JPS6390114A - Manufacture of polarizing electrode - Google Patents

Manufacture of polarizing electrode

Info

Publication number
JPS6390114A
JPS6390114A JP61234436A JP23443686A JPS6390114A JP S6390114 A JPS6390114 A JP S6390114A JP 61234436 A JP61234436 A JP 61234436A JP 23443686 A JP23443686 A JP 23443686A JP S6390114 A JPS6390114 A JP S6390114A
Authority
JP
Japan
Prior art keywords
activated carbon
polarizable electrode
double layer
electric double
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61234436A
Other languages
Japanese (ja)
Other versions
JPH0353767B2 (en
Inventor
剛 森本
和也 平塚
恭宏 真田
広志 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61234436A priority Critical patent/JPS6390114A/en
Publication of JPS6390114A publication Critical patent/JPS6390114A/en
Publication of JPH0353767B2 publication Critical patent/JPH0353767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、分極性電極の製造方法、詳しくは電気二重層
コンデンサに用いられる活性炭を主成分とする分極性電
極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a polarizable electrode, and more particularly to a method for manufacturing a polarizable electrode containing activated carbon as a main component and used in electric double layer capacitors.

(従来の技術) 電気二重層コンデンサは、分極性電極に電圧を印加した
際、電極表面と電解液との界面において形成される電気
二重層を利用して電荷を蓄積し、ICメモリーの電源の
瞬断時におけるバックアンプ用電源などとして用いられ
ている。コンデンサの容量を大きくするためには、この
電気二重層の表面積を最大限に大きくすることが必要で
あり、そのため比表面積の極めて大きい活性炭が分極性
電極として利用されている。
(Prior art) Electric double layer capacitors store electric charges by using the electric double layer formed at the interface between the electrode surface and electrolyte when a voltage is applied to a polarizable electrode, and serve as a power source for IC memory. It is used as a power source for backup amplifiers during momentary power outages. In order to increase the capacitance of a capacitor, it is necessary to maximize the surface area of this electric double layer, and for this reason activated carbon, which has an extremely large specific surface area, is used as a polarizable electrode.

このような分極性電極に用いられる活性炭としては、下
記のような特性を備えていることが望ましい。
The activated carbon used in such polarizable electrodes preferably has the following properties.

■大容量を得るために単位重量当り、または単位体積当
りの表面積が大きいこと。
■In order to obtain large capacity, the surface area per unit weight or unit volume must be large.

■大容量を得るためにイオンを効率よく吸収する必要が
あり、細孔容積がある程度大きいこと。
■In order to obtain large capacity, it is necessary to absorb ions efficiently, and the pore volume must be large to some extent.

■2.0〜3.0V程度の電圧を印加したときに電気化
学的な反応が起こらないように重金属、ハロゲンなどの
不純物の含有量が少ないこと。
(2) The content of impurities such as heavy metals and halogens should be small so that electrochemical reactions do not occur when a voltage of about 2.0 to 3.0 V is applied.

このような活性炭を製造する方法は、−mに原料の賦活
工程、湿式粉砕工程および乾燥工程からなるものである
。原料炭素を賦活する方法としては通常、薬品賦活法と
ガス賦活法のいずれかが適用されることが多い。
The method for producing such activated carbon consists of -m, a raw material activation step, a wet pulverization step, and a drying step. Usually, either a chemical activation method or a gas activation method is applied as a method for activating raw carbon.

(発明が解決しようとする問題点) しかしながら、薬品賦活法では脱水剤として主に塩化亜
鉛が使用されており、純度の高い活性炭を得るために塩
酸を添加して可溶性の塩類を溶解、除去するとともに塩
化亜鉛を回収し、水洗によって塩酸と塩化物とを除去す
るようになっている。
(Problem to be solved by the invention) However, in the chemical activation method, zinc chloride is mainly used as a dehydrating agent, and in order to obtain highly pure activated carbon, hydrochloric acid is added to dissolve and remove soluble salts. At the same time, zinc chloride is recovered, and hydrochloric acid and chloride are removed by washing with water.

このため、薬品賦活法による市販の活性炭には未回収の
亜鉛イオンや塩素イオンが数十〜数百ppmのオーダー
で含まれていることが多い。
For this reason, commercially available activated carbon produced by the chemical activation method often contains unrecovered zinc ions and chloride ions on the order of tens to hundreds of ppm.

