JPS6391947A - X-ray microanalyzer - Google Patents

X-ray microanalyzer

Info

Publication number
JPS6391947A
JPS6391947A JP61235743A JP23574386A JPS6391947A JP S6391947 A JPS6391947 A JP S6391947A JP 61235743 A JP61235743 A JP 61235743A JP 23574386 A JP23574386 A JP 23574386A JP S6391947 A JPS6391947 A JP S6391947A
Authority
JP
Japan
Prior art keywords
sample
electron beam
image
ray analysis
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61235743A
Other languages
Japanese (ja)
Other versions
JPH0528466B2 (en
Inventor
Shojiro Tagata
田形 昭次郎
Toshiaki Miyokawa
御代川 俊明
Masaki Saito
斉藤 昌樹
Miyuki Matsutani
幸 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP61235743A priority Critical patent/JPS6391947A/en
Publication of JPS6391947A publication Critical patent/JPS6391947A/en
Publication of JPH0528466B2 publication Critical patent/JPH0528466B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To confirm positions of fine flaws, stuck fine grains, etc. on the sample surface to allow the X-ray analysis by radiating the laser light to the sample and forming a dark field image by the scattered light. CONSTITUTION:A helium-neon leser oscillator 16 is provided on an optical microscope performing the X-ray analysis by projecting an electron beam 1 to a sample 5 such as a wafer moved by a moving device 6. When the laser light from the oscillator 16 is radiated, the scattered light is generated by flaws, fine grains, etc. on the surface of the sample 5 to form a dark field image, and a luminescent spot is generated on an image pick-up device 15. The sample is moved via the device 6 so that this luminescent spot is located at the cross mark point of the device 15, and the electron beam is radiated, then positions of fine flaws and stuck fine grains on the sample surface are confirmed, and X-ray analysis can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はX線マイクロアナライザーに関し、特に試料面
に付着する微粒子等のX線分析を可能にした装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an X-ray microanalyzer, and particularly to an apparatus that enables X-ray analysis of fine particles and the like adhering to a sample surface.

[従来技術] 近時、半導体等の製造分野ではシリコンウェハーや金属
等(以下試料と略する)の表面を鏡面状に研磨等したり
、精密加工したりする処理が行なわれており、このよう
な試料等はクリーンルーム等で加工、処理、保管される
[Prior art] Recently, in the field of manufacturing semiconductors, etc., processes such as mirror polishing and precision processing of the surfaces of silicon wafers, metals, etc. (hereinafter referred to as samples) have been carried out. Samples, etc., are processed, processed, and stored in clean rooms, etc.

しかしながら、該材料がクリーンルーム等で厳重に管理
されて加工、処理、保管されたとしても、材料の製造過
程や取り扱いの過程で材料表面に僅かではあるが微細な
傷がついたり、ゴミ等の浮遊微粒子(0,3μm以下)
等が付着してしまう。
However, even if the material is processed, treated, and stored under strict control in a clean room, etc., there may be slight scratches on the surface of the material during the manufacturing or handling process, or there may be floating particles of dust, etc. Fine particles (0.3 μm or less)
etc. will stick to it.

このように材料表面に分布する少数の微細な傷やゴミ等
の微粒子は半導体等の分野では性能等に直接影響を与え
るため、これらを分析してその発生原因や発生源を究明
する必要がある。
In this way, a small number of minute scratches, dust, and other fine particles distributed on the surface of materials have a direct impact on performance in fields such as semiconductors, so it is necessary to analyze them to determine the cause and source of their occurrence. .

Cfe明が解決しようとする問題点コ ところで、これらを分析してその発生原因や発生源を究
明する手段としては、光学顕微鏡が内臓されたX線マイ
クロアナライザーが考えられるが、従来のX線マイクロ
アナライザーでは、該装置に組み込まれている落射照明
型の光学顕微鏡の分解能はせいぜい1μmであるため、
光学顕微鏡の分解能の限界である1μm以下の微細な傷
やゴミ等の微粒子を識別しその存在位置を確認すること
は極めて困難であり、従って、1μm以下の微細な傷や
ゴミ等の微粒子を分析してその発生原因や発生源を究明
することができない。
Problems that Cfe Ming is trying to solve By the way, an X-ray microanalyzer with a built-in optical microscope can be considered as a means to analyze these and find out the cause and source of their occurrence. In the analyzer, the resolution of the epi-illumination type optical microscope built into the device is at most 1 μm, so
It is extremely difficult to identify and locate microscopic scratches, dust, and other particles that are 1 μm or smaller, which is the limit of the resolution of an optical microscope. It is not possible to investigate the cause or source of the occurrence.

又、例えばシリコンウェハー等の大型試料(6〜8イン
チ)では、該試料表面に比較的広範囲にわたって分布す
る僅かな微細な傷や微粒子を分析するために、試料表面
の全域に電子線を照射して分析することは非常に時間が
かかり実用的でない。
In addition, for large samples (6 to 8 inches) such as silicon wafers, electron beams are irradiated over the entire surface of the sample in order to analyze minute scratches and particles distributed over a relatively wide area on the sample surface. It is very time consuming and impractical to analyze

本発明は以上の点に鑑みなされたもので、例えばシリコ
ンウェハー等の比較的大型な試料の試料面の微細な傷や
、その面に付着する微粒子等の位置を確認してX線分析
を可能にした装置を提供することを目的としている。
The present invention was developed in view of the above points, and enables X-ray analysis to be performed by confirming the position of minute scratches on the sample surface of a relatively large sample such as a silicon wafer, and the position of fine particles adhering to that surface. The aim is to provide a device that can

〔問題点を解決するための手段] 本目的を達成ザるための本発明は、試料に電子線を照射
するための電子光学系と、前記電子線の照q・1により
試料から発生ずるX線を分析する手段と、前記試料を移
動させる試料移動手段、前記電子光学系に相違まれた光
学顕微鏡と、該光学顕微鏡の結像面に該光学顕微鏡によ
る試料の光学像を撮会する記像装置とを備えた装置にお
いて、前記試料にレーザ光を照射するためのレーザ照射
手段を設けたことを特徴としている。
[Means for Solving the Problems] The present invention for achieving the above object includes an electron optical system for irradiating a sample with an electron beam, and an electron optical system for irradiating a sample with an electron beam a means for analyzing a line, a sample moving means for moving the sample, an optical microscope different from the electron optical system, and a recording device for taking an optical image of the sample by the optical microscope on an imaging plane of the optical microscope. The apparatus is characterized in that a laser irradiation means for irradiating the sample with laser light is provided.

[実施例] 以下図面に基づぎ本発明の実施例を詳述する。[Example] Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例を説明するための図で、1は
図示しない電子線発生源よりの電子線、2は集束レンズ
、3は対物レンズ、4は走査コイルである。5は電子線
1が照射される試料、6は試料移動装置、7はX線検出
装置である。8はランプ等が内臓された光照射部、9は
光照射部8の光路内に配置された焦点合せのためのクロ
スマーク、10はハーフミラ−111は反射鏡、12は
光学反射対物レンズ、13は接眼レンズであり、これら
によって光学顕微鏡が形成されている。14は光路内に
配置された路像管用ハーフミラ−115は撮像装置であ
る。16は試料面上を照射するための例えばヘリウム−
ネオン(He−Ne>レーザー発振器、17は2次電子
検出器、18は陰極線管である。
FIG. 1 is a diagram for explaining one embodiment of the present invention, in which 1 is an electron beam from an electron beam generation source (not shown), 2 is a focusing lens, 3 is an objective lens, and 4 is a scanning coil. 5 is a sample to which the electron beam 1 is irradiated, 6 is a sample moving device, and 7 is an X-ray detection device. Reference numeral 8 denotes a light irradiation unit including a built-in lamp, 9 a cross mark for focusing placed in the optical path of the light irradiation unit 8, 10 a half mirror, 111 a reflector, 12 an optical reflective objective lens, 13 are eyepiece lenses, and together they form an optical microscope. Reference numeral 14 denotes an image tube half mirror 115 disposed in the optical path, which is an imaging device. 16 is for example helium for irradiating the sample surface.
Neon (He-Ne>laser oscillator, 17 is a secondary electron detector, and 18 is a cathode ray tube.

以上のように構成された装置において、例えばシリコン
ウェハーである試料5の表面に存在する微粒子aの位置
を確ルE シX線分析を行なう場合について説明する。
In the apparatus configured as described above, a case will be described in which X-ray analysis is performed to determine the position of fine particles a present on the surface of a sample 5, which is, for example, a silicon wafer.

先ず、光照射部8内のランプを点灯すると、該光照射部
8よりの光はクロスマーク9.ハーフミラ−10を経て
反射鏡11により電子線1と同軸となり、光学反射対物
レンズ12の前方焦点面に光源の像が結ばれる。又、該
光学反射対物レンズ12はクロスマーク9の像を試料5
の表面近傍に結ぶ。従って、光照射部8よりの光の照射
に伴う試料5の像は光学反射対物レンズ12によって接
眼レンズ13の前方の結像位置Aにできるため、該試料
5の物点の像を接眼レンズ13によって拡大して肉眼で
観察することができる。この観察で、試料移動装置6を
操作し、クロスマーク9の像が試料5の表面に正確に結
像されるように、試料5を光軸方向に移動させる。この
場合に、試料5の表面が研磨され凹凸が無く、光学顕微
鏡では焦点が合せられないような場合には、光路内の結
像位置Aの近傍にはR像管用ミラー14が移動可能に配
置されているため、該ミラー14の位置を調整して、搬
@装置15の受光面にクロスマーク9の像を結像させて
観察することにより、凹凸の少ない鏡面状の試料におい
ても焦点合せを確実に行なうことができる。
First, when the lamp in the light irradiation section 8 is turned on, the light from the light irradiation section 8 hits the cross mark 9. After passing through a half mirror 10, it becomes coaxial with the electron beam 1 by a reflecting mirror 11, and an image of the light source is focused on the front focal plane of an optical reflective objective lens 12. Further, the optical reflection objective lens 12 converts the image of the cross mark 9 into the sample 5.
Tie near the surface of the Therefore, the image of the sample 5 caused by the irradiation of light from the light irradiation unit 8 can be formed at the image position A in front of the eyepiece 13 by the optical reflection objective lens 12, so that the image of the object point of the sample 5 can be focused on the eyepiece 13. It can be enlarged and observed with the naked eye. During this observation, the sample moving device 6 is operated to move the sample 5 in the optical axis direction so that the image of the cross mark 9 is accurately formed on the surface of the sample 5. In this case, if the surface of the sample 5 is polished and has no irregularities and cannot be focused using an optical microscope, an R picture tube mirror 14 is movably arranged near the imaging position A in the optical path. Therefore, by adjusting the position of the mirror 14 and observing the image of the cross mark 9 on the light-receiving surface of the transport device 15, it is possible to focus even on a mirror-like sample with few irregularities. It can be done reliably.

次に、光照射部6内のランプを消灯して、He−Neレ
ーザー発振器16からの例えば波長6328人、光径6
00μmのレーザ光りを試料面に照射する。ここで、該
レーザ発振器16は、光学顕微鏡の焦点位置に照射され
るように配置されており、又、レーザ発振器16よりの
レーザ光りは拡散することなく照射されるため、第2図
に示すように光学顕微鏡の観察範囲A (400μm)
はレーザ照射範囲B (600μm)によってその全域
に亘って照射される。このレーザ光りの照射によって、
試料3の表面のレーザー照射範囲Bの範囲内に例えば微
粒子aが存在する場合は、該微粒子aからは散乱光が発
生する。該散乱光は、光のコヒーレンス性によって干渉
及び回折を起し易く、従って、低倍率でも実際の大きさ
よりもはるかに拡がりを持って散乱光が観察されるため
、従来光学顕微鏡では観察されなかった微粒子aの存在
を九像装置15によって暗視野像として観察することが
できる。又、He−Neレーザー光りとしては、その波
長が、2次電子検出器17内の光電子増倍管の不感域の
波長となる短いもの、即ち、He−Neレーザー光が選
択されている。
Next, the lamp in the light irradiation unit 6 is turned off, and the light emitted from the He-Ne laser oscillator 16, for example, with a wavelength of 6328 and a light diameter of 6.
A laser beam of 00 μm is irradiated onto the sample surface. Here, the laser oscillator 16 is arranged so as to irradiate the focal position of the optical microscope, and since the laser light from the laser oscillator 16 is irradiated without being diffused, as shown in FIG. Observation range A of optical microscope (400μm)
is irradiated over the entire area by laser irradiation range B (600 μm). By irradiating this laser light,
If, for example, fine particles a exist within the laser irradiation range B on the surface of the sample 3, scattered light is generated from the fine particles a. The scattered light tends to cause interference and diffraction due to the coherence property of the light, and therefore, even at low magnification, the scattered light is observed with a much wider spread than the actual size, so it has not been observed with conventional optical microscopes. The presence of the fine particles a can be observed as a dark field image using the nine-image device 15. Further, as the He--Ne laser beam, one whose wavelength is short enough to be the wavelength of the insensitive region of the photomultiplier tube in the secondary electron detector 17, that is, the He--Ne laser beam is selected.

従って、このように構成された装置では、レーザー発振
器16からレーザ光りを試料面に照射して試料5を水平
方向に移動させ、この移動によって、撮像装置15−に
輝点Pが観察されたならば、この輝点Pを第3図に示す
ようにwL像装置15のクロスマークMの交点の位置(
通常は表示画面の中央)に移動する。これによって微粒
子aの位置を確実に確認することができる。又、微粒子
aの暗視野像を観察しながら電子線1を試料5に照射し
て、試料5より発生ずる2次電子eを2次電子検出器1
7によって検出して陰極線管18に表示すれば、該微粒
子aは2次電子像のほぼ中央に位置するので、かなりの
高倍率でも該微粒子aが走査像内に観察される。従って
、鏡面性の試料でも高倍率での走査画観察に基づく焦点
合せや、非点補正を簡単に視野設定して行なうことがで
きる。
Therefore, in the apparatus configured in this way, if the sample surface is irradiated with laser light from the laser oscillator 16 and the sample 5 is moved in the horizontal direction, and as a result of this movement, a bright spot P is observed on the imaging device 15-. For example, as shown in FIG.
(usually the center of the display screen). This makes it possible to reliably confirm the position of the fine particles a. Also, while observing the dark field image of the particles a, the sample 5 is irradiated with the electron beam 1, and the secondary electrons e generated from the sample 5 are detected by the secondary electron detector 1.
7 and displayed on the cathode ray tube 18, the fine particle a is located approximately at the center of the secondary electron image, so that the fine particle a can be observed in the scanned image even at a considerably high magnification. Therefore, even with a specular sample, focusing and astigmatism correction can be easily performed by setting the field of view based on scanning image observation at high magnification.

これによって、該微粒子aの形状も暗視野像と共に同時
に観察することができる。この状態で、電子線1のビー
ム電流をX線分析に適した値に設定し、該電子線1を微
粒子aに照射して、該微粒子aから発生するX線をX線
検出装置7によってX線分析することができる。従って
、試料全域を分析しなくても試料5の表面に広い範囲に
わたって点在する微粒子aを短時間で発見し、その位置
及び形状を確実に確認してX線分析を短時間で行なうこ
とができる。
Thereby, the shape of the fine particles a can be observed simultaneously with the dark field image. In this state, the beam current of the electron beam 1 is set to a value suitable for X-ray analysis, the particle a is irradiated with the electron beam 1, and the X-rays generated from the particle a are detected by the X-ray detector 7. Line analysis can be performed. Therefore, it is possible to quickly discover the fine particles a scattered over a wide area on the surface of the sample 5, to confirm their position and shape, and to perform X-ray analysis in a short time without having to analyze the entire sample. can.

上記は例示であり変型が可能である。上記実施例では、
He−Neレーザー発振器を使用したが、これに限定さ
れるものでなく、分析対象、2次電子検出器の特性を考
慮して他の発振器を選択すれば良い。
The above is an example and modifications are possible. In the above example,
Although a He-Ne laser oscillator is used, the present invention is not limited to this, and other oscillators may be selected in consideration of the object to be analyzed and the characteristics of the secondary electron detector.

又、撮像装置15の使用目的を微粒子等の存在を確認す
るだけでなく、その位置信号を検出し、該位置信号によ
って試料移動装置を制御して電子線1を微粒子に照射す
るように構成して自動X線分析システムとしても良い。
Further, the purpose of use of the imaging device 15 is not only to confirm the presence of particles, etc., but also to detect their position signals, and use the position signals to control the sample moving device to irradiate the particles with the electron beam 1. It may also be used as an automatic X-ray analysis system.

[発明の効果] 以上詳述したように本発明によれば、試料にレーザ光を
照射して試料上に存在する微粒子等よりの散乱光によっ
て撮像装置に暗視野像として表示するようにしたため、
従来光学顕微鏡では観察されなかった試料の表面の比較
的広い範囲に存在する微粒子等の存在を短時間で確認し
てX線分析を行うことができるため、その発生原因や発
生源の究明に役く立てることができる。
[Effects of the Invention] As described in detail above, according to the present invention, the sample is irradiated with laser light and the scattered light from fine particles present on the sample is displayed as a dark field image on the imaging device.
X-ray analysis can quickly confirm the presence of fine particles that exist in a relatively wide area on the surface of a sample, which could not be observed with conventional optical microscopes, which is useful for investigating the cause and source of their occurrence. can be built up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図及び第3図
は本発明を説明するための図である。 1:電子線、2は集束レンズ、3:対物レンズ、4:走
査コイル、5:試料、6:試料移動装置、7:X線検出
装置、8:光照射部、9:クロスマーク、10:ハーフ
ミラ−,11:反射鏡、12:光学反射対物レンズ、1
3:接眼レンズ:14:撮像管用ミラー、15:撮像装
置、16:ヘリウム−ネオン(He−Ne)レーザー発
振器、17:2次電子検出器、18:陰極線管。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIGS. 2 and 3 are diagrams for explaining the present invention. 1: Electron beam, 2 is a focusing lens, 3: Objective lens, 4: Scanning coil, 5: Sample, 6: Sample moving device, 7: X-ray detection device, 8: Light irradiation unit, 9: Cross mark, 10: Half mirror, 11: Reflector, 12: Optical reflective objective lens, 1
3: Eyepiece lens: 14: Mirror for image pickup tube, 15: Image pickup device, 16: Helium-neon (He-Ne) laser oscillator, 17: Secondary electron detector, 18: Cathode ray tube.

Claims (2)

【特許請求の範囲】[Claims] (1)試料に電子線を照射するための電子光学系と、前
記電子線の照射により試料から発生するX線を分析する
手段と、前記試料を移動させる試料移動手段、前記電子
光学系に組込まれた光学顕微鏡と、該光学顕微鏡の結像
面に該光学顕微鏡による試料の光学像を撮像する撮像装
置とを備えた装置において、前記試料にレーザ光を照射
するためのレーザ照射手段を設けたことを特徴とするX
線マイクロアナライザー。
(1) An electron optical system for irradiating the sample with an electron beam, a means for analyzing X-rays generated from the sample by irradiation with the electron beam, and a sample moving means for moving the sample, which are incorporated into the electron optical system. and an imaging device for capturing an optical image of a sample by the optical microscope on an imaging surface of the optical microscope, the apparatus further comprising a laser irradiation means for irradiating the sample with laser light. X characterized by
line microanalyzer.
(2)前記レーザ照射手段はヘリウム−ネオンレーザ発
生器である特許請求の範囲第1項記載のX線マイクロア
ナライザー。
(2) The X-ray microanalyzer according to claim 1, wherein the laser irradiation means is a helium-neon laser generator.
JP61235743A 1986-10-03 1986-10-03 X-ray microanalyzer Granted JPS6391947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235743A JPS6391947A (en) 1986-10-03 1986-10-03 X-ray microanalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235743A JPS6391947A (en) 1986-10-03 1986-10-03 X-ray microanalyzer

Publications (2)

Publication Number Publication Date
JPS6391947A true JPS6391947A (en) 1988-04-22
JPH0528466B2 JPH0528466B2 (en) 1993-04-26

Family

ID=16990563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235743A Granted JPS6391947A (en) 1986-10-03 1986-10-03 X-ray microanalyzer

Country Status (1)

Country Link
JP (1) JPS6391947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250220A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Sample observation method, image processing device, and charged particle beam device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833154A (en) * 1981-08-24 1983-02-26 Hitachi Ltd Inspecting device
JPS60189856A (en) * 1984-03-10 1985-09-27 Jeol Ltd X-ray microanalyzer and similar device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833154A (en) * 1981-08-24 1983-02-26 Hitachi Ltd Inspecting device
JPS60189856A (en) * 1984-03-10 1985-09-27 Jeol Ltd X-ray microanalyzer and similar device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250220A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Sample observation method, image processing device, and charged particle beam device
JP4734148B2 (en) * 2006-03-14 2011-07-27 株式会社日立ハイテクノロジーズ Sample observation method, image processing apparatus, and charged particle beam apparatus

Also Published As

Publication number Publication date
JPH0528466B2 (en) 1993-04-26

Similar Documents

Publication Publication Date Title
EP3428950B1 (en) Method for alignment of a light beam to a charged particle beam and charged particle beam system
EP0615123B1 (en) Method and apparatus for surface analysis
JP4610798B2 (en) Scanning electron microscope with laser defect detection function and its autofocus method
US3790287A (en) Surface inspection with scanned focused light beams
US8045145B1 (en) Systems and methods for acquiring information about a defect on a specimen
JP2006252995A (en) Charged particle beam apparatus
JPH08152430A (en) Microscope with aligning function
JP2003511844A (en) Method and apparatus for coaxial optical microscope with focused ion beam
JP2002168793A (en) Surface defect inspection device and surface defect inspection method
JPH05113418A (en) Surface analyzing apparatus
KR19980080031A (en) Transparent object inspection method, apparatus and inspection system used
JP3032967B2 (en) Apparatus and method for inspecting a smooth surface of a sample
JPH0458622B2 (en)
JP2002340811A (en) Surface evaluation device
US6881956B1 (en) Method and apparatus for scanning semiconductor wafers using a scanning electron microscope
JPS6391947A (en) X-ray microanalyzer
JP7116191B2 (en) Charged particle beam device
JPH05118999A (en) X-ray analyzing device
JPH11125602A (en) Method and device for analyzing foreign matter
JPH06194319A (en) Method and equipment for analyzing sample
JP3327023B2 (en) Sample analyzer and method
JPH0464245A (en) Electron microscope with optical microscope and appearance inspection device using it
JPH11304420A (en) Method and plate for detecting light beam radiation position and foreign matter detecting device
JPH01149354A (en) Electron microscope
JP2000046767A (en) Apparatus for analyzing inclusion in metallic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees