JP3866785B2 - Activated carbon for electrodes of electric double layer capacitors - Google Patents

Activated carbon for electrodes of electric double layer capacitors Download PDF

Info

Publication number
JP3866785B2
JP3866785B2 JP24058095A JP24058095A JP3866785B2 JP 3866785 B2 JP3866785 B2 JP 3866785B2 JP 24058095 A JP24058095 A JP 24058095A JP 24058095 A JP24058095 A JP 24058095A JP 3866785 B2 JP3866785 B2 JP 3866785B2
Authority
JP
Japan
Prior art keywords
activated carbon
double layer
electric double
electrode
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24058095A
Other languages
Japanese (ja)
Other versions
JPH0963907A (en
Inventor
清 安達
武雄 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Enviro Chemicals Ltd
Original Assignee
Japan Enviro Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Enviro Chemicals Ltd filed Critical Japan Enviro Chemicals Ltd
Priority to JP24058095A priority Critical patent/JP3866785B2/en
Publication of JPH0963907A publication Critical patent/JPH0963907A/en
Application granted granted Critical
Publication of JP3866785B2 publication Critical patent/JP3866785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解液を使用する電気二重層コンデンサの電極として好適な活性炭に関するものである。
【0002】
【従来の技術】
電気二重層コンデンサは、固体と液体の界面に生じる電気二重層を利用したコンデンサであり、静電容量が電池と比べ非常に大きく、且つ充放電サイクル特性や急速充電にも優れ、またメンテナンスフリーで、環境汚染を招く恐れがないため、マイコンやICメモリの小型バックアップ電源として最近特に注目されている。
電気二重層コンデンサにおける上記固体は分極性電極であり、通常粉末活性炭が使用される。
電気二重層コンデンサに用いられる電解液は、有機溶媒系と水溶液系に大別される。
有機溶媒系は耐電圧が高いため小型化に有利であり、また外装に金属を用いることもできる。水溶液系では電解液の導電率が高いために低等価直列抵抗(ESR)化に向いており、湿度に影響されず環境特性に優れるという特徴を有している。
このような有利な特性を有する電気二重層コンデンサにおいて、もし電極の単位容積当たりの静電容量をさらに高めることができれば、その用途は単にマイコンやICメモリのバックアップ電源にとどまらず、たとえば、各種モータの初期駆動、電気自動車、排気ガス浄化触媒のプレヒータ等の電源としても有望である。そこで、電極の単位容積当たり一層高容量の電気二重層コンデンサを得るためこれまでも様々な改良が試みられてきた。その一つに電極となる活性炭の改良がある。
【0003】
コンデンサ素子の容量は、用いる活性炭電極の表面積と電解液中の電気二重層容量によって決定されるのであるから、容量密度の向上を図るには理論上比表面積の大きな活性炭を用いるのが有利である。そこでたとえば、特開昭63−78514に示されているように石油コークスを原料とし、比表面積が2000〜3500m2/gで、かさ密度が0.2〜1.0g/ml、全細孔容積0.5〜3.0ml/gといった比較的高比表面積活性炭の電極への利用が提案されている。また特開平7−135127には、高容量電気二重層コンデンサの電極として活性炭の酸素原子/炭素原子比が0.1以上という特性を有する活性炭、特にフェノール樹脂系活性炭と結合剤としてフェノール樹脂を用いた活性炭でその特性を有するものも提案されている。さらに、特再平03−812203には、活性炭原料をアルカリ金属の水酸化物浴中700℃未満で熱処理して得られる高静電容量の炭素質素材も提案されている。
【0004】
【発明が解決しようとする課題】
しかし、これまでに提案されている電気二重層コンデンサ電極用活性炭のうち、たとえばアルカリや塩化亜鉛などの薬品で賦活されたいわゆる薬品賦活炭は、製造直後は250ファラッド(F)/ml以上という極めて高い静電容量を示すものもあるが、その静電容量は短時間内に著しい経時低下を起こし、6カ月以上経過するとその静電容量は製造当初の10分の1以下に低下してしまい、実用には供し難い。これに対して、水蒸気賦活などの薬品によらない賦活法で製造された活性炭は静電容量の経時低下は殆どないものの、これまで実用化されて来たもののうち、有機溶媒系電解質を用いるものでは高々20F/g、8F/ml程度、水溶液系電解質を用いるものでも高々40F/g、16F/ml程度であり、前述した新たな用途開発のためには、さらにその電極体積当りの静電容量を一段と高める必要がある。
【0005】
【課題を解決するための手段】
本発明者らは、単位容積当り静電容量がより大なる電気二重層コンデンサ電極を得るために、使用する粉末活性炭の原料の種類、賦活法、活性炭の比表面積、粒子径などの相互の関係について鋭意研究を重ねた結果、水蒸気賦活された活性炭であって、これまで高い静電容量を得るのに好適と思われていた2000〜3500m2/gのBET比表面積のものよりやや低めの1000〜1500m2/gのBET比表面積で、且つ中位径が6〜10μmとこれまでこの分野で用いられてきた活性炭の粒径よりやや大なる粒径を有する活性炭が思いがけなくも電極の単位容積当り極めて高い静電容量の電気二重層コンデンサを与え、しかもその高静電容量が6カ月以上の長期に亙って殆ど低下しないということを知見し、本発明を完成した。
すなわち、本発明は、
(1)
水蒸気賦活されたヤシ殻活性炭であって、中位径が6〜10μm、タップ法による見掛け密度が0.500〜0.650g/ml、且つ、電解液が有機溶媒系のものである場合BET比表面積が 1200 1500m 2 /g であり、電解液が水溶液系のものである場合、BET比表面積が 1000 1300m 2 /gである電解液を使用する電気二重層コンデンサの電極用活性炭、
(2)
中位径が7〜9μmである請求項1記載の活性炭、

電解液が水溶液系のものである場合、その電解液が硫酸である(1)記載の活性炭、

(1)記載の活性炭からなる電気二重層コンデンサ電極、
である。
【0006】
【発明の実施の形態】
本発明に用いられる活性炭の原料には、イオウなどの不純物の含量が少ないヤシ殻が用いられる。このヤシ殻は、通常の炭化条件、たとえば400〜800℃で30分〜3時間程度熱処理をして炭化し、得られたヤシ殻炭を10〜100メッシュに破砕して、500〜1000℃、通常は約850℃前後の温度で、10分〜10時間、好ましくは30分〜5時間かけて、水蒸気賦活する。この水蒸気賦活においては、賦活温度が低く、賦活時間が短ければ、得られる活性炭の比表面積は小となり、賦活温度が高く賦活時間が長くなる従って、比表面積は大となる。得られた賦活炭は水洗、乾燥し、目的とする粒度に粉砕し、必要により分級により粒度を調整する。本発明の目的に適う活性炭の粒度はコールターカウンタで測定した中位径が6〜10μm、好ましくは7〜9μm、さらに好ましくは7.5〜8.5μmである。またその活性炭のBET比表面積は、電気二重層コンデンサに用いる溶媒が、たとえば、プロピレンカーボネイトのような有機溶媒系の場合、通常 1200 1500m 2 /g 、好ましくは 1250 1450m 2 /g 、さらに好ましくは、 1300 1400m 2 /g であり、溶媒がたとえば硫酸のような水溶液系である場合は、通常 1000 1300m 2 /g 、好ましくは 1050 1250m 2 /g 、さらに好ましくは 1100 1200m 2 /g である。また活性炭のタップ法による見掛け密度は、通常0.500〜0.650g/mlであり、特に電解液が有機溶媒系の場合は、0.530〜0.600g/mlが好ましく、水溶液系の場合は0.570〜0.640g/mlが好ましい。本発明の活性炭を用いて電気二重層コンデンサの電極を製造するには、自体公知の方法を採用することができる。たとえば、活性炭、バインダおよび水の混合物を混合機でよく混練する。得られたペースト状混合物をロールを用いて圧延し、200〜300℃程度の加熱下延伸処理をして、適当な厚み、たとえば0.6mm程度のシート状電極材料とする。このシート状電極材料を円板状に打ち抜いて分極性電極とする。
【0007】
このようにして得られた円板状物を2〜数枚セパレータを介して重ね、外装容器に収納して、その中に電解液を注入することにより電気二重層コンデンサユニットセルを作ることができる。
電解液としては有機溶媒系のものと水溶液系のものがある。有機溶媒系電解液の溶媒としてはプロピレンカーボネートが一般的であり、電解質としてはこれまで知られている種々の第4級ホスホニウム塩、第4級アンモニウム塩のいずれもが使用できる。水溶液系電解液としては、希硫酸が一般的であるが、他の無機塩、たとえば4フッ化ホウ酸、硝酸なども使用できる。さらに水酸化カリ、水酸化ナトリウム、水酸化アンモニウムなどの無機塩を溶質とする水溶液も便宜に使用できる。それぞれの電解質の濃度は10〜90重量%の範囲で適宜選択することができる。
【0008】
実施例1
ヤシ殻を400〜800℃で1時間炭化し、ロータリーキルンで850℃の加熱下それぞれ60分、90分、120分、180分間水蒸気賦活したものを洗浄、乾燥して粉砕し、コールターカウンタの測定による中位径7,5μmの粉末活性炭(活性炭1〜4)を得た。それぞれの活性炭から直径15mm、厚さ0.6mmの円板状電極を作り、それを2枚重ね合わせてコンデンサユニットセルの電極を作った。
得られたそれぞれの粉末活性炭の物性、それから作られた上記電極と(CPBF 0.5モル/プロピレンカーボネート電解液を用いて作ったコンデンサユニットセルの製造直後の静電容量および製造6カ月後のユニットセルの静電容量を測定し、その結果を〔表1〕に示す。
【表1】

Figure 0003866785
【0009】
実施例2
ヤシ殻を400〜800℃で1時間炭化し、流動炉で900℃の加熱下、それぞれ60分、90分、120分、180分間水蒸気賦活し、洗浄、乾燥粉砕して中位径7,5μmの粉末活性炭(活性炭5〜8)を得た。それぞれの活性炭から実施例1と同様にしてコンデンサユニットセルの電極を作った。
得られたそれぞれの粉末活性炭の物性、それから作られた上記電極と40%硫酸電解液を用いて作ったコンデンサユニットセルの製造直後および製造6カ月後のコンデンサユニットセルの静電容量を測定し、その結果を〔表2〕に示す。
【表2】
Figure 0003866785
【0010】
実施例3
実施例1と同様にして作ったBET比表面積1350m2/gの活性炭を得、これを粉砕して、それぞれ粒径の異なる6種類の粉末活性炭(活性炭9〜14)を得た。
実施例1と同様の方法で活性炭の物性、コンデンサユニットセルの静電容量を測定し、その結果を〔表3〕に示す。
【表3】
Figure 0003866785
【0011】
実施例4
実施例2と同様にして作ったBET比表面積1140m2/gの活性炭を得、これを粉砕して、それぞれ粒径の異なる6種類の粉末活性炭(活性炭15〜20)を得た。
実施例2と同様の方法で活性炭の物性、コンデンサユニットセルの静電容量を測定し、その結果を〔表4〕に示す。
【表4】
Figure 0003866785
【0012】
【発明の効果】
本発明の電気二重層コンデンサの電極用活性炭は、電極の単位容積当たり高い静電容量の電極を与え、しかも充放電の繰り返しや経時による劣化が低く長期に亙り安定した高静電容量の確保が可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to activated carbon suitable as an electrode of an electric double layer capacitor using an electrolytic solution.
[0002]
[Prior art]
An electric double layer capacitor is a capacitor that uses an electric double layer generated at the interface between a solid and a liquid. Its capacitance is much larger than that of a battery, and it has excellent charge / discharge cycle characteristics and quick charge, and is maintenance-free. Since there is no risk of environmental pollution, it has recently attracted particular attention as a compact backup power source for microcomputers and IC memories.
The solid in the electric double layer capacitor is a polarizable electrode, and usually powdered activated carbon is used.
Electrolytic solutions used for electric double layer capacitors are roughly classified into organic solvent systems and aqueous solution systems.
The organic solvent system has a high withstand voltage and is advantageous for downsizing, and a metal can be used for the exterior. The aqueous solution system is suitable for low equivalent series resistance (ESR) due to the high conductivity of the electrolytic solution, and is characterized by excellent environmental characteristics without being affected by humidity.
In the electric double layer capacitor having such advantageous characteristics, if the electrostatic capacity per unit volume of the electrode can be further increased, its use is not limited to a backup power source of a microcomputer or an IC memory. It is also promising as a power source for initial driving, electric vehicles, preheaters for exhaust gas purification catalysts, and the like. Therefore, various improvements have been attempted so far in order to obtain an electric double layer capacitor having a higher capacity per unit volume of the electrode. One of them is the improvement of activated carbon that serves as an electrode.
[0003]
Since the capacity of the capacitor element is determined by the surface area of the activated carbon electrode to be used and the electric double layer capacity in the electrolyte, it is theoretically advantageous to use activated carbon having a large specific surface area in order to improve the capacity density. . Therefore, for example, as disclosed in JP-A-63-78514, petroleum coke is used as a raw material, the specific surface area is 2000 to 3500 m 2 / g, the bulk density is 0.2 to 1.0 g / ml, and the total pore volume. Use of activated carbon having a relatively high specific surface area of 0.5 to 3.0 ml / g for an electrode has been proposed. Japanese Patent Laid-Open No. 7-135127 uses activated carbon having an oxygen atom / carbon atom ratio of 0.1 or more as an electrode of a high-capacity electric double layer capacitor, particularly a phenol resin activated carbon and a phenol resin as a binder. An activated carbon having the characteristics has been proposed. Further, Japanese Patent Publication No. 03-812203 proposes a high-capacity carbonaceous material obtained by heat-treating an activated carbon material in an alkali metal hydroxide bath at less than 700 ° C.
[0004]
[Problems to be solved by the invention]
However, among the activated carbons for electric double layer capacitor electrodes that have been proposed so far, for example, so-called chemical activated charcoal activated by chemicals such as alkali and zinc chloride is extremely high at 250 Farad (F) / ml or more immediately after production. Some of them exhibit high capacitance, but the capacitance significantly decreases over time within a short time, and after 6 months or more, the capacitance decreases to 1/10 or less of the original production, It is difficult to put to practical use. In contrast, activated carbon produced by an activation method that does not rely on chemicals such as steam activation has almost no decrease in capacitance over time, but among those that have been put to practical use so far, those using organic solvent electrolytes Is about 20F / g and 8F / ml at most, and even about 40F / g and 16F / ml even when using an aqueous electrolyte, in order to develop the above-mentioned new applications, the capacitance per electrode volume is further increased. Need to be further increased.
