JPS6390379A - Groove machining method for ceramic - Google Patents

Groove machining method for ceramic

Info

Publication number
JPS6390379A
JPS6390379A JP61235055A JP23505586A JPS6390379A JP S6390379 A JPS6390379 A JP S6390379A JP 61235055 A JP61235055 A JP 61235055A JP 23505586 A JP23505586 A JP 23505586A JP S6390379 A JPS6390379 A JP S6390379A
Authority
JP
Japan
Prior art keywords
laser beam
ceramic member
ceramic
axis
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61235055A
Other languages
Japanese (ja)
Inventor
Katsuya Ouchi
大内 勝哉
Yoshifumi Yamamoto
義史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61235055A priority Critical patent/JPS6390379A/en
Publication of JPS6390379A publication Critical patent/JPS6390379A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Abstract

PURPOSE:To perform accurate groove machining without increasing the depth and width of a formed groove by adjusting the focusing position of a laser beam projected on the surface of a ceramic member and moving the laser beam and ceramic part relatively in the axial directions. CONSTITUTION:The ceramic member (silicon nitride, etc.) 1 is rotated around an axis X. The surface of said member 1 is irradiated with, for example, CO2 laser beam A from above through a condenser lens 2 so that the irradiation direction accords with the tangential direction. Then, the laser beam is moved so that the focusing position Y of the laser beam A moves away from the axis X by a specified offset angle theta. Therefore, even if the surface temperature of the ceramic member 1 rises according to machining, the heat value at the irradiation position is held constant because of a decrease in the irradiation energy. The fused body of ceramic is blown away with the laser beam A. This method reduces an error in the size of the formed groove and provides the accurate machining.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、柱状の窒化珪素系セラミック部材の表面に溝
加工を施す方法に関し、特に溝加工精度の向上対策に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming grooves on the surface of a columnar silicon nitride-based ceramic member, and particularly relates to measures for improving groove processing accuracy.

(従来の技術) 最近、セラミックは高温強度が高くかつ耐熱衝撃性が優
れていることから、各種の産業分野において広汎に用い
られている。そして、セラミック部材の表面に加工を施
す方法としては、従来より放電加工1機械加工等が一般
に採用されている。
(Prior Art) Ceramics have recently been widely used in various industrial fields because they have high high-temperature strength and excellent thermal shock resistance. As a method for processing the surface of a ceramic member, electric discharge machining 1 machining and the like have been generally employed.

一方、例えば特開昭55−45593号公報に開示され
ているように、工作物を軸心回りに回転させながらレー
ザビームをその表面に照射して該照射箇所を溶融させる
ことにより、工作物に部分的に径の異なる段付き部を形
成する方法が知られている。
On the other hand, for example, as disclosed in Japanese Patent Application Laid-Open No. 55-45593, a laser beam is irradiated onto the surface of the workpiece while the workpiece is rotated around its axis, and the irradiated area is melted. A method of forming stepped portions having partially different diameters is known.

(発明が解決しようとする問題点) ところが、上記従来の前者の方法では、セラミックが窒
化珪素系のものである場合には、窒化珪素が絶縁性であ
るため上記放電加工を施すことができない。また、窒化
珪素系セラミックは難加工材料であるため一般にグイヱ
モンド砥石による機械加工が行われるが、加工し得る形
状に制限があること等から、複雑な形状に加工したり特
にねじ切り加工等高寸法精度が要求される溝加工には不
向きで必る。
(Problems to be Solved by the Invention) However, in the former conventional method, if the ceramic is silicon nitride-based, the electric discharge machining cannot be performed because silicon nitride is insulating. In addition, silicon nitride ceramic is a difficult-to-process material, so it is generally machined using a Guiemondo grindstone, but since there are restrictions on the shapes that can be machined, it is difficult to process it into complex shapes, or in particular, with high dimensional accuracy such as thread cutting. It is unsuitable for groove machining that requires.

そこで、柱状の窯化珪素系セラミック部材に上述の如き
ねじ切り加工等高寸法精度の要求される溝加工を施す場
合に、上記従来の後者の方法を採用して、柱状の窯化珪
素系セラミック部材を軸心回りに回転させながらその表
面にレーザビームを照射しつつ走査させ、この照射エネ
ルギでもってセラミック部材のビーム照射箇所を溶融・
昇華させることにより、窒化珪素系セラミック部材の表
面にねじ切り加工等の溝加工を施すことが考えられる。
Therefore, when performing groove processing that requires high dimensional accuracy, such as thread cutting as described above, on a columnar silicon-based ceramic member, the conventional latter method described above is adopted. While rotating the ceramic member around its axis, a laser beam is irradiated and scanned on the surface of the ceramic member, and the irradiation energy is used to melt and melt the beam irradiated area of the ceramic member.
It is conceivable to perform groove processing such as thread cutting on the surface of the silicon nitride ceramic member by sublimation.

ところが、上述の如きレーザビームによる溝加工方法で
は、セラミック部材の表面温度が加工の進行に伴って上
昇することから、レーザビームの照射エネルギを同一に
設定していてもビーム照射終期ではビーム照射初期に比
べて照射箇所の熱母が増大する結果、セラミック表面に
形成される溝はビーム照射初期から終期にいくに従って
その深さおよび幅が漸次増大して精度良く溝加工を行う
ことができないという問題が必る。
However, in the groove machining method using a laser beam as described above, the surface temperature of the ceramic member increases as the machining progresses. As a result of the increased thermal mass at the irradiated area compared to the previous beam irradiation, the depth and width of the grooves formed on the ceramic surface gradually increase from the initial stage to the final stage of beam irradiation, making it impossible to precisely process the grooves. is necessary.

本発明はかかる点に鑑みてなされたものであり、その目
的とするところは、上述の如く柱状の窒化珪素系セラミ
ック部材の表面にねじ切り加工等の溝加工を施す場合に
、上記セラミック部材に対するレーザビームの照射エネ
ルギ量をビーム照射初期から終期にかけて異ならせるよ
うコントロールすることにより、上記セラミック部材の
表面温度がhO工の進行に伴って上昇しても、ビーム照
射初期から終期に亘って照射箇所の熱分を常に一定に保
持し得、これによりセラミック部材の表面に形成される
溝はビーム照射初期から終期にいくに従ってその深さお
よび幅が漸次増大することがなく、よって精度良く溝加
工をなし得るようにすることにある。
The present invention has been made in view of the above, and an object of the present invention is to apply a laser beam to the columnar silicon nitride ceramic member when groove processing such as thread cutting is performed on the surface of the columnar silicon nitride ceramic member as described above. By controlling the amount of beam irradiation energy to vary from the beginning to the end of beam irradiation, even if the surface temperature of the ceramic member increases as the HO process progresses, the irradiation area remains stable from the beginning to the end of beam irradiation. The heat content can always be kept constant, and as a result, the depth and width of the grooves formed on the surface of the ceramic member do not gradually increase from the beginning to the end of beam irradiation, making it possible to form grooves with high precision. It's about trying to get it.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、柱状
の窒化珪素系セラミック部材の表面に溝加工を施す方法
を対象とし、この場合、上記セラミック部材を軸心回り
に回転させた状態でその表面にレーザビームを照射方向
が接線方向になるよう照射し、かつこのレーザビームと
上記セラミック部材とをビーム焦光位置がセラミック部
材の軸心から漸次遠ざかるようセラミック部材の軸心方
向に相対的に移動させる方法にする。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention is directed to a method of forming grooves on the surface of a columnar silicon nitride ceramic member. A laser beam is irradiated onto the surface of the ceramic member while it is being rotated around its axis so that the irradiation direction is tangential, and the beam focusing position of the laser beam and the ceramic member gradually moves away from the axis of the ceramic member. This method involves relatively moving the ceramic member in the axial direction.

(作用) 上記の構成により、本発明では、レーザビームが、セラ
ミック部材を軸心回りに回転させた状態でその表面に照
射方向が接線方向になるよう照射される。この場合、上
記レーザビームとセラミック部材とはビーム焦光位置が
セラミック部材の軸心から漸次遠ざかるようセラミック
部材の軸心方向に相対的に移動させられることから、セ
ラミック部材の表面温度が加工の進行に伴って上昇して
も、その上昇温度に相当してセラミック部材に対する上
記レーザビームの照射エネルギ但が減少せしめられ、こ
れにより照射箇所の熱dがビーム照射初期から終期に亘
って常に一定となる。したがって、セラミック部材の表
面に形成される溝はビーム照射初期から終期にいくに従
ってその深さおよび幅が漸次増大することがなく、よっ
て精度良く溝加工が行われることとなる。
(Function) With the above configuration, in the present invention, the laser beam is irradiated onto the surface of the ceramic member while the ceramic member is rotated around the axis so that the irradiation direction is tangential. In this case, the laser beam and the ceramic member are moved relative to each other in the axial direction of the ceramic member so that the beam focus position gradually moves away from the axis of the ceramic member, so that the surface temperature of the ceramic member increases as the machining progresses. Even if the irradiation energy of the laser beam on the ceramic member is reduced in proportion to the increased temperature, the heat d of the irradiated area remains constant from the beginning to the end of the beam irradiation. . Therefore, the depth and width of the grooves formed on the surface of the ceramic member do not gradually increase from the initial stage to the final stage of beam irradiation, so that groove processing can be performed with high precision.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図および第2図は本発明の実施例に係るセラミック
溝加工方法をねじ切り加工に適用した場合を示し、その
加工要領を説明するに、まず、ねじ切り加工の対象とし
て直径25簡、長さ150履の丸棒からなる常圧焼結製
の窒化珪素系セラミック部材1を用意する。そして、上
記セラミック部材1を図示しない加工装置に水平にセッ
トし、セラミック部材1を上記加工装置の作動により軸
心X回りに7.96rpmの回転数でもって回転させた
状態で、その表面に例えば出力800WのCO2レーザ
ビームAを上方から集光レンズ2を通して照射方向が接
線方向になるよう照射しつつ、セラミック部材1の軸心
Xと平行に軸心方面へ第1図実線にて示す状態から同図
仮想線にて示す状態へと走査させる。
Figures 1 and 2 show the case where the ceramic groove processing method according to the embodiment of the present invention is applied to thread cutting.To explain the processing procedure, first, the thread cutting target is 25 mm in diameter and 25 mm in length. A pressureless sintered silicon nitride ceramic member 1 consisting of 150 round bars is prepared. Then, the ceramic member 1 is set horizontally in a processing device (not shown), and while the ceramic member 1 is rotated around the axis X at a rotation speed of 7.96 rpm by the operation of the processing device, the surface of the ceramic member 1 is While irradiating the CO2 laser beam A with an output of 800 W from above through the condensing lens 2 so that the irradiation direction is tangential, it is parallel to the axis X of the ceramic member 1 in the direction of the axis from the state shown by the solid line in Figure 1. Scanning is performed to the state shown by the imaginary line in the figure.

そして、本発明の特徴として、上記CO2レーザビーム
Aをセラミック部材1の軸心X方向に移動させるに従っ
て所定のオフセット角度θだけ軸心Xから漸次遠ざかる
ように移動させる。
As a feature of the present invention, as the CO2 laser beam A is moved in the direction of the axis X of the ceramic member 1, it is moved so as to gradually move away from the axis X by a predetermined offset angle θ.

具体的には、上記オフセット角度θはねじの谷径やねじ
部の長さ等ねじ形状によって任意に設定され、本実施例
では、上記オフセット角度θを5°に設定した。また、
上記CO2レーザビームAのビーム送り速度(走査速度
)は7.96s/mi口に設定されていて、このCO2
レーザビームAを焦点距離が127騎に設定された集光
レンズ2を通して上記セラミック部材1のねじ部形成箇
所に相当する表面つまり軸端から軸心方向に向かって5
5馴の距離に亘る表面に照射する。このC02レーザビ
ームAの照射と同時にアシストガスとしてアルゴンガス
をガス圧2.0KI/cmの条件で上記セラミック部材
1の表面に噴き付けて上記C02レーザビームAにより
溶融せしめられたセラミック溶融物を噴き飛ばすように
する。このとき、CO2レーザビームAのビーム焦光位
置Yが上記セラミック部材1の軸心Xに対し上方に所定
距離Ω1例えば3mだけ離れた位置に位置するように上
記集光レンズ2をセラミック部材1の上方に配置する。
Specifically, the offset angle θ is arbitrarily set depending on the thread shape such as the root diameter of the thread and the length of the threaded portion, and in this example, the offset angle θ is set to 5°. Also,
The beam feeding speed (scanning speed) of the above CO2 laser beam A is set to 7.96 s/mi, and this CO2
The laser beam A is passed through a condensing lens 2 whose focal length is set to 127 cm, and is directed toward the axial center from the surface of the ceramic member 1 corresponding to the threaded portion formation location, that is, from the shaft end.
The surface is irradiated over a distance of 5 cm. Simultaneously with the irradiation with this C02 laser beam A, argon gas as an assist gas is sprayed onto the surface of the ceramic member 1 at a gas pressure of 2.0 KI/cm to spray the ceramic melt melted by the C02 laser beam A. Make it fly. At this time, the condenser lens 2 is placed on the ceramic member 1 so that the beam focal position Y of the CO2 laser beam A is located at a predetermined distance Ω1, for example, 3 m, above the axis X of the ceramic member 1. Place it above.

そして、上記セラミック部材1に対するCO2L/  
’ft、’−ムAの光軸Cは、該CO2L’−ザビーム
Aのビーム照射初期位置(第1図実線にて示す位置)と
ビーム照射終期位置く第1図仮想線にて示す位置)とで
所定圧112例えば0.5mだけ半径方向外側にオフセ
ットされている。
Then, CO2L/
'ft,' - The optical axis C of the beam A is the initial position of the beam irradiation (the position shown by the solid line in Figure 1) and the final position of the beam irradiation (the position shown by the imaginary line in Figure 1) of the CO2L'-the beam A. The predetermined pressure 112 is offset radially outward by, for example, 0.5 m.

このようにしてねじ切り加工した本実施例<I>による
ねじ部の加工仕上がり状態を、上記オフセット1lfl
zが0.28.0.7mにそれぞれ設定された実施例(
n)、  (In>およびオフセット徂g2が零に設定
された比較例の加工仕上がり状態と比較したデータを下
記の表1に示す。なお、表1中、山径および谷径の末尾
に付した(a)はねじ先端から数えて1番目のものを、
(b)は25番目のものを、(0〉は50番目のものを
それぞれ示す。ざらに、表1に記した数値の単位は仝て
mである。
The finished state of the threaded part according to this embodiment <I>, which was threaded in this way, is shown at the offset 1lfl above.
Example in which z is set to 0.28 and 0.7 m, respectively (
Table 1 below shows the data compared with the machining finish state of a comparative example in which (In> and offset g2 are set to zero. (a) is the first one counting from the screw tip,
(b) indicates the 25th one, and (0> indicates the 50th one.) In general, the units of numerical values shown in Table 1 are m.

表1 このデータから判るように、実施例(1)では、ねじの
山径の最大変動値が0.07m、谷径の最大変動値が0
.12mと小ざく、ねじ部会長に亘って均一なねじ切り
を行うことができたが、比較例では、山径の最大変動値
が0.78m、谷径の最大変動値が2.19mと大きく
、しかもねじ切り加工が進んでいくに従って山径および
谷径共に小さくなってねじ部会長に亘って均一なねじ切
りを行うことができなかった。これはCOzレーザビー
ムAのオフセット但g2が零であるためにセラミック部
材の表面温度が加工の進行に伴って上昇し、ビーム照射
終期ではビーム照射初期に比べて照射箇所の熱分が増大
する結果、ビーム照射初期から終期にいくに従ってセラ
ミック部材1の表面に形成されるねじ谷の深さおよび幅
が漸次贈大することによるものである。
Table 1 As can be seen from this data, in Example (1), the maximum variation value of the thread diameter was 0.07 m, and the maximum variation value of the thread diameter was 0.
.. Although it was possible to cut a thread uniformly over the length of the screw section, which was as small as 12 m, in the comparative example, the maximum variation in the peak diameter was 0.78 m, and the maximum variation in the root diameter was large, at 2.19 m. Moreover, as thread cutting progresses, both the thread diameter and the root diameter become smaller, making it impossible to cut threads uniformly over the length of the threaded portion. This is because the offset g2 of the COz laser beam A is zero, so the surface temperature of the ceramic member increases as processing progresses, and the heat content of the irradiated area increases at the end of the beam irradiation compared to the beginning of the beam irradiation. This is because the depth and width of the thread grooves formed on the surface of the ceramic member 1 gradually increase as the beam irradiation progresses from the initial stage to the final stage.

また、実施例(I[>では、山径の最大変動値が0.5
9m、谷径の最大変動値が1.50rnMと上記比較例
より小さくなっていることが判る。しかし、比較例の場
合と同様にねじ部会長に亘って均一なねじ切りを行うこ
とができなかった。これは実施例(I)に比べてオフセ
ット’M’J2が小さいことに起因するものである。
In addition, in the example (I [>), the maximum variation value of the mountain diameter is 0.5
It can be seen that the maximum fluctuation value of the valley diameter is 1.50 rnM, which is smaller than that of the comparative example. However, as in the case of the comparative example, uniform thread cutting could not be performed over the length of the threaded portion. This is due to the fact that the offset 'M'J2 is smaller than that in Example (I).

ざらに、実施例(III)では、山径の最大変動値が0
.08M、谷径の最大変動値が0.99%と上記比較例
および実施例(n)より小ざくなって実施例(I>と大
差がないが、この場合は上記比較例および実施例(I[
>の場合とは逆にねじ切り加工が進んでいくに従って山
径および谷径共に大きくなった。これはCO2レーザビ
ームAのオフセットll1D2が大きいために加工の進
行に伴って特に加工終期に近付くに従ってCO2レーザ
ビームAの照射エネルギ聞が少なくなることに起因する
ものである。
Roughly speaking, in Example (III), the maximum variation value of the mountain diameter is 0.
.. 08M, the maximum variation value of the valley diameter is 0.99%, which is smaller than that of the comparative example and example (n), and is not much different from the example (I>); [
>Contrary to the case above, as the thread cutting process progressed, both the crest and trough diameters increased. This is because the offset ll1D2 of the CO2 laser beam A is large, so that the irradiation energy of the CO2 laser beam A decreases as the machining progresses, particularly as it approaches the final stage of the machining.

このように上記オフセット量Ω2如何によってはねじ切
り加工精度に変動が生ずるが、形成すべきねじ形状およ
びレーザビーム照射条件等に応じてUNなオフセットm
H2を設定することで解決することができるものである
In this way, the thread cutting accuracy will vary depending on the offset amount Ω2, but depending on the thread shape to be formed and the laser beam irradiation conditions, the UN offset m
This can be solved by setting H2.

なお、上記実施例では、セラミック部材1に対しCO2
レーザビームAを移動させたが、これとは逆にCO2レ
ーザビームAを定位置に位置付けした状態で、セラミッ
ク部材1を回転させつつその軸心方向に移動させるよう
にすることも採用可能である。
In addition, in the above embodiment, CO2 is not applied to the ceramic member 1.
Although the laser beam A is moved, it is also possible to move the ceramic member 1 in the axial direction while rotating the ceramic member 1 with the CO2 laser beam A positioned at a fixed position. .

また、上記実施例では、セラミック部材に対しねじ切り
加工を施す場合について示したが、これに限らず、例え
ば自動車等車両用エンジン部品の一部を耐熱特性等の向
上を図るべく窯化珪素系セラミックで構成し、これをア
ルミニウム合金で鋳くるむ際に、セラミックとアルミニ
ウム合金との結合強度を高めるためにセラミック表面に
予め凹凸を形成する等、その他のあらゆる溝加工にも適
用できることはいうまでもない。
Further, in the above embodiment, a case where a thread cutting process is performed on a ceramic member is shown, but the invention is not limited to this. For example, in order to improve the heat resistance characteristics of some engine parts for vehicles such as automobiles, silicon-based ceramics are used. Needless to say, it can also be applied to all other types of groove processing, such as forming irregularities on the ceramic surface in advance to increase the bonding strength between the ceramic and the aluminum alloy when casting this with aluminum alloy. .

(発明の効果) 以上説明したように、本発明によれば、柱状の窒化珪素
系セラミック部材を軸心回りに回転させた状態でその表
面にレーザビームを照射する。この場合、上記レーザビ
ームをセラミック部材の接線方向に照射し、かつレーザ
ビームとセラミック部材とをビーム焦光位置がセラミッ
ク部材の軸心から漸次遠ざかるようセラミック部材の軸
心方向に相対的に移動させるようにするので、上記セラ
ミック部材の表面温度が加工の進行に伴って上昇しても
、ビーム照射初期から終期に亘って照射箇所の熱是を常
に一定に保持し得、これによりセラミック部材の表面に
形成される溝はビーム照射初期から終期に亘って寸法誤
差が少なくなり、よって精度良く溝加工を行うことがで
きる。
(Effects of the Invention) As described above, according to the present invention, the surface of a columnar silicon nitride ceramic member is irradiated with a laser beam while being rotated about its axis. In this case, the laser beam is irradiated in the tangential direction of the ceramic member, and the laser beam and the ceramic member are moved relative to each other in the axial direction of the ceramic member so that the beam focus position gradually moves away from the axis of the ceramic member. Therefore, even if the surface temperature of the ceramic member increases as processing progresses, the heat distribution of the irradiated area can be maintained constant from the initial stage to the final stage of beam irradiation. The grooves formed in the grooves have less dimensional error from the initial stage to the final stage of beam irradiation, so that groove processing can be performed with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るセラミック溝加工方法を
ねじ切り加工に適用した場合における加工要領を示す斜
視図、@2図はセラミック部材に対するCO2レーザビ
ームの位置関係を示す側面図である。 1・・・セラミック部材、A・・・CO2レーザビーム
、C・・・光軸、X・・・軸心、Y・・・ビーム焦光位
置、g2・・・オフセット量、θ・・・オフセット角度
。 二・ 一゛! 第1図 第2図
FIG. 1 is a perspective view showing the processing procedure when the ceramic groove processing method according to the embodiment of the present invention is applied to thread cutting, and FIG. 2 is a side view showing the positional relationship of the CO2 laser beam with respect to the ceramic member. 1...Ceramic member, A...CO2 laser beam, C...optical axis, X...axis center, Y...beam focal position, g2...offset amount, θ...offset angle. Two, one! Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)柱状の窒化珪素系セラミック部材の表面に溝加工
を施す方法であつて、上記セラミック部材を軸心回りに
回転させた状態でその表面にレーザビームを照射方向が
接線方向になるよう照射し、かつこのレーザビームと上
記セラミック部材とをビーム焦光位置がセラミック部材
の軸心から漸次遠ざかるようセラミック部材の軸心方向
に相対的に移動させることを特徴とするセラミックの溝
加工方法。
(1) A method of forming grooves on the surface of a columnar silicon nitride ceramic member, in which the ceramic member is rotated around its axis and the surface is irradiated with a laser beam so that the irradiation direction is tangential. A method for machining grooves in ceramic, characterized in that the laser beam and the ceramic member are moved relative to each other in the axial direction of the ceramic member so that the beam focal position gradually moves away from the axial center of the ceramic member.
JP61235055A 1986-10-02 1986-10-02 Groove machining method for ceramic Pending JPS6390379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235055A JPS6390379A (en) 1986-10-02 1986-10-02 Groove machining method for ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235055A JPS6390379A (en) 1986-10-02 1986-10-02 Groove machining method for ceramic

Publications (1)

Publication Number Publication Date
JPS6390379A true JPS6390379A (en) 1988-04-21

Family

ID=16980416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235055A Pending JPS6390379A (en) 1986-10-02 1986-10-02 Groove machining method for ceramic

Country Status (1)

Country Link
JP (1) JPS6390379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045581A (en) * 2010-08-27 2012-03-08 Mitsubishi Materials Corp Laser processing method
CN103084732A (en) * 2011-10-27 2013-05-08 三菱综合材料株式会社 Laser processing device and laser processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045581A (en) * 2010-08-27 2012-03-08 Mitsubishi Materials Corp Laser processing method
CN103084732A (en) * 2011-10-27 2013-05-08 三菱综合材料株式会社 Laser processing device and laser processing method
JP2013091095A (en) * 2011-10-27 2013-05-16 Mitsubishi Materials Corp Laser processing apparatus and laser processing method

Similar Documents

Publication Publication Date Title
JP4520644B2 (en) Method for forming a hole in a workpiece using a laser beam
CN102189335B (en) For the manufacture of laser processing device and the method for rotation symmetric tool
US4455893A (en) Method in producing a mould for a lens
JP2005501749A (en) Steel cutting method for rotationally symmetric surfaces without twisting
CN110625401B (en) Processing device and method under laser-induced material coupling reaction
JP2012016735A (en) Laser beam machining device and laser beam machining method
US20080273253A1 (en) Method for producing mold for zonal optical element
CN110052703A (en) Continuous laser and ULTRASONIC COMPLEX surface micro-fabrication system and method
JP2003025118A (en) Diamond tool for cutting
JP2007245336A (en) Machining tool for precise machining, having recessed cutting surface, and method of producing the same
JP2011175076A (en) Fresnel lens and fresnel lens molding die, and method for manufacturing fresnel lens and method for manufacturing fresnel lens molding die
CN111375901A (en) Method for machining cutter through laser turning and milling combination
JPS6390379A (en) Groove machining method for ceramic
JP6980216B2 (en) Cutting tool manufacturing method
CN210435558U (en) Drilling device with controllable taper in femtosecond laser processing
CN110722468B (en) Grinding wheel manufacturing device and method for orderly arranging abrasive particles based on laser trimming
JPS6147641B2 (en)
JP2012045581A (en) Laser processing method
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JPH0366488A (en) Laser beam drilling method
JP2001162429A (en) Grooving method and grooving tool
JP2001239384A (en) Laser cutting method and it&#39;s apparatus
JP2935234B2 (en) Groove cutting method
JP2018039101A (en) Manufacturing method of cutting tool and honing face formation device
Xie et al. The Design and Evaluating Method for The Scanning Strategy in Nanosecond Laser Milling of Axisymmetric 3D Structure Micro Cone Considering Its Symmetric Errors.