air gap 4.4'... External yoke 5.5'... Excitation coil 6.6'・Die made of carbide material Figure 4 Figure 5 Garden scraping A・

Claims (1)

【特許請求の範囲】 1、磁場配向押出成形により磁気異方性樹脂磁石を製造
する押出成形機において、超硬材からなるダイを用いた
ことを特徴とする磁場配向押出成形機。 2、超硬材がクロム・カーバイド、チタン・カーバイド
、ニオブ・カーバイド、バナジウム・カーバイド、タン
グステン・カーバイド、モリブデン・カーバイド、タン
タル・カーバイド及びチタン・ナイトライドから選択さ
れる特許請求の範囲第1項記載の成形機。 3、磁場配向押出成形により磁気異方性樹脂磁石を製造
する押出成形機において、ダイの表面を超硬材で被覆し
たことを特徴とする磁場配向押出成形機。 4、超硬材がクロム・カーバイド、チタン・カーバイド
、ニオブ・カーバイド、バナジウム・カーバイド、タン
グステン・カーバイド、モリブデン・カーバイド、タン
タル・カーバイド及びチタン・ナイトライドから選択さ
れる特許請求の範囲第3項記載の成形機。
[Scope of Claims] 1. A magnetic field oriented extrusion molding machine for producing magnetically anisotropic resin magnets by magnetic field oriented extrusion molding, characterized in that a die made of a superhard material is used. 2. The superhard material is selected from chromium carbide, titanium carbide, niobium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, tantalum carbide, and titanium nitride. molding machine. 3. A magnetically oriented extrusion molding machine for manufacturing magnetically anisotropic resin magnets by magnetically oriented extrusion molding, characterized in that the surface of the die is coated with a superhard material. 4. The cemented carbide is selected from chromium carbide, titanium carbide, niobium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, tantalum carbide, and titanium nitride. molding machine.
JP61240792A 1986-10-09 1986-10-09 Magnetic field orientation extruder Pending JPS6394813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61240792A JPS6394813A (en) 1986-10-09 1986-10-09 Magnetic field orientation extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61240792A JPS6394813A (en) 1986-10-09 1986-10-09 Magnetic field orientation extruder

Publications (1)

Publication Number Publication Date
JPS6394813A true JPS6394813A (en) 1988-04-25

Family

ID=17064756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61240792A Pending JPS6394813A (en) 1986-10-09 1986-10-09 Magnetic field orientation extruder

Country Status (1)

Country Link
JP (1) JPS6394813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352133U (en) * 1989-09-27 1991-05-21
JPH0388722U (en) * 1989-11-24 1991-09-10

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178017A (en) * 1984-02-25 1985-09-12 Plus Eng Co Ltd Push out pin excellent in anti-seizing property
JPS61143547A (en) * 1984-12-13 1986-07-01 Kobe Steel Ltd Cylinder for plastic molding apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178017A (en) * 1984-02-25 1985-09-12 Plus Eng Co Ltd Push out pin excellent in anti-seizing property
JPS61143547A (en) * 1984-12-13 1986-07-01 Kobe Steel Ltd Cylinder for plastic molding apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352133U (en) * 1989-09-27 1991-05-21
JPH0388722U (en) * 1989-11-24 1991-09-10

Similar Documents

Publication Publication Date Title
US1997193A (en) Permanent magnet and method of manufacturing same
JPS6176642A (en) Thin film of ternary co-ni-fe alloy and its manufacture
JP2002025030A (en) Perpendicular magnetic recording medium, method for producing the same and magnetic recorder
JPS6394813A (en) Magnetic field orientation extruder
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
JPS5950138A (en) Soft magnetic material having superior characteristic in alternating current range and its manufacture
JP4032706B2 (en) Magnet roller manufacturing method and magnet roller manufactured by the manufacturing method
JPH0963016A (en) Production of thin-film magnetic head, thin-film magnetic head and magnetic storage device
US4664947A (en) Multi-layer process for cobalt treatment of ferromagnetic oxides
US20020056649A1 (en) Method of fabricating thin magnetic film and electrolytic plating apparatus for fabricating thin magnetic film
JPS60224761A (en) Permanent magnet alloy
JPS59211558A (en) Permanent magnet material
US20030012982A1 (en) Thin magnetic film, method of fabricating the same and magnetic head including the same
CN1145145C (en) Soft magnetic film and magnetic head therewith
JPS6413220A (en) Thin metal film type magnetic recording medium
EP1752995A1 (en) Magnetic film for a magnetic device, magnetic head for a hard disk drive, and solid-state device
JP2897485B2 (en) Soft magnetic thin film and method of manufacturing the same
KR920007008A (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH0521252A (en) Magnetic field oriented extruding method for continuous length resin-bonded magnet and manufacturing apparatus therefor
JPS60500356A (en) Magnetic-electric pulse generating device
JPH0322647B2 (en)
KR940008644B1 (en) Magnetic alloy thin film for magnetic head
JPS61235537A (en) Nonmagnetic and amorphous high-carbon iron alloy
JPS61295602A (en) Amorphous core for common mode choke
JPH0525947B2 (en)