[0005]
[Means for Solving the Problems]
In order to obtain an electric double layer capacitor electrode having a larger capacitance per unit volume, the present inventors have interrelationships such as the type of powdered activated carbon material used, the activation method, the specific surface area of activated carbon, and the particle size. As a result of extensive research on the activated carbon, the activated carbon activated with water vapor, which is considered to be suitable for obtaining a high capacitance so far, has a BET specific surface area of 2000-3500 m 2 / g, which is slightly lower than 1000 Activated carbon with a BET specific surface area of ~ 1500m 2 / g and a median diameter of 6 ~ 10μm, which is a little larger than the particle diameter of activated carbon used in this field, is unexpectedly per unit volume of the electrode. The present inventors completed the present invention by finding that an electric double layer capacitor having an extremely high capacitance was provided, and that the high capacitance hardly decreased over a long period of 6 months or more.
That is, the present invention
(1)
Steam activated activated coconut shell activated carbon having a median diameter of 6 to 10 μm, an apparent density by tap method of 0.500 to 0.650 g / ml, and a BET specific surface area of 1200 when the electrolyte is an organic solvent type Activated carbon for an electrode of an electric double layer capacitor using an electrolytic solution having a BET specific surface area of 1000 to 1300 m 2 / g when the electrolytic solution is of an aqueous solution type, up to 1500 m 2 / g ,
(2)
The activated carbon according to claim 1, having a median diameter of 7 to 9 µm.
( 3 )
When the electrolyte is an aqueous solution , the activated carbon according to (1) , wherein the electrolyte is sulfuric acid,
( 4 )
(1) An electric double layer capacitor electrode comprising the activated carbon as described above,
It is.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As the raw material of the activated carbon used in the present invention, coconut shells having a low content of impurities such as sulfur are used. This coconut shell is carbonized by heat treatment for about 30 minutes to 3 hours at normal carbonization conditions, for example, 400 to 800 ° C., and the resulting coconut shell charcoal is crushed into 10 to 100 mesh, 500 to 1000 ° C., Usually, steam activation is performed at a temperature of about 850 ° C. for 10 minutes to 10 hours, preferably 30 minutes to 5 hours. In this steam activation, if the activation temperature is low and the activation time is short, the specific surface area of the activated carbon obtained is small, the activation temperature is high and the activation time is long, and therefore the specific surface area is large. The obtained activated charcoal is washed with water, dried, pulverized to the desired particle size, and if necessary, the particle size is adjusted by classification. The particle size of the activated carbon suitable for the purpose of the present invention is such that the median diameter measured with a Coulter counter is 6 to 10 μm, preferably 7 to 9 μm, more preferably 7.5 to 8.5 μm. The BET specific surface area of the activated carbon, solvent used in the electric double layer capacitor, for example, if the organic solvent such as propylene carbonate, usually 1200 ~ 1500m 2 / g, preferably 1250 ~ 1450m 2 / g, more preferably is 1300 ~ 1400m 2 / g, when the solvent for example an aqueous solution system, such as sulfuric acid is generally 1000 ~ 1300m 2 / g, preferably 1050 ~ 1250m 2 / g, more preferably 1100 ~ 1200 m 2 / g . The apparent density of the activated carbon by the tap method is usually 0.500 to 0.650 g / ml, particularly 0.530 to 0.600 g / ml when the electrolytic solution is an organic solvent system, and 0.570 to 0.640 g / ml when the aqueous solution system is used. ml is preferred. In order to produce an electrode of an electric double layer capacitor using the activated carbon of the present invention, a method known per se can be employed. For example, a mixture of activated carbon, binder and water is kneaded well with a mixer. The obtained paste-like mixture is rolled using a roll and stretched under heating at about 200 to 300 ° C. to obtain a sheet-like electrode material having an appropriate thickness, for example, about 0.6 mm. This sheet-like electrode material is punched into a disc shape to obtain a polarizable electrode.
[0007]
An electric double layer capacitor unit cell can be made by stacking two or more disk-like materials obtained in this way through separators, storing them in an outer container, and injecting an electrolyte into them. .
Electrolytic solutions include organic solvent-based and aqueous solutions. Propylene carbonate is generally used as the solvent for the organic solvent-based electrolytic solution, and any of various known quaternary phosphonium salts and quaternary ammonium salts can be used as the electrolyte. As the aqueous electrolyte, dilute sulfuric acid is generally used, but other inorganic salts such as tetrafluoroboric acid and nitric acid can also be used. Furthermore, an aqueous solution having an inorganic salt such as potassium hydroxide, sodium hydroxide or ammonium hydroxide as a solute can also be used conveniently. The concentration of each electrolyte can be appropriately selected within a range of 10 to 90% by weight.
[0008]
Example 1
Coconut shells are carbonized at 400-800 ° C for 1 hour, heated in a rotary kiln at 850 ° C for 60 minutes, 90 minutes, 120 minutes, 180 minutes respectively, washed, dried and ground, and measured by Coulter counter Powdered activated carbon (activated carbon 1 to 4) having a median diameter of 7.5 μm was obtained. A disk-shaped electrode having a diameter of 15 mm and a thickness of 0.6 mm was made from each activated carbon, and two electrodes were stacked to form a capacitor unit cell electrode.
Physical properties of each of the obtained powdered activated carbons, capacitance immediately after the production of the capacitor unit cell made by using the above-mentioned electrode made therefrom and (C 2 H 5 ) 4 PBF 4 0.5 mol / propylene carbonate electrolyte And the electrostatic capacitance of the unit cell 6 months after manufacture was measured, and the result is shown in [Table 1].
[Table 1]
Figure 0003866785
[0009]
Example 2
Coconut shell is carbonized at 400-800 ° C for 1 hour, heated at 900 ° C in a fluidized furnace, steam activated for 60 minutes, 90 minutes, 120 minutes, 180 minutes, respectively, washed, dried and pulverized, with a median diameter of 7.5 µm Powdered activated carbon (activated carbon 5-8) was obtained. Capacitor unit cell electrodes were prepared from each activated carbon in the same manner as in Example 1.
The physical properties of each of the obtained powdered activated carbon, the capacitance of the capacitor unit cell immediately after the manufacture of the capacitor unit cell made using the above-mentioned electrode made from it and a 40% sulfuric acid electrolyte, and 6 months after the manufacture, The results are shown in [Table 2].
[Table 2]
Figure 0003866785
[0010]
Example 3
Activated carbon having a BET specific surface area of 1350 m 2 / g prepared in the same manner as in Example 1 was obtained and pulverized to obtain 6 types of powdered activated carbon (activated carbon 9 to 14) having different particle sizes.
The physical properties of the activated carbon and the capacitance of the capacitor unit cell were measured in the same manner as in Example 1, and the results are shown in [Table 3].
[Table 3]
Figure 0003866785
[0011]
Example 4
Activated carbon having a BET specific surface area of 1140 m 2 / g produced in the same manner as in Example 2 was obtained and pulverized to obtain 6 types of powdered activated carbon (activated carbon 15 to 20) having different particle sizes.
The physical properties of the activated carbon and the capacitance of the capacitor unit cell were measured in the same manner as in Example 2, and the results are shown in [Table 4].
[Table 4]
Figure 0003866785
[0012]
【The invention's effect】
The activated carbon for an electrode of the electric double layer capacitor of the present invention gives an electrode with a high capacitance per unit volume of the electrode, and also ensures a stable high capacitance over a long period of time with low repeated charge / discharge and deterioration over time. Is possible.

Claims (4)

水蒸気賦活されたヤシ殻活性炭であって、中位径が6〜10μm、タップ法による見掛け密度が0.500〜0.650g/ml、且つ電解液が有機溶媒系のものである場合BET比表面積が 1200 1500m 2 /g であり、電解液が水溶液系のものである場合BET比表面積が 1000 1300m 2 /gである電解液を使用する電気二重層コンデンサの電極用活性炭。Steam activated activated coconut shell activated carbon having a median diameter of 6 to 10 μm, an apparent density by tap method of 0.500 to 0.650 g / ml, and a BET specific surface area of 1200 to 1200 μm An activated carbon for an electrode of an electric double layer capacitor using an electrolytic solution having a BET specific surface area of 1000 to 1300 m 2 / g when the electrolytic solution is an aqueous solution type of 1500 m 2 / g . 中位径が7〜9μmである請求項1記載の活性炭。The activated carbon according to claim 1, wherein the median diameter is 7 to 9 µm. 電解液が水溶液系のものである場合、その電解液が硫酸である請求項1記載の活性炭。The activated carbon according to claim 1, wherein when the electrolytic solution is an aqueous solution, the electrolytic solution is sulfuric acid. 請求項1記載の活性炭からなる電気二重層コンデンサ電極。An electric double layer capacitor electrode comprising the activated carbon according to claim 1.
JP24058095A 1995-08-24 1995-08-24 Activated carbon for electrodes of electric double layer capacitors Expired - Fee Related JP3866785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24058095A JP3866785B2 (en) 1995-08-24 1995-08-24 Activated carbon for electrodes of electric double layer capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24058095A JP3866785B2 (en) 1995-08-24 1995-08-24 Activated carbon for electrodes of electric double layer capacitors

Publications (2)

Publication Number Publication Date
JPH0963907A JPH0963907A (en) 1997-03-07
JP3866785B2 true JP3866785B2 (en) 2007-01-10

Family

ID=17061638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24058095A Expired - Fee Related JP3866785B2 (en) 1995-08-24 1995-08-24 Activated carbon for electrodes of electric double layer capacitors

Country Status (1)

Country Link
JP (1) JP3866785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799459B2 (en) 2014-08-08 2017-10-24 Corning Incorporated High pore volume utilization carbon and electric double layer capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969936A (en) * 1997-03-24 1999-10-19 Asahi Glass Company Ltd. Electric double layer capacitor and electrolyte therefor
WO2004110928A1 (en) * 2003-06-13 2004-12-23 Kuraray Chemical Co., Ltd Activated carbon product in sheet form and element of device for preventing transpiration of fuel vapor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799459B2 (en) 2014-08-08 2017-10-24 Corning Incorporated High pore volume utilization carbon and electric double layer capacitor

Also Published As

Publication number Publication date
JPH0963907A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
JP3978302B2 (en) Metal oxide electrode for supercapacitor and method for producing the same
CN103947017B (en) For the carbon lead blend in mixed tensor storage device
Lota et al. Supercapacitors based on nickel oxide/carbon materials composites
KR101384663B1 (en) Supercapacitor and electrochemical apparatus for water purification using the same
JP4708152B2 (en) Method for producing carbon material for electric double layer capacitor electrode
JP4618929B2 (en) Activated carbon for electric double layer capacitors
JP2001185459A (en) Electrochemical capacitor
JPH11297578A (en) Electric double-layer capacitor
JP4273215B2 (en) Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode
JP2004047613A (en) Activated carbon and electrode for electric double-layer capacitor employing active carbon
JP5004501B2 (en) Activated carbon and electric double layer capacitor using the same
Hughes et al. The properties of carbons derived through the electrolytic reduction of molten carbonates under varied conditions: Part I. A study based on step potential electrochemical spectroscopy
TW201507974A (en) High voltage EDLC electrodes containing CO2 activated coconut char
WO2006006218A1 (en) Active carbon for electric double layer capacitor, active carbon electrode for electric double layer capacitor and electric double layer capacitor utilizing the same
Wang et al. Preparation of mesoporous TiO 2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries
JP2017512170A (en) Method for forming activated carbon
JP3854333B2 (en) Activated carbon for electrode of electric double layer capacitor and its manufacturing method
Ali et al. Recycled nanomaterials for energy storage (Supercapacitor) applications
JP3866785B2 (en) Activated carbon for electrodes of electric double layer capacitors
JP2001274044A (en) Capacitor using nonaqueous electrolyte
JP4916632B2 (en) Vapor grown carbon fiber and its use
JP2004247433A (en) Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor
JP4179581B2 (en) Activated carbon, its production method and its use
JP2007169117A (en) Activated carbon and electrical double layer capacitor using same
JP2016504763A (en) Supercapacitor electrode material in which porous titanium oxide and carbon-based material are bonded, and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141013

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees