JPS6393104A - Manufacture of anisotropic bonded magnet - Google Patents

Manufacture of anisotropic bonded magnet

Info

Publication number
JPS6393104A
JPS6393104A JP23969886A JP23969886A JPS6393104A JP S6393104 A JPS6393104 A JP S6393104A JP 23969886 A JP23969886 A JP 23969886A JP 23969886 A JP23969886 A JP 23969886A JP S6393104 A JPS6393104 A JP S6393104A
Authority
JP
Japan
Prior art keywords
magnetic field
molding
powder
magnet
koe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23969886A
Other languages
Japanese (ja)
Other versions
JPH0666212B2 (en
Inventor
Masanori Sato
正則 佐藤
Kazuo Matsui
一雄 松井
Hirofumi Nakano
廣文 中野
Masakuni Kamiya
神谷 昌邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP61239698A priority Critical patent/JPH0666212B2/en
Publication of JPS6393104A publication Critical patent/JPS6393104A/en
Publication of JPH0666212B2 publication Critical patent/JPH0666212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture the magnet of high coercive force having improved degree of orientation by a method wherein a molding in magnetic field is performed when the coercive force before an aging treatment is 6 kOe or below using 2-17 rare-earth magnet powder, and an aging treatment is performed. CONSTITUTION:Samarium cobalt Sm2Co17 alloy of 1000mum in average grain diameter is pulverized into the average grain diameter of 4 mum using a jet mill, and the powder is molded in a magnetic field. This sintered body of raw material is pulverized using a jaw crusher, and the magnet powder of 200 mum in average grain diameter is obtained by sifting it out. Then, a molding opera tion is performed by having the intensity of orientational magnetic field of 6 kOe or below by a magnetic field molding machine without using an auxiliary molding agent. Then, an aging treatment is performed on the magnet powder at 800 deg.C in vacuum atmosphere for an hour. Lastly, epoxy resin is impregnated therein under vacuum, an after cure is performed at 120 deg.C for an hour, and a bonded magnet integrally formed with resin can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、樹脂等を用いて磁石粉体を結合したボンド磁
石の製造方法に関し、更に詳しくは2−17系希土類磁
石粉体を時効処理する前に磁場中で成形し、その後に時
効処理するようにした異方性ボンド磁石の製造方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a bonded magnet in which magnetic powder is bonded using a resin or the like, and more specifically, the present invention relates to a method for manufacturing a bonded magnet in which magnetic powder is bonded using a resin or the like. The present invention relates to a method for manufacturing an anisotropic bonded magnet, which is formed in a magnetic field before being molded, and then subjected to an aging treatment.

[従来の技術] 希土類磁石粉体を結合剤(バインダー)により複合化し
た所謂ボンド磁石は従来公知である。
[Prior Art] So-called bonded magnets, in which rare earth magnet powder is composited with a binder, are conventionally known.

結合剤としては、熱可塑性あるいは熱硬化性樹脂の他、
金属あるいは合金等(メタルバインダー)やガラス系の
無機物質等が用いられている。
As a binder, in addition to thermoplastic or thermosetting resin,
Metals, alloys, etc. (metal binders), glass-based inorganic substances, etc. are used.

そして射出、圧縮、押し出し等の成形法により製造され
る。
It is then manufactured by a molding method such as injection, compression, or extrusion.

このような希土類ボンド磁石は、磁気特性が高り、量産
性に優れ寸法精度が出し易く、また形状の自由度が大き
い等の利点があり、近年、急速に様々な用途で使用され
つつある。
Such rare earth bonded magnets have advantages such as high magnetic properties, excellent mass production, easy dimensional accuracy, and a large degree of freedom in shape, and are rapidly being used in a variety of applications in recent years.

従来の異方性希土類ボンド磁石の製造方法は、原料であ
る合金を粉砕し成形して焼結した後、そのまま時効処理
を行い、それを粉砕し、その時効処理後の粉体を用いて
磁場中で成形を行う方法が採られている。
The conventional manufacturing method for anisotropic rare earth bonded magnets involves pulverizing the raw material alloy, forming it, sintering it, then aging it as is, pulverizing it, and applying the aged powder to a magnetic field. A method is adopted in which molding is carried out inside.

[発明が解決しようとする問題点] 磁場中で成形を行う時に磁性粉体を完全配向させるため
には、印加する磁場の強さは素材である磁性粉体の保磁
力の4〜5倍以上が必要であると言われている。このた
め従来技術において、例えば3mzCo+7系樹脂ボン
ド磁石の場合には、40〜50kOe以上の強い磁場を
成形時に印加しなければならない。
[Problems to be solved by the invention] In order to completely orient the magnetic powder when molding in a magnetic field, the strength of the applied magnetic field must be at least 4 to 5 times the coercive force of the magnetic powder that is the material. is said to be necessary. Therefore, in the prior art, for example, in the case of a 3 mz Co+7 resin bonded magnet, a strong magnetic field of 40 to 50 kOe or more must be applied during molding.

しかし現在広く用いられている磁場成形機で得られる磁
場の強さは上記の値を満足出来ない(一般に製造ライン
で印加可能な磁場は15kOe程度である)ため、実際
に行われている磁場中成形では素材原料粉体を十分に配
向出来ない状態で行われている。このため実際には十分
高い磁気特性を発生させることが極めて困難である。
However, the strength of the magnetic field obtained by currently widely used magnetic field forming machines does not satisfy the above values (generally, the magnetic field that can be applied on the production line is about 15 kOe), so Molding is carried out in a state where the raw material powder cannot be sufficiently oriented. For this reason, it is actually extremely difficult to generate sufficiently high magnetic properties.

本発明の目的は上記のような従来技術の欠点を解消し、
比較的弱い磁場であっても磁気特性の優れた、特に配向
度が向上した高保磁力を存する2−17系異方性希土類
ボンド磁石を製造できる方法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above,
It is an object of the present invention to provide a method for producing a 2-17 anisotropic rare earth bonded magnet having excellent magnetic properties, particularly an improved degree of orientation, and a high coercive force even in a relatively weak magnetic field.

[問題点を解決するための手段] 上記のような目的を達成することのできる本発明は、2
−17系の希土類磁石粉体を用いて、時効処理する以前
の保磁力が6kOe以下の時に磁場中成形を行い、その
後に時効処理するようにした異方性ボンド磁石の製造方
法である。
[Means for solving the problems] The present invention, which can achieve the above objects, has the following features:
This is a method for producing an anisotropic bonded magnet using -17 series rare earth magnet powder, which is formed in a magnetic field when the coercive force is 6 kOe or less before aging treatment, and then subjected to aging treatment.

原料となる2−17系の希土類磁石粉体は、RzT M
 I? (但し、RはYを含むSm、Ce。
The raw material 2-17 rare earth magnet powder is RzT M
I? (However, R is Sm or Ce containing Y.

Pr、Nd等の希土類元素の1種または2種以上、TM
はCo、Fe、N!を主体とする遷移金属元素)で表さ
れる組成を主成分とするものである。このような原料は
、通常、所定の組成を有する合金を粉砕した後、一定の
形状に成形し焼結したもの、また必要があればそれを所
定の条件で溶体化処理したものである。
One or more rare earth elements such as Pr and Nd, TM
is Co, Fe, N! The main component is a composition represented by a transition metal element (mainly composed of transition metal elements). Such raw materials are usually obtained by pulverizing an alloy having a predetermined composition, forming it into a predetermined shape and sintering it, and, if necessary, solution-treating it under predetermined conditions.

2−17系希土類磁石は、時効処理により析出硬化が起
こり高保磁力が出現する0本発明者等は磁場成形前の磁
石粉体の保磁力と時効後のボンド磁石の磁気特性の関係
について種々の実験を行い、保磁力が6kOe以下の磁
石粉体を用いて本発明法によりボンド磁石を作製すれば
、従来法により得られた同じ保磁力を存するボンド磁石
に比べて極めて磁気特性が良好になることを見出した。
In 2-17 rare earth magnets, aging treatment causes precipitation hardening and a high coercive force appears. The present inventors have investigated various aspects of the relationship between the coercive force of magnet powder before magnetic field forming and the magnetic properties of bonded magnets after aging. Experiments have shown that if a bonded magnet is produced by the method of the present invention using magnet powder with a coercive force of 6 kOe or less, the magnetic properties will be much better than a bonded magnet with the same coercive force obtained by the conventional method. I discovered that.

本発明はかかる現象に基づきなされたものである。The present invention was made based on this phenomenon.

第1図に示すように、本発明では上記のような原料焼結
体を先ず粉砕し、時効処理前の保磁力が6 koe以下
の時に磁場中成形を行い、次に成形された形状を保持し
たまま時効処理を行って高い保磁力を出現させるもので
ある。このように、保磁力が6kOe以下の状態で磁場
中成形を行いその後で時効処理を行う点に本発明の大き
な特徴がある。因に従来技術について述べれば、第2図
に示すように、原料焼結体をそのまま先ず時効処理し、
それを粉砕した磁性粉体を用いて磁場中成形を行ってい
る。
As shown in Fig. 1, in the present invention, the raw material sintered body as described above is first crushed, and when the coercive force before aging treatment is 6 koe or less, it is formed in a magnetic field, and then the formed shape is maintained. A high coercive force is developed by aging the steel while it is still in place. As described above, a major feature of the present invention is that forming is performed in a magnetic field with a coercive force of 6 kOe or less, and then aging treatment is performed. Regarding the conventional technology, as shown in Fig. 2, the raw material sintered body is first subjected to aging treatment,
Magnetic powder obtained by pulverizing this material is used to perform molding in a magnetic field.

樹脂を結合剤とするボンド磁石を得る場合には時効処理
を行った後、エポキシ樹脂やフェノール樹脂、アクリル
樹脂等の熱硬化性合成樹脂を含浸もしくは浸漬して樹脂
と一体化する。磁気特性、特に残留も■束密度を向上し
成形性を良(するために、成形時にPVA (ポリビニ
ルアルコール)、PVB(ポリビニルブチラール)。
When obtaining a bonded magnet using a resin as a binder, it is subjected to an aging treatment and then impregnated or dipped in a thermosetting synthetic resin such as an epoxy resin, a phenol resin, or an acrylic resin to be integrated with the resin. To improve magnetic properties, especially residual ■ PVA (polyvinyl alcohol) and PVB (polyvinyl butyral) during molding to improve flux density and improve moldability.

CMC(カルボキシメチルセルロース)、PEG(ポリ
エチレングリコール)、パラフィン等の成形助剤を用い
、時効処理前あるいは時効処理中にそれらの成形助剤を
加熱飛散さゼでもよい。
Molding aids such as CMC (carboxymethylcellulose), PEG (polyethylene glycol), paraffin, etc. may be used and the shaping aids may be blown off by heating before or during the aging treatment.

ガラス系のような無機結合剤や低融点の金属、合金等の
メタル結合剤を用いる場合には、粉体とそれら無機結合
剤やメタル結合剤とを混合して磁場中成形を行い、時効
処理時にそれら結合剤を溶融させて一体化する。
When using an inorganic binder such as glass or a metal binder such as a low-melting point metal or alloy, the powder is mixed with the inorganic binder or metal binder, formed in a magnetic field, and then subjected to aging treatment. Sometimes these binders are melted and integrated.

磁場中成形における配向磁場の方向は、製作すべき製品
に応じて縦、横、ラジアル、多極等任意の配向方向の磁
場を適用できる。
Regarding the direction of the orientation magnetic field during molding in a magnetic field, a magnetic field in any orientation direction such as vertical, horizontal, radial, multipolar, etc. can be applied depending on the product to be manufactured.

[作用] 第1図に示す各工程での4πI−Hループのモデル図か
らも判るように、磁場中成形を行う時の磁石粉体は、時
効処理以前の粉体であるから保磁力は6kOe以下と小
さい。このため本発明では小さな磁場でも十分な配向が
なされる。
[Function] As can be seen from the model diagram of the 4πI-H loop in each process shown in Figure 1, the magnetic powder used when forming in a magnetic field is a powder before aging treatment, so the coercive force is 6 kOe. Small as below. Therefore, in the present invention, sufficient orientation can be achieved even with a small magnetic field.

そしてその状態のまま時効処理が行われから、時効処理
後の磁石粉体の保磁力が大きくなっても配向状態がその
まま保持されることになる。
Since the aging treatment is performed in that state, the orientation state is maintained as it is even if the coercive force of the magnet powder after the aging treatment increases.

比較のため従来技術について述べると、第2図に示すよ
うに、時効処理した後の高保磁力の磁石粉体を磁場中成
形するから、配向に要する磁場の強さは極めて大きくな
ければ十分な異方性化が出来ない。
For comparison, the conventional technology is as shown in Figure 2. Magnet powder with a high coercive force after aging is molded in a magnetic field, so the strength of the magnetic field required for orientation must be extremely large to ensure sufficient variation. Cannot be polarized.

この結果、本発明によれば従来よりもはるかに弱い磁場
でも磁気特性の優れたボンド磁石を製造できることにな
る。またより大きな(例えば従来技術と同程度の)磁場
中で成形すれば、従来実現出来なかった高配向度が得ら
れ、磁気特性の良好な即ち高保磁力でありながら高配向
度を有するボンド磁石を製造することができる。
As a result, according to the present invention, a bonded magnet with excellent magnetic properties can be manufactured even in a much weaker magnetic field than in the past. Furthermore, if molding is performed in a larger magnetic field (e.g. comparable to that of conventional technology), a high degree of orientation that could not be achieved in the past can be obtained, and bonded magnets with good magnetic properties, that is, high coercive force and high degree of orientation, can be obtained. can be manufactured.

特にラジアル配向磁石の場合には、リングもしくは円筒
状成形体の内径が小さいと磁場成形機の中央の磁極の断
面積が小さくなり磁気飽和し易く、またそれに対して成
形体の高さが高くなると磁路断面積が大きくなるため弱
い磁場しか印加できなくなるが、本発明はそのような弱
い磁場でも十分な配向度を実現できるから特に有効であ
る。勿論上記のようにその他の配向磁場の場合でも優れ
た特性が得られる。
Particularly in the case of radially oriented magnets, if the inner diameter of the ring or cylindrical molded body is small, the cross-sectional area of the magnetic pole at the center of the magnetic field forming machine becomes small, making magnetic saturation more likely. Since the cross-sectional area of the magnetic path becomes large, only a weak magnetic field can be applied, but the present invention is particularly effective because a sufficient degree of orientation can be achieved even with such a weak magnetic field. Of course, as mentioned above, excellent characteristics can also be obtained with other orientation magnetic fields.

また成形体について時効処理の条件を種々変えることに
よって、保磁力の異なる永久磁石を容易に製作すること
ができ、多品種生産に対応し易い利点もある。
Furthermore, by varying the aging treatment conditions for the compact, permanent magnets with different coercive forces can be easily manufactured, which has the advantage of being easily compatible with multi-product production.

[実施例] 平均粒径1000μmのサマリウム−コバルト(Smt
Co+y)系合金をジェットミルにより平均粒径4μm
に粉砕し、その粉体を磁場中成形した後に焼結し本実施
例での原料とした。
[Example] Samarium-cobalt (Smt) with an average particle size of 1000 μm
Co+y) based alloy was milled with an average particle size of 4 μm by jet milling.
The resulting powder was compacted in a magnetic field and then sintered to serve as the raw material in this example.

本実施例ではこの原料焼結体をショークラッシャーを用
いて粉砕し、篩別をして平均粒径20Qμmの磁石粉体
を得た。次に成形助剤を使用せずに、この磁石粉体を磁
場成形機により配向磁場の強さを数段階にわたって(0
〜15koeまで)変化させて成形を行った。そして得
られた成形体を真空中で800℃、1時間の時効処理を
行った。最後に真空中でエポキシ樹脂を含浸させ、12
0℃、1時間アフターキュアを行い樹脂と一体化したボ
ンド磁石を製造した。
In this example, this raw material sintered body was crushed using a show crusher and sieved to obtain magnet powder with an average particle size of 20Q μm. Next, without using a molding aid, this magnetic powder is processed by a magnetic field molding machine over several levels of the strength of the orienting magnetic field (0
-15 koe) and molding was performed. The obtained molded body was then aged in vacuum at 800° C. for 1 hour. Finally, impregnate with epoxy resin in vacuum, 12
After-curing was performed at 0° C. for 1 hour to produce a bonded magnet integrated with the resin.

また比較のため従来技術に基づき比較用試料を製造した
。これは上記実施例と同様の原料焼結体を、先ず前記実
施例と同様の条件で時効処理し、粉砕して平均粒径20
0μmの磁石粉体を得、配向磁場の強さを数段階にわた
って変えて成形を行い、同様にエポキシ樹脂を含浸させ
て一体化した。
Further, for comparison, a comparative sample was manufactured based on the conventional technology. In this method, the same raw material sintered body as in the above example was first aged under the same conditions as in the above example, and then pulverized and the average particle size was 20.
Magnet powder of 0 μm was obtained, molded by varying the strength of the orienting magnetic field over several stages, and similarly impregnated with epoxy resin and integrated.

磁場成形機における配向磁場の強さを0(磁場無し)、
2,4,6,9,12.15kOaと7段階変化させて
本発明法並びに従来法により製作した試料の磁気特性線
図並びに4πI−Hループのモデル図を第3図に示す。
The strength of the orientation magnetic field in the magnetic field forming machine is 0 (no magnetic field),
FIG. 3 shows magnetic characteristic diagrams and a model diagram of the 4πI-H loop of samples manufactured by the method of the present invention and the conventional method with seven steps of 2, 4, 6, 9, and 12.15 kOa.

この結果から、従来法で最も磁気特性の良好な15kO
eの場合の試料の13r、b)(c。
From this result, 15kO has the best magnetic properties in the conventional method.
13r, b) (c. of sample for case e).

(B −H) 、、、そして4πI−Hループは、本発
明法を実施した場合、配向磁場が4kOeと6 koe
で得られる試料の各値およびループの間に位置すること
が判る。つまり従来法で15koe印加することによっ
て得られていた磁気特性を生じさせるには、本発明によ
れば磁場の強さが約5.5kOeで十分である。
(B-H) , , and the 4πI-H loop have an orientation magnetic field of 4 kOe and 6 koe when the method of the present invention is implemented.
It can be seen that each value of the sample obtained in and located between the loops. In other words, according to the present invention, a magnetic field strength of about 5.5 kOe is sufficient to produce the magnetic properties obtained by applying 15 kOe in the conventional method.

また本発明法を用いて配向磁場の強さを6kOe以上に
すれば、磁気特性ならびにループは従来法で15kOe
で達成される磁気特性を上回る優れた磁気特性となる。
Furthermore, if the strength of the orienting magnetic field is increased to 6 kOe or more using the method of the present invention, the magnetic properties and loops will be 15 kOe or more compared to the conventional method.
This results in superior magnetic properties that exceed those achieved by .

15kOeという配向磁場の強さは、工業的に製造ライ
ンで印加し得るであろう最大の値と考えられるから、本
発明法は極めて有効であることが判るであろう。
Since the strength of the orientation magnetic field of 15 kOe is considered to be the maximum value that can be applied industrially on a production line, the method of the present invention will prove to be extremely effective.

[発明の効果] 本発明は上記のように熱処理により析出硬化する磁石粉
体を析出硬化前に、即ち保磁力が6koe以下の時に異
方性化成形し、その後その形状を保持したまま析出硬化
させ高保磁力を出現させる方法であるから、従来と同等
の磁気特性を従来よりもはるかに小さな磁場で実現でき
るし、また従来同様の大きな磁場を印加することにより
大幅に磁気特性が向上した高配向度のボンド磁石を製造
できる優れた効果を有するものである。
[Effects of the Invention] As described above, in the present invention, magnet powder that is precipitation hardened by heat treatment is anisotropically formed before precipitation hardening, that is, when the coercive force is 6 koe or less, and then precipitation hardened while maintaining its shape. Because this method produces high coercive force, it is possible to achieve magnetic properties equivalent to conventional ones with a much smaller magnetic field than conventional ones.Also, by applying the same large magnetic field as conventional methods, it is possible to achieve highly oriented magnetic properties with significantly improved magnetic properties. This has an excellent effect in producing a bonded magnet of 100%.

本発明によれば上記のように従来技術よりもはるかに小
さな磁場で済むから、例えばラジアル配向は石の場合に
は軸方向高さの高い磁石を得ることができるし、また永
久磁石を用いて配向磁場を得ることもできるから、磁場
成形機における磁場発生装置を小型化することができ、
更に多数個同時成形やロータリー成形等による連続成形
も可能になる等、橿めて優れた効果を有するものである
According to the present invention, as described above, a much smaller magnetic field is required than in the prior art, so for example, in the case of radial orientation of stone, it is possible to obtain a magnet with a high axial height. Since it is also possible to obtain an orientation magnetic field, it is possible to downsize the magnetic field generator in the magnetic field forming machine.
Furthermore, it is possible to perform simultaneous molding of a large number of pieces or continuous molding by rotary molding, etc., which has excellent effects overall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によるポンド磁石の製造工程の要部
を示す工程説明図、第2図は従来工程の要部を示す工程
説明図、第3図は配向磁場に対する磁石特性ならびに4
πI−Hループのモデルを示す説明図である。 特許出願人  富士電気化学株式会社 代  理  人     茂  見     1第1図
    第2図
Fig. 1 is a process explanatory diagram showing the main parts of the manufacturing process of pound magnets according to the method of the present invention, Fig. 2 is a process explanatory diagram showing the main parts of the conventional process, and Fig. 3 shows the magnet characteristics and 4
FIG. 2 is an explanatory diagram showing a model of a πI-H loop. Patent applicant: Fuji Electrochemical Co., Ltd. Agent: Shigemi 1 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1.2−17系希土類磁石粉体を、時効処理する以前の
保磁力が6kOe以下の時に磁場中成形を行い、その後
に時効処理することを特徴とする異方性ボンド磁石の製
造方法。
1. A method for producing an anisotropic bonded magnet, which comprises forming 2-17-based rare earth magnet powder in a magnetic field when the coercive force before aging is 6 kOe or less, and then subjecting it to aging.
JP61239698A 1986-10-08 1986-10-08 Method for manufacturing anisotropic bonded magnet Expired - Lifetime JPH0666212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61239698A JPH0666212B2 (en) 1986-10-08 1986-10-08 Method for manufacturing anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239698A JPH0666212B2 (en) 1986-10-08 1986-10-08 Method for manufacturing anisotropic bonded magnet

Publications (2)

Publication Number Publication Date
JPS6393104A true JPS6393104A (en) 1988-04-23
JPH0666212B2 JPH0666212B2 (en) 1994-08-24

Family

ID=17048588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239698A Expired - Lifetime JPH0666212B2 (en) 1986-10-08 1986-10-08 Method for manufacturing anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JPH0666212B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150318A (en) * 1984-08-18 1986-03-12 Citizen Watch Co Ltd Manufacturing case for rare-earth cobalt permanent magnet
JPS6159811A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Manufacture of sintered rare-earth magnet
JPS61190005A (en) * 1985-02-15 1986-08-23 Matsushita Electric Works Ltd Production of rare earth magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150318A (en) * 1984-08-18 1986-03-12 Citizen Watch Co Ltd Manufacturing case for rare-earth cobalt permanent magnet
JPS6159811A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Manufacture of sintered rare-earth magnet
JPS61190005A (en) * 1985-02-15 1986-08-23 Matsushita Electric Works Ltd Production of rare earth magnet

Also Published As

Publication number Publication date
JPH0666212B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
KR870009410A (en) Magnetic anisotropic bond magnets, magnetic powders used in the same, and methods for producing the same
Eshelman et al. Properties of Nd‐Fe‐B anisotropic powder prepared from rapidly solidified materials
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPS6354702A (en) Manufacture of rare earth-iron boron resin magnet
JPS6393104A (en) Manufacture of anisotropic bonded magnet
JPS6112001B2 (en)
JPS6181607A (en) Preparation of rare earth magnet
JPH0559572B2 (en)
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS6393105A (en) Manufacture of isotropic bonded magnet
JPH07118408B2 (en) Method for manufacturing polymer composite rare earth magnet
JP2892012B2 (en) Manufacturing method of rare earth polar anisotropic permanent magnet
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP2892013B2 (en) Manufacturing method of rare earth plastic magnet
JPS63155605A (en) Manufacture of radially anisotropic bond magnet
JPH0473907A (en) Permanent magnet and manufacture thereof
JPS6355908A (en) Manufacture of rare-earth resin magnet
JPH0444402B2 (en)
JPH0450725B2 (en)
JPH0419685B2 (en)
JP2963786B2 (en) Manufacturing method of bonded magnet
JPH04309207A (en) Manufacture of bonded magnet
JPH0471205A (en) Manufacture of bond magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JP3057664B2 (en) Bonded permanent magnet