また、ガス賦活法による活性炭も、本来含有している不
純物の他に、粉砕時に鉄粉などが混入することにより、
やはり全体として数十〜数百ppmのオーダーの重金属
を含んでいるのが普通である。
In addition to the impurities originally contained in activated carbon produced using the gas activation method, iron powder and other substances are mixed in during the grinding process.
Generally, the total amount of heavy metals is on the order of several tens to hundreds of ppm.

活性炭に含有されているこのような不純物は、ユニット
セル内の電気化学的反応に関与して、セルの寿命を短か
くする結果になるという問題があった。
There is a problem in that such impurities contained in activated carbon participate in electrochemical reactions within the unit cell, resulting in a shortened cell life.

本発明は、活性炭中に含有されている不純物、特にハロ
ゲン、天分および揮発分を効果的に除去して、不純物含
有量の少ない分極性電極を得ることを目的とする。
An object of the present invention is to effectively remove impurities contained in activated carbon, particularly halogens, natural substances, and volatile substances to obtain a polarizable electrode with a low impurity content.

(問題点を解決するための手段) 前記の問題点を解決するため本発明は、活性炭を必要に
応じ好ましくは塩酸に浸漬し、次いで水洗した後、20
0〜400℃において真空乾燥する工程を含むことを特
徴とする分極性電極の製造方法を提供するものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention preferably immerses activated carbon in hydrochloric acid as necessary, then washes it with water, and then
The present invention provides a method for producing a polarizable electrode, which includes a step of vacuum drying at 0 to 400°C.

本発明で用いる原料活性炭は、特に限定されるものでは
なく、フェノール系、レーヨン系、アクリル系などの原
料繊維を直接に炭化して炭素繊維として賦活するか、あ
るいは原料繊維をあらかじめクロス状、不織布状、フェ
ルト状などにして炭化と賦活を同時に行って得られる活
性炭を適宜用いることができる。賦活は薬品賦活法、ガ
ス賦活法など、通常の賦活法によって行われる。これら
の活性炭のなかで、クロス、不織布などの形態でそのま
ま容易に活性炭化でき、強度特性と柔軟性に優れている
点で、フェノール系炭素繊維を原料とした活性炭が、電
気二重層コンデンサの分極性電極用に特に好適に使用で
きる。
The raw material activated carbon used in the present invention is not particularly limited, and raw material fibers such as phenol, rayon, and acrylic fibers may be directly carbonized and activated as carbon fibers, or raw material fibers may be made into cloth or non-woven fibers in advance. Activated carbon obtained by simultaneously carrying out carbonization and activation in the form of a felt or the like can be used as appropriate. Activation is performed by a normal activation method such as a chemical activation method or a gas activation method. Among these activated carbons, activated carbon made from phenolic carbon fiber is the most popular for electric double layer capacitors because it can be easily activated carbonized in the form of cloth, nonwoven fabric, etc., and has excellent strength and flexibility. It can be particularly suitably used for polar electrodes.

本発明の製造方法では、これらの活性炭を、好ましくは
湿式粉砕法によって好ましくは40〜200メツシユに
粉砕した後、好ましくは0.1〜10mHgの圧力で2
00〜400℃、好ましくは300〜350℃において
、2〜4時間程度の真空乾燥を行う。
In the production method of the present invention, these activated carbons are preferably pulverized into 40 to 200 meshes by a wet pulverization method, and then pulverized at a pressure of 0.1 to 10 mHg.
Vacuum drying is performed at 00 to 400°C, preferably 300 to 350°C, for about 2 to 4 hours.

前記工程に際してあらかじめ、好ましくは活性炭を0.
5〜2Nの塩酸水溶液に浸漬し、次いで水洗によって塩
酸を除去した後、前記の条件において真空乾燥処理を行
う。
Preferably, activated carbon is added to 0.0% in advance during the step.
After immersing in a 5 to 2N aqueous hydrochloric acid solution and then washing with water to remove the hydrochloric acid, a vacuum drying treatment is performed under the above conditions.

このようにして得られた粉末状活性炭をたとえば含フツ
素樹脂重合体などをバインダーとし、これに液状潤滑剤
を添加して混練し、シート状に成型し、好ましくは一軸
または二輪方向に延伸したものを分極性電極の材料とし
て使用することができる。
The powdered activated carbon thus obtained is mixed with, for example, a fluorine-containing resin polymer as a binder, a liquid lubricant is added thereto, and the mixture is kneaded, formed into a sheet, and preferably stretched in a uniaxial or biaxial direction. can be used as a material for polarizable electrodes.

(実施例) 以下、実施例および比較例を図面を参照して説明する。(Example) Examples and comparative examples will be described below with reference to the drawings.

実施例1 フェノール系活性炭(塩素含有Pi 130 ppm)
を200メツシユに粉砕したものをステンレス製容器中
で、温度350℃、圧力1mmHHの条件で2時間真空
乾燥した。この処理後に塩素および灰分の分析を行いそ
の結果を第1表に示した。このようにして高温真空乾燥
処理した活性炭80重量部にカーボンブランク10重量
部、ポリテトラフルオロエチレン粉末10重量部を混合
し、この混合物100重量部にエタノール20重量部を
添加して乳鉢中で混練しペースト状にして、このペース
トをロール成型機を用いてシート状電極材料に成型した
。この材料を使用して第1図に示すようなコイン型の電
気二重層コンデンサのユニットセルを下記の手順で製作
した。
Example 1 Phenolic activated carbon (chlorine-containing Pi 130 ppm)
was ground into 200 meshes and vacuum-dried for 2 hours at a temperature of 350° C. and a pressure of 1 mmHH in a stainless steel container. After this treatment, chlorine and ash content were analyzed and the results are shown in Table 1. 80 parts by weight of activated carbon that has been subjected to high-temperature vacuum drying in this way is mixed with 10 parts by weight of carbon blank and 10 parts by weight of polytetrafluoroethylene powder, 20 parts by weight of ethanol is added to 100 parts by weight of this mixture, and the mixture is kneaded in a mortar. This was made into a paste, and this paste was molded into a sheet-like electrode material using a roll molding machine. Using this material, a unit cell of a coin-shaped electric double layer capacitor as shown in FIG. 1 was manufactured according to the following procedure.

前記シート状電極材料を円板状に打ち抜いて分極性電極
1 (直径15顛、厚さ0.61m)とし、分極性電極
1と、これと同一の組成、形状を有する分極性電極2と
をポリプロピレン繊維不織布よりなるセパレータ3を介
してステンレス鋼製のキャップ4およびステンレス鋼製
の缶5からなる外装容5中に収納した。
The sheet-like electrode material was punched out into a disk shape to form a polarizable electrode 1 (diameter 15 mm, thickness 0.61 m), and the polarizable electrode 1 and a polarizable electrode 2 having the same composition and shape as this were separated. It was housed in an exterior container 5 consisting of a stainless steel cap 4 and a stainless steel can 5 via a separator 3 made of a nonwoven polypropylene fiber fabric.

次にこのユニットセル中に電解液として4フツ化ホウ酸
テトラブチルホスホニウムのプロピレンカーボネート溶
液(濃度:IM/jりを注入して分極性電極1.2およ
びセパレータ3中に電解液を充分に含浸させた後、ポリ
プロピレン製バンキング6を介してキャップ4および缶
5の端部をかしめて封口した。
Next, a propylene carbonate solution of tetrabutylphosphonium tetrafluoroborate (concentration: IM/J) is injected into the unit cell as an electrolyte to sufficiently impregnate the polarizable electrode 1.2 and separator 3 with the electrolyte. After this, the ends of the cap 4 and the can 5 were caulked and sealed via the polypropylene banking 6.

上記のように製作した電気二重層コンデンサユニットセ
ルを2.8vで30分間定電圧充電を行い、その後1m
A定電流放電し、放電時の端子間電圧が1vに至るまで
の時間を測定し単極単位体積当り初期容量を算出した。
The electric double layer capacitor unit cell manufactured as above was charged at a constant voltage of 2.8V for 30 minutes, and then 1m
A constant current discharge was performed, and the time until the voltage between the terminals reached 1 V during discharge was measured, and the initial capacity per unit volume of the single electrode was calculated.

次に同セルを1000時間2゜8v連続印加した後の容
量を同様にして測定し、初期値と比較して容量劣化率を
算出してその結果を第1表に示した。
Next, the capacity of the same cell was measured in the same manner after 2°8V was continuously applied for 1000 hours, and the capacity deterioration rate was calculated by comparing it with the initial value.The results are shown in Table 1.

実施例2 実施例1と同じ活性炭(塩素含有量130 ppm)を
200メツシユまで粉砕して、ステンレス容器に入れ温
度300℃、圧力1tlHgの条件で2時間真空乾燥し
た。この処理後に活性炭の塩素および灰分の分析を行い
その結果を第1表に示した。
Example 2 The same activated carbon (chlorine content: 130 ppm) as in Example 1 was crushed to 200 meshes, placed in a stainless steel container, and vacuum-dried for 2 hours at a temperature of 300° C. and a pressure of 1 tlHg. After this treatment, the activated carbon was analyzed for chlorine and ash content, and the results are shown in Table 1.

この真空乾燥処理した活性炭を用いて実施例1と同様に
して、電気二重層コンデンサのユニットセルを製作し、
評価を行って結果を第1表に示した。
Using this vacuum-dried activated carbon, a unit cell of an electric double layer capacitor was manufactured in the same manner as in Example 1,
The evaluation was carried out and the results are shown in Table 1.

実施例3 実施例1と同じ活性炭を40メツシユに粉砕しINの塩
酸に1昼夜浸漬して、ときどき攪拌した。
Example 3 The same activated carbon as in Example 1 was ground into 40 meshes and immersed in IN hydrochloric acid for one day and night, with occasional stirring.

次に流水中で3時間水洗した後、ステンレス容器中で温
度300℃、圧力l 鶴1(gの条件で2時間真空乾燥
した。この処理後に活性炭の塩素および灰分を分析し、
この活性炭を用いて実施例1と同様にして、コンデンサ
のユニットセルを製作し、評価を行って結果を第1表に
示した。
Next, after washing in running water for 3 hours, vacuum drying was carried out in a stainless steel container at a temperature of 300°C and a pressure of 1 kg for 2 hours. After this treatment, the activated carbon was analyzed for chlorine and ash.
A capacitor unit cell was manufactured using this activated carbon in the same manner as in Example 1, and evaluated. The results are shown in Table 1.

実施例4 実施例3において、塩酸処理および水洗後、温度350
℃、圧力1 +n Hgの条件で2時間の真空乾燥処理
を行った。この処理後に活性炭の塩素と灰分を分析し、
この活性炭を用いて実施例1と同様にしてコンデンサの
ユニットセルを製作し、評価を行って結果を第1表に示
した。
Example 4 In Example 3, after hydrochloric acid treatment and water washing, the temperature was 350
A vacuum drying process was performed for 2 hours at a temperature of 1°C and a pressure of 1 + n Hg. After this treatment, the activated carbon was analyzed for chlorine and ash.
A capacitor unit cell was manufactured using this activated carbon in the same manner as in Example 1, and evaluated. The results are shown in Table 1.

比較例1 実施例1と同じ活性炭(塩素含有量130 ppei 
)を200メツシユに粉砕し、高温真空乾燥処理を行わ
ないで実施例1と同様にしてユニットセルを製作し、評
価を行って結果を第1表に示した。
Comparative Example 1 The same activated carbon as in Example 1 (chlorine content 130 ppi
) was pulverized into 200 meshes, a unit cell was produced in the same manner as in Example 1 without performing high-temperature vacuum drying treatment, and evaluation was performed. The results are shown in Table 1.

比較例2 実施例1と同じ活性炭(塩素含有量130 ppm )
を200メツシユに粉砕しIN塩酸に一昼夜浸漬してと
きどき攪拌した後、3時間水洗した。この活性炭を乾燥
5中で窒素ガスを吹込んで100℃で3時間乾燥した。
Comparative Example 2 Same activated carbon as Example 1 (chlorine content 130 ppm)
The powder was ground into 200 meshes, immersed in IN hydrochloric acid overnight, stirred occasionally, and then washed with water for 3 hours. This activated carbon was dried in Drying 5 at 100° C. for 3 hours by blowing nitrogen gas.

得られた活性炭の塩素および灰分を分析し、この活性炭
を用いて実施例1と同様にしてユニットセルを製作し、
評価を行って結果を第1表に示した。
The chlorine and ash content of the obtained activated carbon was analyzed, and a unit cell was manufactured using this activated carbon in the same manner as in Example 1.
The evaluation was carried out and the results are shown in Table 1.

(本頁、以下余白) 第1表 (作用および効果) 本発明の製造方法によって従来の方法よりも不純物の少
ない分極性電極が得られる理由は下記のように考えられ
る。
(This page, below in the margins) Table 1 (Functions and Effects) The reason why a polarizable electrode with less impurities can be obtained by the manufacturing method of the present invention than by the conventional method is considered to be as follows.

高温真空加熱処理することにより活性炭中の塩素分が次
のような機構で効果的に除去される。
By performing high-temperature vacuum heat treatment, the chlorine content in activated carbon is effectively removed by the following mechanism.

H20+C→Hx +c。H20+C→Hx +c.

R−C1+H2→R−H+HC1 (Rは活性炭を示す) また、真空加熱処理の前にINの塩酸中に浸漬すること
により、電気化学的反応に寄与する可能性のある金属塩
が塩化物となり水洗によって容易に除去されるものと思
われる。これを真空加熱処理して塩素骨を除去すること
により、第1表の実施例3.4に示すように加熱処理だ
けの場合(実施例1.2)よりもさらに不純物の少ない
活性炭が得られる0重′Wk減少率も揮発分と塩類の除
去率を反映している。
R-C1+H2→R-H+HC1 (R indicates activated carbon) In addition, by immersing IN hydrochloric acid before vacuum heat treatment, metal salts that may contribute to electrochemical reactions become chlorides and are washed with water. It seems that it can be easily removed by By applying vacuum heat treatment to remove chlorine bones, activated carbon with even fewer impurities can be obtained than in the case of only heat treatment (Example 1.2), as shown in Example 3.4 in Table 1. The 0w'Wk reduction rate also reflects the removal rate of volatile matter and salts.

本発明の分極性電極を用いた電気二重層コンデンサは2
.8vの電圧を印加して1000時間経過後も容量の劣
化率が小さい。
The electric double layer capacitor using the polarizable electrode of the present invention has two
.. Even after 1000 hours have passed after applying a voltage of 8 V, the rate of deterioration of capacity is small.

(発明の効果) 本発明の製造方法によれば、不純物含有量の少ない分極
性電極が得られ、この電極を用いた電気二重層コンデン
サは長期間負荷条件下で容量劣化率が小さく、安定した
性能を維持することができる。
(Effects of the Invention) According to the manufacturing method of the present invention, a polarizable electrode with low impurity content can be obtained, and an electric double layer capacitor using this electrode has a low capacity deterioration rate under long-term load conditions and is stable. performance can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による分極性電極を用いた電気二重層コ
ンデンサの一実施態様を示す図である。 1.2・・・・・・分極性電極、 3・・・・・・セパレータ、 4・・・・・・キャップ、 5・・・・・・缶、 6・・・・・・バッキング。
FIG. 1 is a diagram showing an embodiment of an electric double layer capacitor using polarizable electrodes according to the present invention. 1.2...Polarizable electrode, 3...Separator, 4...Cap, 5...Can, 6...Backing.

Claims (2)

【特許請求の範囲】[Claims] (1)活性炭を200〜400℃において真空乾燥処理
する工程を含むことを特徴とする分極性電極の製造方法
(1) A method for producing a polarizable electrode, comprising a step of vacuum drying activated carbon at 200 to 400°C.
(2)活性炭が、あらかじめ塩酸に浸漬し、次いで水洗
したものであることを特徴とする特許請求の範囲第1項
記載の分極性電極の製造方法。
(2) The method for producing a polarizable electrode according to claim 1, wherein the activated carbon is soaked in hydrochloric acid in advance and then washed with water.
JP61234436A 1986-10-03 1986-10-03 Manufacture of polarizing electrode Granted JPS6390114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234436A JPS6390114A (en) 1986-10-03 1986-10-03 Manufacture of polarizing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234436A JPS6390114A (en) 1986-10-03 1986-10-03 Manufacture of polarizing electrode

Publications (2)

Publication Number Publication Date
JPS6390114A true JPS6390114A (en) 1988-04-21
JPH0353767B2 JPH0353767B2 (en) 1991-08-16

Family

ID=16970977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234436A Granted JPS6390114A (en) 1986-10-03 1986-10-03 Manufacture of polarizing electrode

Country Status (1)

Country Link
JP (1) JPS6390114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034402A1 (en) * 1995-04-27 1996-10-31 Nippon Sanson Corporation Process for producing carbonaceous material for electric double-layer capacitor, and carbon electrode and electric double-layer capacitor
JP2007169117A (en) * 2005-12-22 2007-07-05 Nippon Oil Corp Activated carbon and electrical double layer capacitor using same
JP2013530494A (en) * 2010-05-12 2013-07-25 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Metal-air battery with performance-enhancing additives
JP5908148B1 (en) * 2015-06-24 2016-04-26 株式会社キャタラー Method for analyzing chlorine content of carbon material and method for producing carbon material from which chlorine has been removed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166373A (en) * 1984-09-07 1986-04-05 Matsushita Electric Ind Co Ltd Manufacture of polarized electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166373A (en) * 1984-09-07 1986-04-05 Matsushita Electric Ind Co Ltd Manufacture of polarized electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034402A1 (en) * 1995-04-27 1996-10-31 Nippon Sanson Corporation Process for producing carbonaceous material for electric double-layer capacitor, and carbon electrode and electric double-layer capacitor
JP2007169117A (en) * 2005-12-22 2007-07-05 Nippon Oil Corp Activated carbon and electrical double layer capacitor using same
US9184478B2 (en) 2010-05-10 2015-11-10 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal-air cell with performance enhancing additive
US10374236B2 (en) 2010-05-10 2019-08-06 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal-air cell with performance enhancing additive
US11196057B2 (en) 2010-05-10 2021-12-07 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal-air cell with performance enhancing additive
JP2013530494A (en) * 2010-05-12 2013-07-25 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Metal-air battery with performance-enhancing additives
JP2017027948A (en) * 2010-05-12 2017-02-02 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティArizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal-air cell with performance enhancing additive
JP5908148B1 (en) * 2015-06-24 2016-04-26 株式会社キャタラー Method for analyzing chlorine content of carbon material and method for producing carbon material from which chlorine has been removed

Also Published As

Publication number Publication date
JPH0353767B2 (en) 1991-08-16

Similar Documents

Publication Publication Date Title
JP4054746B2 (en) Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof
JP3038676B2 (en) Electric double layer capacitor
US2865974A (en) Negative plates and the production thereof
JPS6390114A (en) Manufacture of polarizing electrode
JPS63187614A (en) Electric double-layer capacitor
JPH0666228B2 (en) Energy storage device
JPS61502646A (en) Improvement of nickel hydroxide positive electrode for alkaline storage batteries
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JPH043065B2 (en)
JP3812098B2 (en) Electric double layer capacitor
JP3854333B2 (en) Activated carbon for electrode of electric double layer capacitor and its manufacturing method
US3053924A (en) Battery electrode and method of making the same
JP2005129707A (en) Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon
JPS6378513A (en) Electric double-layer capacitor
JP3800810B2 (en) Electric double layer capacitor
JPH02252227A (en) Electric double layer capacitor
JPH0799141A (en) Polarized electrode, manufacture thereof and electric double layer capacitor using the same
JPH11307405A (en) Electric double layer capacitor and electrode and activated carbon and its manufacture
JP2003206121A (en) Activated carbon and method for manufacturing the same
JP4318337B2 (en) Electrode for non-aqueous electrochemical device and method for producing the same
JP3866785B2 (en) Activated carbon for electrodes of electric double layer capacitors
KR100715873B1 (en) Increasing method of meso porous amount activated carbon for supercapacitor electrode
KR100715872B1 (en) Preparation method of meso porous activated carbon by KOH for supercapacitor electrode
JPS63152867A (en) Polyaniline
JPS6378514A (en) New type electric double-layer capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees