JPS63155605A - Manufacture of radially anisotropic bond magnet - Google Patents

Manufacture of radially anisotropic bond magnet

Info

Publication number
JPS63155605A
JPS63155605A JP30262486A JP30262486A JPS63155605A JP S63155605 A JPS63155605 A JP S63155605A JP 30262486 A JP30262486 A JP 30262486A JP 30262486 A JP30262486 A JP 30262486A JP S63155605 A JPS63155605 A JP S63155605A
Authority
JP
Japan
Prior art keywords
magnetic field
powder
koe
magnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30262486A
Other languages
Japanese (ja)
Inventor
Hirofumi Nakano
廣文 中野
Masakuni Kamiya
神谷 昌邦
Kazuo Matsui
一雄 松井
Masanori Sato
正則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP30262486A priority Critical patent/JPS63155605A/en
Publication of JPS63155605A publication Critical patent/JPS63155605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a high orientation bond magnet wherein the magnetic characteristics are improved by forming rare earth magnet powder in a radial orientation magnetic field when the powder has coercive force of, 6 kOe or less before aging treatment and then by aging it. CONSTITUTION:2-17: system rare earth magnet power is formed in a radial orientation magnetic field when the powder has 6 kOe or less low coercive force before age treatment. Then, the formed powder is aged. The 2-17 system rare earth magnet powder has a main component of a composition shown by R2TM17 (where, R is one or two or more of rare earth elements such as Sn, Ce, Pr and Nd, including Y and TM is one or two or more of transition metal elements such as Fe, Co, and Ni). This enables obtaining a high orientation bond magnet wherein the magnetic characteristics are improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、樹脂等を用いて磁石粉体を結合したボンド磁
石の製造方法に関し、更に詳しくは2−17系希土類磁
石粉体を時効処理する前にラジアル配向磁場中で成形し
、その後に時効処理するようにしたラジアル異方性ボン
ド磁石の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a bonded magnet in which magnetic powder is bonded using a resin or the like, and more specifically, the present invention relates to a method for manufacturing a bonded magnet in which magnetic powder is bonded using a resin or the like. The present invention relates to a method for manufacturing a radially anisotropic bonded magnet, which is formed in a radial orientation magnetic field before being molded, and then subjected to an aging treatment.

[従来の技術] 希土類磁石粉体を結合剤(バインダー)により複合化し
たボンド磁石は従来公知である。結合剤としては、熱可
塑性あるいは熱硬化性樹脂の他、金属あるいは合金等あ
るいはガラス系の無機物質等が用いられる。そして射出
、圧縮、押し出し等の成形法により製造される。
[Prior Art] Bonded magnets in which rare earth magnet powder is composited with a binder are conventionally known. As the binder, in addition to thermoplastic or thermosetting resins, metals, alloys, or glass-based inorganic substances are used. It is then manufactured by a molding method such as injection, compression, or extrusion.

このような希土類ボンド磁石は、磁気特性が高く、量産
性に優れ寸法精度が出し易く、また形状の自由度が大き
い等の利点があり、近年、急速に様々な用途で使用され
つつある。
Such rare earth bonded magnets have advantages such as high magnetic properties, excellent mass production, easy dimensional accuracy, and a large degree of freedom in shape, and are rapidly being used in a variety of applications in recent years.

従来のラジアル異方性希土類ボンド磁石の製造方法では
、原料である合金を粉砕し成形して焼結した後、そのま
ま時効処理を行い、それを粉砕し、その時効処理後の粉
体を用いてラジアル配向磁場中で成形が行われている。
In the conventional manufacturing method of radial anisotropic rare earth bonded magnets, the raw material alloy is crushed, shaped, and sintered, then subjected to aging treatment as it is, then crushed, and the aged powder is used. Molding is performed in a radial orientation magnetic field.

[発明が解決しようとする問題点] 磁場中で成形を行う時に磁石粉体を完全配向させるため
には、印加する磁場の強さは素材である磁石粉体の保磁
力の4〜5倍以上が必要であると言われている。このた
め従来技術において、例えばS m 2 CO17系樹
脂ボンド磁石の場合には、40〜50kOe以上の強い
磁場を成形時に印加しなければならない。
[Problems to be solved by the invention] In order to completely orient the magnetic powder when molding is performed in a magnetic field, the strength of the applied magnetic field must be at least 4 to 5 times the coercive force of the magnetic powder that is the material. is said to be necessary. For this reason, in the prior art, for example, in the case of S m 2 CO17 resin bonded magnets, a strong magnetic field of 40 to 50 kOe or more must be applied during molding.

しかし現在広く用いられている磁場プレスで得られる磁
場の強さは上記の値を満足出来ない(一般に製造ライン
で印加可能な磁場は15kOe程度である)ため、実際
に行われている磁場中成形では素材原料粉体を十分に配
向出来ない状態で行われている。
However, the strength of the magnetic field obtained by the currently widely used magnetic press cannot satisfy the above values (generally, the magnetic field that can be applied on the production line is about 15 kOe), so In this case, the raw material powder cannot be oriented sufficiently.

特にラジアル配向させる場合には、成形体の中央を貫通
するセンターロンドを一方の極(例えばN極)とし、成
形体の周囲を取り囲む臼をそれと反対の極(この場合S
極)にしてこの間隙に磁石粉体を充填し磁場をかけなが
ら成形するから、成形体の直径りに対して軸方向長さし
が長くなると、成形時に、上記間隙での磁石粉体充填部
分の磁路断面積が増大し印加される磁場の強さが低下す
る問題が生じる。経験的には、前記形状比率L/Dが3
/20以上になると配向度が極端に低下するため、その
ような円筒形状のラジアル異方性ボンド磁石を製造する
ことができなかった。
Particularly in the case of radial orientation, the center rod passing through the center of the compact is one pole (for example, the N pole), and the die surrounding the compact is the opposite pole (in this case, the S pole).
Since the gap is filled with magnetic powder and molded while applying a magnetic field, if the axial length is longer than the diameter of the compact, the part filled with the magnetic powder in the gap during molding A problem arises in that the cross-sectional area of the magnetic path increases and the strength of the applied magnetic field decreases. Empirically, the shape ratio L/D is 3
/20 or more, the degree of orientation is extremely reduced, making it impossible to manufacture such a cylindrical radially anisotropic bonded magnet.

本発明の目的は上記のような従来技術の欠点を解消し、
直径に対して軸方向長さが長い円筒形状であっても、磁
気特性の優れた、特に配向度が向上した高保磁力を有す
る2−17系のラジアル異方性希土類ボンド磁石を製造
できる方法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above,
A method for producing a 2-17 series radially anisotropic rare earth bonded magnet with excellent magnetic properties, especially with improved orientation and high coercive force, even if it has a cylindrical shape with a long axial length relative to the diameter. It is about providing.

[問題点を解決するための手段] 上記のような目的を達成することのできる本発明は、2
−17系の希土類磁石粉体を用いて、時効処理する以前
の保磁力が6kOe以下の低保磁力状態の時にラジアル
配向磁場中で成形を行い、その後に時効処理するように
したラジアル異方性ポンド磁石の製造方法である。
[Means for solving the problems] The present invention, which can achieve the above objects, has the following features:
Radial anisotropy using -17 series rare earth magnet powder, molded in a radial orientation magnetic field when the coercive force is low (6 kOe or less before aging treatment), and then subjected to aging treatment. This is a method for manufacturing pound magnets.

原料となる2−17系の希土類磁石粉体は、R2TM1
7(但し、RはYを含むSm、Ce。
The raw material 2-17 rare earth magnet powder is R2TM1
7 (However, R includes Y, Sm, Ce.

Pr、Nd等の希土類元素の1種または2種以上、TM
はFe、Co、Ni等の遷移金属元素の1種または2種
以上)で表される組成を主成分とするものである。この
ような原料は、通常、所定の組成を有する合金を粉砕し
た後、一定の形状に成形し焼結したもの、また必要があ
ればそれを所定の条件で溶体化処理したものである。
One or more rare earth elements such as Pr and Nd, TM
The main component is one or more transition metal elements such as Fe, Co, and Ni. Such raw materials are usually obtained by pulverizing an alloy having a predetermined composition, forming it into a predetermined shape and sintering it, and, if necessary, solution-treating it under predetermined conditions.

2−17系希土類磁石は、時効処理により析出硬化が起
こり高保磁力が出現する。本発明者等は磁場成形前の磁
石粉体の保磁力と時効後のボンド磁石の磁気特性の関係
について種々の実験を行い、保磁力が6kOe以下の磁
石粉体を用いて本発明方法によりボンド磁石を作製すれ
ば、従来法により得られたボンド磁石に比べてはるかに
磁気特性が良好になることを見出し、かかる知得に基づ
き本発明を完成させるに至ったものである。
In 2-17 rare earth magnets, precipitation hardening occurs due to aging treatment and a high coercive force appears. The present inventors conducted various experiments on the relationship between the coercive force of magnet powder before magnetic field forming and the magnetic properties of bonded magnets after aging, and bonded by the method of the present invention using magnet powder with a coercive force of 6 kOe or less. The inventors discovered that the magnetic properties of the produced magnet were much better than that of bonded magnets obtained by conventional methods, and based on this knowledge, they completed the present invention.

第1図に示すように、本発明では上記のような原料焼結
体を先ず粉砕し、時効処理前の保磁力が6kOe以下の
小さな状態の時にラジアル配向磁場中で成形を行い、次
に成形された形状を保持したまま時効処理を行って高い
保磁力を出現させるものである。このように、低保磁力
の状態でラジアル配向磁場中成形を行い、その後に時効
処理を行う点に本発明の大きな特徴がある。因に従来技
術について述べれば、第2図に示すように、原料焼結体
をそのまま先ず時効処理し、それを粉砕した磁石粉体を
用いてラジアル配向磁場中成形を行っている。
As shown in Figure 1, in the present invention, the raw material sintered body as described above is first pulverized, and when the coercive force before aging treatment is in a small state of 6 kOe or less, it is molded in a radial orientation magnetic field, and then molded. A high coercive force is developed by aging the material while maintaining its original shape. As described above, a major feature of the present invention is that forming is performed in a radial orientation magnetic field in a state of low coercive force, and then aging treatment is performed. Regarding the prior art, as shown in FIG. 2, a raw material sintered body is first subjected to an aging treatment, and then pulverized magnet powder is used to perform molding in a radially oriented magnetic field.

樹脂ボンド磁石を得る場合には、時効処理を行った後、
エポキシ樹脂やフェノール樹脂、アクリル樹脂等の熱硬
化性合成樹脂を含浸もしくは浸漬して樹脂と一体化する
。磁気特性、特に残留磁束密度を向上し成形性を良くす
るために、成形時にPVA(ポリビニルアルコール)。
When obtaining resin bonded magnets, after aging treatment,
It is integrated with a thermosetting synthetic resin such as epoxy resin, phenol resin, or acrylic resin by impregnation or immersion. PVA (polyvinyl alcohol) is used during molding to improve magnetic properties, especially residual magnetic flux density, and improve moldability.

PVB (ポリビニルブチラール)、CMC(カルボキ
シメチルセルロース)、PEG(ポリエチレングリコー
ル)、パラフィン等の成形助剤を用い、時効処理前ある
いは時効処理中にそれらの成形助剤を加熱飛散させても
よい。
Molding aids such as PVB (polyvinyl butyral), CMC (carboxymethyl cellulose), PEG (polyethylene glycol), paraffin, etc. may be used and the shaping aids may be heated and scattered before or during the aging treatment.

ガラス系のような無機結合剤や低融点の金属、合金等の
メタル結合剤を用いる場合には、粉体とそれら無機結合
剤やメタル結合剤とを混合して磁場中成形を行い、時効
処理時にそれら結合剤を溶融させて一体化する。
When using an inorganic binder such as glass or a metal binder such as a low-melting point metal or alloy, the powder is mixed with the inorganic binder or metal binder, formed in a magnetic field, and then subjected to aging treatment. Sometimes these binders are melted and integrated.

本発明においては、従来と同様の、例えば第3図に断面
図で示すようなラジアル配向磁場プレスを用いることが
できる。センターロッド12、ヨーク20は強磁性材か
らつくられ、臼10、下バンチ14.上バンチ16は非
磁性材からつくられる。臼10の中心にはセンターロッ
ド12が挿通され、それらの間に下パンチ14及び上パ
ンチ16が嵌合する。そして臼10、センターロッド1
2.下バンチ14で囲まれた領域内に磁石粉体18が充
填され、センターロッド12の上下側に配置した電磁石
22によってセンターロッド12側がN極でヨーク20
側がS極となるように磁場(磁力線を破線で示す)がか
けられる。これによって磁石粉体18にはラジアル方向
の磁場が作用する。その状態で上パンチ16を下降して
加圧成形し、第4図に示すようなラジアル方向に異方性
を有する円筒状の成形体24を得ることができる。
In the present invention, a radially oriented magnetic field press similar to the conventional one, for example as shown in cross-sectional view in FIG. 3, can be used. The center rod 12, the yoke 20 are made of ferromagnetic material, the mortar 10, the lower bunch 14. The upper bunch 16 is made of non-magnetic material. A center rod 12 is inserted through the center of the mortar 10, and a lower punch 14 and an upper punch 16 are fitted between them. And mortar 10, center rod 1
2. Magnet powder 18 is filled in the area surrounded by the lower bunch 14, and electromagnets 22 arranged on the upper and lower sides of the center rod 12 generate a yoke 20 with the center rod 12 side being the north pole.
A magnetic field (the lines of magnetic force are shown by broken lines) is applied so that the side becomes the south pole. As a result, a radial magnetic field acts on the magnet powder 18. In this state, the upper punch 16 is lowered to perform pressure forming, thereby obtaining a cylindrical molded body 24 having anisotropy in the radial direction as shown in FIG.

[作用] 第1図に示す各工程での4πT−Hループのモデル図か
らも判るように、磁場中成形を行う時の磁石粉体は、時
効処理以前の粉体であるから保磁力は6kOe以下と小
さい。このため本発明では小さな磁場でも十分な配向が
なされる。
[Function] As can be seen from the model diagram of the 4πT-H loop in each process shown in Figure 1, the magnetic powder used when forming in a magnetic field is a powder before aging treatment, so the coercive force is 6 kOe. Small as below. Therefore, in the present invention, sufficient orientation can be achieved even with a small magnetic field.

そしてその状態のまま時効処理が行われるから、時効処
理後の磁石粉体の保磁力が大きくなっても配向状態がそ
のまま保持されることになる。
Since the aging treatment is performed in that state, the orientation state is maintained as is even if the coercive force of the magnet powder after the aging treatment increases.

比較のため従来技術について述べると、第2図に示すよ
うに、時効処理した後の高保磁力の磁石粉体を磁場中成
形するから、配向に要する磁場の強さは極めて大きくな
ければ十分な異方性化が出来ない。
For comparison, the conventional technology is as shown in Figure 2. Magnet powder with a high coercive force after aging is molded in a magnetic field, so the strength of the magnetic field required for orientation must be extremely large to ensure sufficient variation. Cannot be polarized.

この結果、本発明によれば従来よりもはるかに弱い磁場
でも磁気特性の優れたポンド磁石を製造できることにな
る。またより大きな(例えば従来技術と同程度の)磁場
中で成形すれば、従来実現出来なかった高配向度が得ら
れ、磁気特性の良好な即ち高保磁力でありながら高配向
度を有するラジアル異方性ボンド磁石を製造することが
できる。
As a result, according to the present invention, a pound magnet with excellent magnetic properties can be manufactured even in a much weaker magnetic field than in the past. Furthermore, if molding is performed in a larger magnetic field (e.g. comparable to that of the conventional technology), a high degree of orientation, which could not be achieved in the past, can be obtained. It is possible to produce a bonded magnet.

特にこのようなラジアル配向磁石の場合には、円筒状成
形体の直径りが小さいと磁場プレスのセンターロッド1
2の断面積が小さくなり磁気飽和し易く、またそれに対
して成形体24の軸方向長さしが長くなると成形時の磁
路断面積が大きくなるため弱い磁場しか印加できなくな
るが、本発明はそのような弱い磁場でも十分な配向度を
実現できるため極めて顕著な効果が生じる。
Especially in the case of such radially oriented magnets, if the diameter of the cylindrical compact is small, the center rod 1 of the magnetic press
As the cross-sectional area of the molded body 2 becomes smaller, magnetic saturation is more likely to occur.On the other hand, when the axial length of the molded body 24 becomes longer, the magnetic path cross-sectional area during molding becomes larger, so that only a weak magnetic field can be applied. Even with such a weak magnetic field, a sufficient degree of orientation can be achieved, resulting in extremely remarkable effects.

また成形体について時効処理の条件を種々変えることに
よって、保磁力の異なる永久磁石を容易に製作すること
ができ、多品種生産に対応し易い利点もある。
Furthermore, by varying the aging treatment conditions for the compact, permanent magnets with different coercive forces can be easily manufactured, which has the advantage of being easily compatible with multi-product production.

[実施例コ 平均粒径1000μmのサマリウム−コバルト(S m
、COI7)系合金をジェットミルにより平均粒径4μ
mに粉砕し、その粉体を磁場中成形した後に焼結し本実
施例での原料とした。
[Example Co Samarium-cobalt (S m
, COI7) alloy was jet milled to an average particle size of 4μ.
m, and the powder was compacted in a magnetic field and then sintered to serve as the raw material in this example.

本実施例ではこの原料焼結体をショークラッシャーを用
いて粉砕し、篩別をして平均粒径200μmの磁石粉体
を得た。成形助剤を使用せずに、この磁石粉体をラジア
ル配向磁場プレスにより配向磁場の強さを数段階にわた
って(0〜15kOeまで)変化させて成形を行った。
In this example, this raw material sintered body was crushed using a show crusher and sieved to obtain magnet powder having an average particle size of 200 μm. Without using a molding aid, this magnet powder was molded by radial orientation magnetic field pressing while varying the strength of the orientation magnetic field over several stages (from 0 to 15 kOe).

そして得られた成形体を真空中で800℃。The obtained molded body was heated at 800°C in a vacuum.

1時間の時効処理を行った。最後に真空中でエポキシ樹
脂を含浸させ、120℃、1時間アフターキュアを行い
樹脂を硬化させてラジアル異方性ボンド磁石を製造した
Aging treatment was performed for 1 hour. Finally, an epoxy resin was impregnated in a vacuum, and after-curing was performed at 120° C. for 1 hour to harden the resin to produce a radial anisotropic bonded magnet.

また比較のため従来技術に基づき比較用試料を製造した
。これは上記実施例と同様の原料焼結体を、先ず前記実
施例と同様の条件で時効処理し、粉砕して平均粒径20
0μmの磁石粉体を得、配向磁場の強さを数段階にわた
って変えたラジアル配向磁場プレスで成形を行い、同様
にエポキシ樹脂を含浸させて一体化した。
Further, for comparison, a comparative sample was manufactured based on the conventional technology. In this method, the same raw material sintered body as in the above example was first aged under the same conditions as in the above example, and then pulverized and the average particle size was 20.
Magnet powder of 0 μm was obtained, molded using a radial orientation magnetic field press in which the strength of the orientation magnetic field was varied over several stages, and similarly impregnated with epoxy resin and integrated.

試作した成形体の形状は外径が20mmφ、内径が16
mmφ、軸方向長さが31の円筒状である。なお磁場成
形前における磁石粉体の特性を第1表に示す。
The shape of the prototype molded body has an outer diameter of 20 mmφ and an inner diameter of 16 mm.
It has a cylindrical shape with mmφ and axial length of 31 mm. Table 1 shows the properties of the magnet powder before magnetic field forming.

第1表 このようにして得られた異方性ボンド磁石の磁気特性を
第2表に示す。
Table 1 The magnetic properties of the anisotropic bonded magnet thus obtained are shown in Table 2.

第2表 なお第2表における各磁気特性は、第6図Aに示すよう
な円筒状磁石の一部(斜線を付した部分)を9個切り出
して第6図Bのように配向方向を揃え9個積み重ねて測
定したものである。
Table 2 The magnetic properties in Table 2 are determined by cutting out nine parts (shaded areas) of a cylindrical magnet as shown in Figure 6A and aligning the orientation direction as shown in Figure 6B. The measurements were taken by stacking nine pieces.

また(BH)maxの配向磁場の強さに対する変化を第
5図に示す。
Further, FIG. 5 shows the change in (BH)max with respect to the strength of the orientation magnetic field.

この結果から、従来法で最も磁気特性の良好な15kO
eの場合の試料のBr、bHc。
From this result, 15kO has the best magnetic properties in the conventional method.
Br and bHc of the sample in case e.

(BH)maxは、本発明法を実施した場合、配向磁場
が4kOeと6kOeで得られる試料の各値の間に位置
することが判る。つまり従来法で15kOe印加するこ
とによって得られていた磁気特性を生じさせるには、本
発明によれば磁場の強さが約5.5kOeで十分である
It can be seen that (BH)max is located between the values of the samples obtained when the orientation magnetic field is 4 kOe and 6 kOe when the method of the present invention is implemented. In other words, according to the present invention, a magnetic field strength of about 5.5 kOe is sufficient to produce the magnetic properties obtained by applying 15 kOe in the conventional method.

また本発明法を用い配向磁場の強さを6kOe以上にす
れば、磁気特性ならびにループは従来法で15kOeで
達成される磁気特性を上回る優れた磁気特性となる。
Furthermore, if the strength of the orienting magnetic field is increased to 6 kOe or more using the method of the present invention, the magnetic properties and loops will be superior to those achieved by the conventional method at 15 kOe.

前記の実施例は成形体の直径に対して軸方向長さが比較
的低いものであり、15kOeの磁場では従来法の場合
でもかなり良好な特性が得られているが、成形体の軸方
向長さがより長くなると本発明の効果は更に一層顕著と
なる。
In the above example, the axial length of the compact is relatively small compared to the diameter of the compact, and in a magnetic field of 15 kOe, even with the conventional method, fairly good properties are obtained; however, the axial length of the compact is The effect of the present invention becomes even more pronounced as the length becomes longer.

実際、印加可能な磁場の強さは成形体の寸法によって制
限を受け、成形体の軸方向長さが長くなると成形体に印
加可能な磁場の強さは相対的に低下する。例えば前記形
状の成形体において、長さが2倍になれぼ印加可能な磁
場は約1 / 2  (7、5k Oe )となり、長
さが3倍になれば磁場は約1/3(5kOe)となって
しまう。従来法では高さが6mmあるいは9mmになる
と配向磁場が7.5kOeあるいは5kOeにしかなら
ないから、第5図からも判るようにラジアル配向による
異方性化の効果はほとんど生じず実質的に等方性のまま
にとどまってしまう。ところが本発明方法によれば、軸
方向長さが6mmあるいは9mmになっても異方性の効
果は十分生じる。つまり本発明方法によって、従来法で
得られるよりも軸方向長さが長いラジアル異方性ボンド
磁石を得ることが可能となることが判る。
In fact, the strength of the magnetic field that can be applied is limited by the dimensions of the compact, and as the length of the compact in the axial direction increases, the strength of the magnetic field that can be applied to the compact decreases relatively. For example, if the length of a molded body of the above shape is doubled, the magnetic field that can be applied will be approximately 1/2 (7.5 kOe), and if the length is tripled, the magnetic field that can be applied will be approximately 1/3 (5 kOe). It becomes. In the conventional method, when the height becomes 6 mm or 9 mm, the orientation magnetic field becomes only 7.5 kOe or 5 kOe, so as can be seen from Figure 5, there is almost no effect of anisotropy due to radial orientation, and it is essentially isotropic. It remains as it is. However, according to the method of the present invention, the anisotropic effect is sufficiently produced even if the axial length is 6 mm or 9 mm. In other words, it can be seen that by the method of the present invention, it is possible to obtain a radially anisotropic bonded magnet having a longer axial length than that obtained by the conventional method.

15kOeという配向磁場の強さは、工業的に製造ライ
ンで印加し得るであろう最大の値と考えられるから、本
発明法は極めて有効であることが判るであろう。
Since the strength of the orientation magnetic field of 15 kOe is considered to be the maximum value that can be applied industrially on a production line, the method of the present invention will prove to be extremely effective.

[発明の効果] 本発明は上記のように時効処理により析出硬化する磁石
粉体を析出硬化前に、即ち6kOe以下の低保磁力状態
のときにラジアル異方性化成形し、その後その形状を保
持したまま析出硬化させ高保磁力を出現させる方法であ
るから、従来と同等の磁気特性を従来よりもはるかに小
さな磁場で実現できるし、また従来同様の大きな磁場を
印加することにより大幅に磁気特性が向上した高配向度
のボンド磁石を製造できる優れた効果を有するものであ
る。
[Effects of the Invention] As described above, the present invention molds magnet powder that undergoes precipitation hardening by aging treatment to radial anisotropy before precipitation hardening, that is, in a state of low coercive force of 6 kOe or less, and then changes its shape. Since this is a method of precipitation hardening while holding the magnetic field and creating a high coercive force, it is possible to achieve the same magnetic properties as before with a much smaller magnetic field than before, and also to significantly improve the magnetic properties by applying the same large magnetic field as before. This has an excellent effect of producing a bonded magnet with an improved degree of orientation and a high degree of orientation.

本発明によれば上記のように従来技術よりもはるかに小
さな磁場で済むから、軸方向長さの長いラジアル配向磁
石を得ることができる極めて優れた効果を有するもので
ある。
According to the present invention, as described above, a much smaller magnetic field is required than in the prior art, so it has an extremely excellent effect of being able to obtain a radially oriented magnet with a long axial length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によるボンド磁石の製造工程の要部
を示す工程説明図、第2図は従来工程の要部を示す工程
説明図、第3図はラジアル配向磁場プレスの一例を示す
説明図、第4図はそれにより得られた成形体の説明図、
第5図はラジアル配向磁場に対する(BH)mayの変
化を示す線図、第6図A、Bは実験で用いた試料の構造
を示す説明図である。 10・・・臼、12・・・センターロッド、14・・・
下パンチ、16・・・上バンチ、18・・・磁石粉体、
20・・・ヨーク、22・・・電磁石、24・・・成形
体。 特許出願人  富士電気化学株式会社 代  理  人     茂  見     穣第1図
    第2図
Fig. 1 is a process explanatory diagram showing the main parts of the bonded magnet manufacturing process by the method of the present invention, Fig. 2 is a process explanatory diagram showing the main parts of the conventional process, and Fig. 3 is an explanatory diagram showing an example of radial orientation magnetic field press. Figure 4 is an explanatory diagram of the molded body obtained thereby,
FIG. 5 is a diagram showing the change in (BH)may with respect to the radial alignment magnetic field, and FIGS. 6A and 6B are explanatory diagrams showing the structure of the sample used in the experiment. 10... Mortar, 12... Center rod, 14...
Lower punch, 16... Upper bunch, 18... Magnetic powder,
20... Yoke, 22... Electromagnet, 24... Molded body. Patent Applicant: Fuji Electrochemical Co., Ltd. Agent: Minoru Shigemi Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1.2−17系希土類磁石粉体を、時効処理する以前の
保磁力が6kOe以下の時にラジアル配向磁場中で成形
を行い、その後に時効処理することを特徴とするラジア
ル異方性ボンド磁石の製造方法。
1. A radial anisotropic bonded magnet characterized in that 2-17 rare earth magnet powder is molded in a radial alignment magnetic field when the coercive force is 6 kOe or less before aging treatment, and then aging treatment is performed. Production method.
JP30262486A 1986-12-18 1986-12-18 Manufacture of radially anisotropic bond magnet Pending JPS63155605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30262486A JPS63155605A (en) 1986-12-18 1986-12-18 Manufacture of radially anisotropic bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30262486A JPS63155605A (en) 1986-12-18 1986-12-18 Manufacture of radially anisotropic bond magnet

Publications (1)

Publication Number Publication Date
JPS63155605A true JPS63155605A (en) 1988-06-28

Family

ID=17911223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30262486A Pending JPS63155605A (en) 1986-12-18 1986-12-18 Manufacture of radially anisotropic bond magnet

Country Status (1)

Country Link
JP (1) JPS63155605A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150318A (en) * 1984-08-18 1986-03-12 Citizen Watch Co Ltd Manufacturing case for rare-earth cobalt permanent magnet
JPS6159811A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Manufacture of sintered rare-earth magnet
JPS61190005A (en) * 1985-02-15 1986-08-23 Matsushita Electric Works Ltd Production of rare earth magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150318A (en) * 1984-08-18 1986-03-12 Citizen Watch Co Ltd Manufacturing case for rare-earth cobalt permanent magnet
JPS6159811A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Manufacture of sintered rare-earth magnet
JPS61190005A (en) * 1985-02-15 1986-08-23 Matsushita Electric Works Ltd Production of rare earth magnet

Similar Documents

Publication Publication Date Title
EP0125752B1 (en) Bonded rare earth-iron magnets
US4902361A (en) Bonded rare earth-iron magnets
JPH01257308A (en) Magnet for voice coil motor
US6605162B2 (en) Anisotropic magnet and process of producing the same
JPS63155605A (en) Manufacture of radially anisotropic bond magnet
JPH0559572B2 (en)
JP3651098B2 (en) Manufacturing method of long radial anisotropic ring magnet
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JP2952914B2 (en) Manufacturing method of anisotropic bonded magnet
JPS6393104A (en) Manufacture of anisotropic bonded magnet
JPH0419685B2 (en)
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH11195548A (en) Production of nd-fe-b magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JP3051906B2 (en) Rare earth magnet
JPH0786070A (en) Manufacture of bond magnet
JPH0450725B2 (en)
JPH1174143A (en) Method of molding magnetic powder
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JPH06215967A (en) Manufacture of transferred integrally-molded magnetic circuit
JPH03129802A (en) Resin bonded rare-earth magnet
JPH0444402B2 (en)
JPH03235311A (en) Manufacture of anisotropic plastic magnet
JPH0626162B2 (en) Method for manufacturing C-type anisotropic resin bonded magnet
JPS6393105A (en) Manufacture of isotropic bonded magnet