JPS639174B2 - - Google Patents

Info

Publication number
JPS639174B2
JPS639174B2 JP7860180A JP7860180A JPS639174B2 JP S639174 B2 JPS639174 B2 JP S639174B2 JP 7860180 A JP7860180 A JP 7860180A JP 7860180 A JP7860180 A JP 7860180A JP S639174 B2 JPS639174 B2 JP S639174B2
Authority
JP
Japan
Prior art keywords
sheet
alumina
electrodes
cavity
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7860180A
Other languages
Japanese (ja)
Other versions
JPS574531A (en
Inventor
Tooru Ishida
Toshibumi Kamyama
Jun Yasuda
Akinobu Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7860180A priority Critical patent/JPS574531A/en
Publication of JPS574531A publication Critical patent/JPS574531A/en
Publication of JPS639174B2 publication Critical patent/JPS639174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 本発明は静電容量型圧力センサの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a capacitive pressure sensor.

圧力センサは、圧力によつてセラミツクダイヤ
フラムが変形し、電極間距離が変化することによ
つて、電極間に生ずる静電容量が変化することを
利用するものである。
A pressure sensor utilizes the fact that a ceramic diaphragm is deformed by pressure and the distance between the electrodes changes, thereby changing the capacitance generated between the electrodes.

従来、この種の圧力センサは、あらかじめ電極
を形成した2枚のセラミツクダイヤフラムを、あ
る距離を保つて電極を対向させて、ガラス等で接
着し、そののちダイヤフラム間に形成された空洞
を真空にして作製されていた。
Conventionally, this type of pressure sensor consists of two ceramic diaphragms on which electrodes have been formed, the electrodes facing each other with a certain distance between them, and glued together with glass or the like, and then the cavity formed between the diaphragms is evacuated. It was made by

この方法では、あらかじめ電極を形成する工程
やダイヤフラムをガラスで接着する工程などを必
要とし、製造が非常に煩しい。また、この方法で
はダイヤフラム間の空洞を真空にするためには、
セラミツクに孔をあけておく必要がある。この孔
の周辺に銀からなる金属膜を形成し、孔を通じて
空洞内を排気し、ダイヤフラム間の空洞を真空に
したのち、半田を用いて孔を封じる。この場合、
セラミツクと銀との接着強度は充分に強くなく、
ヒートシヨツクテストでその部分の接着が破壊さ
れるという現象が多く観察され、信頼性を悪くし
ているという欠点がある。
This method requires steps such as forming electrodes in advance and bonding the diaphragm with glass, making manufacturing very complicated. In addition, in this method, in order to create a vacuum in the cavity between the diaphragms,
It is necessary to drill holes in the ceramic. A metal film made of silver is formed around this hole, the inside of the cavity is evacuated through the hole, the cavity between the diaphragms is evacuated, and then the hole is sealed using solder. in this case,
The adhesive strength between ceramic and silver is not strong enough,
The problem is that the bond in that part is often broken during heat shock tests, which reduces reliability.

本発明は未焼成の状態で圧力センサの構造を形
成するという点ならびにメタライズ層がセラミツ
ク焼成時に形成され、大きな接着強度が得られる
という点で、従来の圧力センサの製造法を改善す
るものである。
The present invention improves conventional pressure sensor manufacturing methods in that the structure of the pressure sensor is formed in an unfired state, and that the metallized layer is formed during firing of the ceramic, resulting in greater bond strength. .

すなわち、本発明ではアルミナ粉と樹脂からな
るアルミナシートあるいはアルミナ粉と少量の樹
脂からなる加圧成形体にタングステンなどの高温
焼結金属インキを所定の形状にスクリーン印刷す
る。この未焼成アルミナ2枚を、その外径より小
さな気孔性樹脂の薄板を介して貼り合わせて、一
体とする。なお、焼結後、形成された空洞内を排
気し真空にするために、一方の未焼成アルミナ部
に孔を形成し、その周辺にも金属インキを印刷し
ておく。
That is, in the present invention, a high-temperature sintered metal ink such as tungsten is screen printed into a predetermined shape on an alumina sheet made of alumina powder and a resin or a press-molded body made of alumina powder and a small amount of resin. These two sheets of unsintered alumina are bonded together via a thin plate of porous resin smaller than the outer diameter of the unsintered alumina sheets. After sintering, in order to evacuate and create a vacuum inside the formed cavity, a hole is formed in one of the unsintered alumina parts, and metal ink is also printed around the hole.

上記のような未焼成アルミナを少量の水を含む
窒素と水素の混合ガス中で焼結することにより、
気化性樹脂が気化し、その部分に空洞が形成さ
れ、かつアルミナ部と金属インキ印刷部は焼結さ
れて緻密部が形成される。
By sintering the green alumina described above in a mixed gas of nitrogen and hydrogen containing a small amount of water,
The vaporizable resin is vaporized to form a cavity in that part, and the alumina part and the metal ink printed part are sintered to form a dense part.

なお、2放の電極間の静電容量を取り出すため
の電極端子を外部に形成する。
Note that an electrode terminal for taking out the capacitance between the two electrodes is formed outside.

上述のように焼結された試料を真空中に置い
て、試料内部につながる孔を低融点金属で封じ
る。
The sample sintered as described above is placed in a vacuum, and the hole leading to the inside of the sample is sealed with a low melting point metal.

このようにして得られた圧力センサは、それに
加えられる。圧力に変化に応じて電極間距離が変
化し、相対向する電極間の静電容量が変化する。
電極間に形成された空洞は真空に保たれているた
め、静電容量の変化が絶対圧力のそれに対応す
る。
The pressure sensor thus obtained is added to it. The distance between the electrodes changes in accordance with changes in pressure, and the capacitance between opposing electrodes changes.
Since the cavity formed between the electrodes is kept in a vacuum, the change in capacitance corresponds to that in absolute pressure.

以上述べてきたように、本発明の方法は未焼成
の状態で圧力センサの構造を形成し、焼成するこ
とにより、従来の方法に比べて工程を簡略化する
ことができ、またメタライゼーシヨンがセラミツ
ク焼成時に同時に行なわれるため、セラミツクと
メタライズ層の接着強度が大きく、信頼性が向上
するという利点を有する。
As described above, in the method of the present invention, the structure of the pressure sensor is formed in an unfired state and then fired, thereby simplifying the process compared to the conventional method. Since this is done simultaneously when firing the ceramic, it has the advantage of increasing the adhesive strength between the ceramic and the metallized layer and improving reliability.

以下、その一実施例について図面を用いて詳述
する。
Hereinafter, one embodiment will be described in detail with reference to the drawings.

まず、第1図Aの平面図ならびに同図Bの断面
図に示すように、径35mm、厚み0.6mmの未焼成ア
ルミナシート(アルミナ粉末と樹脂からなるシー
ト)1の一方の面にタングステンインキを径30mm
の円形パターンに印刷しておく。図の2がタング
ステンインキ塗布層である。一方、第2図Aの平
面図、同図Bの断面図に示すように、径35mm、厚
み2.4mmの未焼成アルミナシート3の一方の面に、
タングステンインキを径12mmの円形パターンに印
刷し、タングステンインキ塗布層4を形成する。
タングステンインキ塗布層2,4はそれぞれのシ
ート1,3の中心と一致するよう形成されてい
る。そして、これらは、後述するように焼成後に
は静電容量測定用の電極となるものである。その
ため、たとえば、シート3の外周寄りの位置にス
ルーホール接続用の導電部分5,6を、第2図B
に示すように形成しておく。導電部分5はタング
ステンインキ塗布層4には接続されず、シート
1,3を重ねたときに前者のタングステンインキ
塗布層2に接続される位置に設けられている。ま
た、導電部分6はシート3のタングステンインキ
塗布層4と接続される位置に設けられている。さ
らに、シート3には、その周から5mmの位置に、
後述のように空洞形成後にその内部を排気するた
めの径1mmの孔7が設けられており、さらにタン
グステンインキ塗布層4とは反対側の開口周縁部
分にタングステンインキ塗布層8が形成されてい
る。
First, as shown in the plan view of Fig. 1A and the cross-sectional view of Fig. Diameter 30mm
Print it in a circular pattern. 2 in the figure is the tungsten ink coating layer. On the other hand, as shown in the plan view of FIG. 2A and the cross-sectional view of FIG.
Tungsten ink is printed in a circular pattern with a diameter of 12 mm to form a tungsten ink coating layer 4.
The tungsten ink coating layers 2 and 4 are formed to coincide with the centers of the respective sheets 1 and 3. These will serve as electrodes for capacitance measurement after firing, as will be described later. Therefore, for example, conductive parts 5 and 6 for through-hole connection are placed near the outer periphery of the sheet 3 as shown in FIG.
Form as shown. The conductive portion 5 is not connected to the tungsten ink coating layer 4, but is provided at a position where it is connected to the tungsten ink coating layer 2 of the former when the sheets 1 and 3 are stacked. Further, the conductive portion 6 is provided at a position connected to the tungsten ink coating layer 4 of the sheet 3. Furthermore, on the seat 3, at a position 5 mm from the circumference,
As will be described later, a hole 7 with a diameter of 1 mm is provided for exhausting the inside after the cavity is formed, and a tungsten ink coating layer 8 is further formed at the periphery of the opening on the opposite side from the tungsten ink coating layer 4. .

このようにして準備したシート3のタングステ
ンインキ塗布層4側の面上に、厚み30μmのブチ
ラール樹脂膜9を置き、さらにその上にシート1
をそのタングステンインキ塗布層2がシート3側
に位置するよう重ねた。この状態で熱圧着してシ
ート1とブチラール樹脂膜9、シート3を一体化
した。ここで、ブチラール樹脂膜9に代えて、シ
ート1またはシート3のいずれか一方にスクリー
ン印刷法によつて、樹脂層を形成してもよい。
A butyral resin film 9 with a thickness of 30 μm is placed on the surface of the sheet 3 prepared in this way on the tungsten ink coating layer 4 side, and the sheet 1
were stacked so that the tungsten ink coating layer 2 was located on the sheet 3 side. In this state, the sheet 1, the butyral resin film 9, and the sheet 3 were integrated by thermocompression bonding. Here, instead of the butyral resin film 9, a resin layer may be formed on either the sheet 1 or the sheet 3 by screen printing.

それから、上述の一体未焼成構造物を、H2
10%、N2が90%の混合ガス雰囲気中において焼
成した。これにより、第4図に示すように、シー
ト1,3は一体となつて焼結され、シルミナダイ
ヤフラム10となり、内部にブチラール樹脂膜9
の気化による空洞11が形成された。そして、空
洞11の上下両面にそれぞれ電極12,13が形
成され、これらとそれぞれ接続されているスルー
ホール接続部分5′,6′が形成された。また、空
洞11に通じる孔7の開口周縁部分にも、メタラ
イズ層14が形成された。このメタライズ層14
に、後述の封口を容易にかつ確実なものにするた
めに、ニツケルメツキを施した。
Then, the above-mentioned monolithic green structure was
10% and N2 in a mixed gas atmosphere of 90%. As a result, as shown in FIG. 4, the sheets 1 and 3 are sintered together to form a Silumina diaphragm 10, with a butyral resin film 9 inside.
A cavity 11 was formed due to the vaporization. Then, electrodes 12 and 13 were formed on the upper and lower surfaces of the cavity 11, respectively, and through-hole connection portions 5' and 6' connected to these electrodes, respectively, were formed. Further, the metallized layer 14 was also formed on the opening periphery of the hole 7 communicating with the cavity 11. This metallized layer 14
In order to make the sealing described later easier and more reliable, nickel plating was applied to the case.

その後、この試料を真空炉内に入れ、真空中に
て850℃で熱し、孔7を銅―銀共晶ろうで封じた。
Thereafter, this sample was placed in a vacuum furnace and heated at 850° C. in vacuum, and the hole 7 was sealed with copper-silver eutectic solder.

以上のようにして得られたダイヤフラム10は
外気圧に応じて変形し、電極12,13間距離が
変化する。したがつて、電極12,13間の静電
容量によつて、外気圧を検出することができる。
具体的には、初期容量が約50pFであり、気圧128
〜788mmHgの範囲で静電容量の変化が15±2pFで
あつた。
The diaphragm 10 obtained as described above deforms according to the external pressure, and the distance between the electrodes 12 and 13 changes. Therefore, the external pressure can be detected by the capacitance between the electrodes 12 and 13.
Specifically, the initial capacitance is approximately 50 pF and the atmospheric pressure is 128
The change in capacitance was 15±2 pF in the range of ~788 mmHg.

さらに、−40℃と125℃の熱衝撃を30サイクル/
分の割合で加えてみたが、なんら異常を認めるこ
とができなかつた。
Furthermore, thermal shock at −40℃ and 125℃ was applied for 30 cycles/
I tried adding it at the same rate, but I couldn't find any abnormalities.

以上の実施例では、未焼成シートを使用して、
一体化し、焼成しているが、必要に応じてシート
に代えてアルミナ粉末と樹脂との混合物からなる
加圧成形体を使用してもよい。
In the above examples, an unfired sheet is used,
Although they are integrated and fired, a press-molded body made of a mixture of alumina powder and resin may be used in place of the sheet if necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明にかかる圧力センサの製造方法の
一実施例を説明するためのもので、第1図A,B
はそれぞれ一方の未焼成アルミナシートの平面
図、断面図、第2図A,Bはそれぞれ他方の未焼
成アルミナシートの平面図、断面図、第3図は積
層状態を示す図、第4図は焼成後の状態を示す図
である。 1……未焼成アルミナシート、2……タングス
テンインキ塗布層、3……未焼成アルミナシー
ト、4……タングステンインキ塗布層、5,6…
…導電部分、7……孔、8……タングステンイン
キ塗布層、9……ブチラール樹脂膜、10……ア
ルミナダイヤフラム、11……空洞、12,13
……電極、14……メタライズ層、5′,6′……
スルーホール接続部分。
The drawings are for explaining one embodiment of the method for manufacturing a pressure sensor according to the present invention, and FIGS.
2A and 2B are plan views and sectional views of the other unsintered alumina sheet, respectively, FIG. 3 is a diagram showing the laminated state, and FIG. 4 is a diagram showing the laminated state. It is a figure which shows the state after baking. 1... unfired alumina sheet, 2... tungsten ink coating layer, 3... green alumina sheet, 4... tungsten ink coating layer, 5, 6...
...Conductive part, 7... Hole, 8... Tungsten ink coating layer, 9... Butyral resin film, 10... Alumina diaphragm, 11... Cavity, 12, 13
...Electrode, 14...Metallized layer, 5', 6'...
Through-hole connection part.

Claims (1)

【特許請求の範囲】[Claims] 1 一方の面にそれぞれ焼成により電極層となる
物質の層を形成した未焼成アルミナシートまたは
アルミナ加圧成型体を、前記層が対向するよう、
焼成時に気化する物質を介して、一体化し、それ
を焼成して、内部に空胴を有する焼結体を形成す
ることを特徴とする静電容量型圧力センサの製造
方法。
1. An unfired alumina sheet or an alumina pressure-molded body on which a layer of a substance to be an electrode layer is formed by firing on one side, so that the layers face each other,
A method for manufacturing a capacitive pressure sensor, which comprises integrating the material through a substance that vaporizes during firing, and firing it to form a sintered body having a cavity inside.
JP7860180A 1980-06-10 1980-06-10 Manufacture of electrostatic capacity type pressure sensor Granted JPS574531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7860180A JPS574531A (en) 1980-06-10 1980-06-10 Manufacture of electrostatic capacity type pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7860180A JPS574531A (en) 1980-06-10 1980-06-10 Manufacture of electrostatic capacity type pressure sensor

Publications (2)

Publication Number Publication Date
JPS574531A JPS574531A (en) 1982-01-11
JPS639174B2 true JPS639174B2 (en) 1988-02-26

Family

ID=13666414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7860180A Granted JPS574531A (en) 1980-06-10 1980-06-10 Manufacture of electrostatic capacity type pressure sensor

Country Status (1)

Country Link
JP (1) JPS574531A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035609A (en) * 1983-08-06 1985-02-23 Ohtsu Tire & Rubber Co Ltd Radial tire
IT1203535B (en) * 1986-02-10 1989-02-15 Marelli Autronica PROCEDURE FOR THE REALIZATION OF THE MECHANICAL AND ELECTRICAL CONNECTION BETWEEN TWO BODIES IN PARTICULAR BETWEEN THE MEMBRANE AND THE SUPPORT OF A THICK FILM PRESSURE SENSOR AND DEVICES REALIZED WITH SUCH PROCEDURE
JPS63292032A (en) * 1987-05-26 1988-11-29 Ngk Insulators Ltd Pressure detector
DE3909185A1 (en) * 1989-03-21 1990-09-27 Endress Hauser Gmbh Co CAPACITIVE PRESSURE SENSOR AND METHOD FOR THE PRODUCTION THEREOF
JP2718563B2 (en) * 1990-08-28 1998-02-25 日本特殊陶業株式会社 Pressure detector
ES2212297T3 (en) 1997-06-13 2004-07-16 Bridgestone Corporation ROBUST RADIAL TIRES.
JP5305644B2 (en) * 2006-12-25 2013-10-02 京セラ株式会社 PACKAGE FOR PRESSURE SENSOR, MANUFACTURING METHOD THEREOF, AND PRESSURE SENSOR
JP2010008115A (en) * 2008-06-25 2010-01-14 Kyocera Corp Base for pressure detection apparatus and pressure-detecting apparatus

Also Published As

Publication number Publication date
JPS574531A (en) 1982-01-11

Similar Documents

Publication Publication Date Title
EP0596711B1 (en) Method of fabricating a capacitive pressure transducer
US5544399A (en) Method for making a pressure transducer
KR100545928B1 (en) Capacitive vacuum measuring cell
US5499158A (en) Pressure transducer apparatus with monolithic body of ceramic material
US5695590A (en) Anodic bonding method for making pressure sensor
US7316163B2 (en) Method of forming a seal between a housing and a diaphragm of a capacitance sensor
JPH03501060A (en) Capacitive pressure sensor and its manufacturing method
US6528008B1 (en) Process for producing membrane for capacitive vacuum measuring cell
US5740594A (en) Method for making a fluid pressure transducer
US5485345A (en) Pressure transducer apparatus
JPS639174B2 (en)
US5655209A (en) Multilayer ceramic substrates having internal capacitor, and process for producing same
US5486976A (en) Pressure transducer apparatus having a rigid member extending between diaphragms
CN112834084A (en) Ceramic capacitive pressure sensor core and manufacturing method thereof
US6245185B1 (en) Method of making a multilayer ceramic product with thin layers
JP5100283B2 (en) Sensor package, sensor, and method for manufacturing sensor package
JP4266886B2 (en) Ceramic element and manufacturing method thereof
JP2018120918A (en) Ceramic package, electronic component device, and method for manufacturing ceramic package
JPH0378307A (en) Vessel for surface mounted type piezoelectric vibrator
JP5361464B2 (en) Method for manufacturing pressure sensor container
JP2007163299A (en) Pressure sensor and manufacturing method therefor
JP2006177919A (en) Pressure sensor
JP4974424B2 (en) Package for pressure detection device
JP4646391B2 (en) Gas sensor
JP3301915B2 (en) Package for housing semiconductor element and method of manufacturing the same