JPS6390108A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPS6390108A
JPS6390108A JP61234334A JP23433486A JPS6390108A JP S6390108 A JPS6390108 A JP S6390108A JP 61234334 A JP61234334 A JP 61234334A JP 23433486 A JP23433486 A JP 23433486A JP S6390108 A JPS6390108 A JP S6390108A
Authority
JP
Japan
Prior art keywords
valve
liquid helium
vessel
vacuum
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61234334A
Other languages
Japanese (ja)
Inventor
Shinichi Kimura
信一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61234334A priority Critical patent/JPS6390108A/en
Publication of JPS6390108A publication Critical patent/JPS6390108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce the consumption volume of an ultra-low temperature medi um, even when a small superconductive coil or the like is tested in a cryostat, by a method wherein a liquid helium vessel can display a shielding effect and the space between the vessel and a small-sized liquid helium vessel can be evacuated to produce a vacuum. CONSTITUTION:A small-sized liquid helium vessel 13 is attached to a top flange 9 at a cryostat, and a small superconductive coil 17 is arranged inside this vessel. In addition, a liquid nitrogen shield 4 is installed k a liquid helium vessel 7, and valves 14, 15, 16 are installed at the vessel 7. These valves 14-16 are opened and closed from the outside of a vacuum tank 2 so that the vessel 7 can display a shielding effect. When the helium vessel 13 is used, the valve 14 is closed, the valve 15 is opened and the valve 16 is opened. By these operations the space between the helium vessel 13 and the vessel 7 can be evacuated to produce a vacuum by means of a vacuum evacuator through the valve 15 and a vacuum valve 3. The consumption volume of an ultra-low temperature medium can be reduced in this way.

Description

【発明の詳細な説明】 〔発明の「1的〕 (産業上の利用分野) 本発明は極低温冷媒を収納するクライオスタットに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object 1] of the Invention (Field of Industrial Application) The present invention relates to a cryostat containing a cryogenic refrigerant.

(従来の技術) 極低温冷媒を使用する場合はクライオスタットと呼ばれ
る極低温容器を用いる。このクライオスタットは極低温
冷媒への熱侵入量を抑えるため通常、真空断熱層、ふく
射シールドを設けその内側に極低温冷媒容器を有してい
る。第2図に従来の技術による超電導コイル用のクライ
オスタットを例にとりその構造について説明する。図に
おいて2はステンレス等より成る真空容器であり真空バ
ルブ3を介し図示しない真空排気装置により真空排気し
対流による熱侵入を抑える。4はステンレス又は銅等よ
り成る液体窒素シールドであり液体窒素5を溜める構造
となっておりふく射による熱侵入を抑えている。4aは
この液体窒素供給管、4bは蒸発窒素ガス放出管である
。6は液体窒素シールドの外側に取付けた多層断熱材で
ふく射による液体窒素5の蒸発を抑えている。7はステ
ンレス等より成る液体ヘリウム容器で液体ヘリウム8を
収納する。9はステンレス等より成るトップフランジで
0リング10を介し図示しないボルト等により真空容器
2に取付けられる。トップフランジ9には液体ヘリウム
供給ポート9a、 蒸発ヘリウムガス放出管9bが設け
である。11は超電導コイルでありスタッド12により
トップフランジに吊られており図示しない電流供給リー
ドにより励磁され超電導状態で運転される。    ゛ (発明が解決しようとする問題点) このようなりライオスタットにおいて、小形の超電導コ
イルを試験する場合は第3図に示すように従来のクライ
オスタットを流用し液体ヘリウム容器7の内側に小形の
液体ヘリウム容器13をトップフランジ9に取付けて用
いる。小形の液体ヘリウム容器を用いる理由は高価な液
体ヘリウムの使用量を少なくするためであり、従来のク
ライオスタットを流用するのは液体窒素シールドとその
外周の真空断熱層をそのまま活用できるからである。
(Prior Art) When using a cryogenic refrigerant, a cryogenic container called a cryostat is used. In order to suppress the amount of heat intrusion into the cryogenic refrigerant, this cryostat usually has a vacuum insulation layer and a radiation shield, and has a cryogenic refrigerant container inside thereof. The structure of a conventional cryostat for superconducting coils will be explained in FIG. 2 as an example. In the figure, reference numeral 2 denotes a vacuum container made of stainless steel or the like, which is evacuated via a vacuum valve 3 by an evacuation device (not shown) to suppress heat intrusion due to convection. Reference numeral 4 denotes a liquid nitrogen shield made of stainless steel, copper, etc., which has a structure for storing liquid nitrogen 5 and suppresses heat intrusion due to radiation. 4a is this liquid nitrogen supply pipe, and 4b is an evaporated nitrogen gas discharge pipe. 6 is a multilayer insulation material attached to the outside of the liquid nitrogen shield to suppress evaporation of the liquid nitrogen 5 due to radiation. A liquid helium container 7 made of stainless steel or the like stores liquid helium 8. Reference numeral 9 denotes a top flange made of stainless steel or the like, which is attached to the vacuum vessel 2 via an O-ring 10 with bolts (not shown) or the like. The top flange 9 is provided with a liquid helium supply port 9a and an evaporated helium gas discharge pipe 9b. A superconducting coil 11 is suspended from the top flange by a stud 12, and is excited by a current supply lead (not shown) to operate in a superconducting state. (Problem to be solved by the invention) When testing a small superconducting coil in a cryostat, a conventional cryostat is used as shown in FIG. A helium container 13 is attached to the top flange 9 and used. The reason for using a small liquid helium container is to reduce the amount of expensive liquid helium used, and the reason for using a conventional cryostat is because the liquid nitrogen shield and vacuum insulation layer around its outer periphery can be used as is.

しかし本体の液体ヘリウム容器7が常温のためシールド
効果が無く又、小形液体ヘリウム容器13の外周空藺が
真空でないため液体ヘリウムの蒸発量が増大する欠点が
あった。
However, since the liquid helium container 7 of the main body is at room temperature, there is no shielding effect, and since the outer circumference of the small liquid helium container 13 is not vacuum, there is a drawback that the amount of evaporation of liquid helium increases.

そこで本発明は、液体ヘリウム容器にシールド効果をも
たせ、かつ液体ヘリウム容器と小形液体ヘリウム容器と
の間を真空排気できる構造とし小形液体ヘリウム容器を
使用するときにも液体ヘリウムの蒸発量が増大しないク
ライオスタットを提供することを目的とする。
Therefore, the present invention has a structure in which the liquid helium container has a shielding effect, and the space between the liquid helium container and the small liquid helium container can be evacuated, so that the amount of evaporation of liquid helium does not increase even when the small liquid helium container is used. The purpose is to provide cryostat.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するため本発明においては第3図に示す
ように、液体窒素シールド4と液体ヘリウム容器7間を
気密の構造としバルブ14、バルブ15、バルブ16を
設ける。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an airtight structure between the liquid nitrogen shield 4 and the liquid helium container 7, as shown in FIG. 16 will be provided.

(作用) このようなりライオスタットにおいては、通常使用の場
合はバルブ14は開、バルブ15は閉、バルブ16は閉
とする。小形液体ヘリウム容器13を使用する場合はバ
ルブ14は閉、バルブ15は開、バルブ16は開とする
。この操作により小形液体ヘリウム容器13と液体ヘリ
ウム容器7との間は真空状態となり、液体ヘリウム容器
7と液体窒素シールド間4には液体窒素が導入され液体
ヘリウム容器7は液体窒素温度となりシールド効果を有
することとなる。
(Function) In the rhiostat as described above, in normal use, the valve 14 is open, the valve 15 is closed, and the valve 16 is closed. When using the small liquid helium container 13, the valve 14 is closed, the valve 15 is open, and the valve 16 is open. By this operation, a vacuum state is created between the small liquid helium container 13 and the liquid helium container 7, and liquid nitrogen is introduced between the liquid helium container 7 and the liquid nitrogen shield 4, and the liquid helium container 7 reaches the liquid nitrogen temperature, thereby increasing the shielding effect. It will be held.

(実施例) 以下、本発明の一実施例について第1図をもとに説明す
る。従来技術による第1図と同様の使用をするものは同
符号としたので説明は省略する。
(Example) An example of the present invention will be described below with reference to FIG. Components used in the same manner as in FIG. 1 according to the prior art are given the same reference numerals, and therefore their explanation will be omitted.

13はトップフランジ9に取付けた小形液体ヘリウム容
器でありその中に小形超電導コイル17を有している。
13 is a small liquid helium container attached to the top flange 9, and has a small superconducting coil 17 therein.

液体窒素シールド4は液体ヘリウム容器7的気密を有す
る構造となっている。バルブ14、バルブ15.バルブ
16は各々図に示す位置に設けている。又これらのバル
ブの開閉操作は真空容器2外でできるよう長軸バルブと
し真空容器壁貫通部はOリング等によりシールされてい
る。なお配管を真空容器外に引き出し通常のバルブを用
いることも出来る。
The liquid nitrogen shield 4 has a structure that is airtight like the liquid helium container 7. Valve 14, valve 15. The valves 16 are provided at the positions shown in the figures. In addition, these valves are long shaft valves so that opening and closing operations can be performed outside the vacuum container 2, and the portions that penetrate the wall of the vacuum container are sealed with an O-ring or the like. Note that it is also possible to pull the piping out of the vacuum container and use a normal valve.

次に本実施例の作用について説明する。小形液体ヘリウ
ム容器13を使用しない場合、つまり従来技術と同様の
使用においてはバルブ14は開、バルブ15は閉、バル
ブ16は閉とする。小形液体ヘリウム容器13を使用す
る場合は、バルブ14は閉、バルブ15は開、バルブ1
6は開とする。この操作により小形液体ヘリウム容器1
3と液体ヘリウム容器7の間にバルブ15と真空バルブ
3を介し図示しない真空排気装置により真空排気される
。又、液体ヘリウム容器7と液体窒素容器4間はバルブ
16を介し液体窒素が導入され液体ヘリウム容器7は液
体窒素温度となりシールド効果を有する。
Next, the operation of this embodiment will be explained. When the small liquid helium container 13 is not used, that is, when used in the same manner as in the prior art, the valve 14 is open, the valve 15 is closed, and the valve 16 is closed. When using the small liquid helium container 13, the valve 14 is closed, the valve 15 is open, and the valve 1 is closed.
6 is open. By this operation, the small liquid helium container 1
3 and the liquid helium container 7 are evacuated via the valve 15 and the vacuum valve 3 by an evacuation device (not shown). Further, liquid nitrogen is introduced between the liquid helium container 7 and the liquid nitrogen container 4 through the valve 16, and the liquid helium container 7 becomes at the temperature of liquid nitrogen and has a shielding effect.

このようにバルブの開閉により、小形液体ヘリウム容器
13を使用する場合では本体の液体ヘリウム容器7を液
体窒素温度とすることができシールド効果をもたせられ
る。しかも小形液体ヘリウム容F@13と本体の液体ヘ
リウム容器7の間を真空排気できるため対流による熱侵
入を抑えられる。このため高価な液体ヘリウムの使用量
が少なくなる。
By opening and closing the valve in this manner, when using the small liquid helium container 13, the liquid helium container 7 of the main body can be brought to the temperature of liquid nitrogen, thereby providing a shielding effect. Moreover, since the space between the small liquid helium container F@13 and the liquid helium container 7 of the main body can be evacuated, heat intrusion due to convection can be suppressed. This reduces the amount of expensive liquid helium used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば大きなりライオスタットで小さい超電導
コイル等の試験を行なう場合にも、熱侵入量が少なく、
極低温冷媒の使用量を低減することができる。
According to the present invention, even when testing small superconducting coils in a large lyostat, the amount of heat intrusion is small,
The amount of cryogenic refrigerant used can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のクライオスタットの縦断面
図、第2図および第3図は従来のクライオスタットの縦
断面図である。 2・・・真空容器      3・・・真空バルブ4・
・・液体窒素シールド  4a・・・液体窒素供給管4
b・・・蒸発窒素ガス放出lr!5・・・液体窒素6・
・・多層断熱材     7・・・液体ヘリウム容器8
・・・液体ヘリウム    9・・・トップフランジ9
a・・・液体ヘリウム供給ポート 9b・・・蒸発ヘリウムガス放出管 10・・・Oリング      11・・・超電導コイ
ル12・・・スタッド      13・・・小形液体
ヘリウム容器14.15,16・・・バルブ    1
7・・・小形超電導コイル代理人 弁理士 則 近 憲
 佑 同  三俣弘文 第1図
FIG. 1 is a longitudinal sectional view of a cryostat according to an embodiment of the present invention, and FIGS. 2 and 3 are longitudinal sectional views of a conventional cryostat. 2... Vacuum container 3... Vacuum valve 4.
...Liquid nitrogen shield 4a...Liquid nitrogen supply pipe 4
b...Evaporative nitrogen gas release lr! 5...Liquid nitrogen 6.
...Multilayer insulation material 7...Liquid helium container 8
...Liquid helium 9...Top flange 9
a...Liquid helium supply port 9b...Evaporized helium gas discharge tube 10...O ring 11...Superconducting coil 12...Stud 13...Small liquid helium container 14, 15, 16... Valve 1
7...Small superconducting coil agent Patent attorney Noriyuki Chika Yudo Hirofumi MitsumataFigure 1

Claims (1)

【特許請求の範囲】[Claims]  トップフランジによって塞がれる開口部を有する真空
容器と、この真空容器の内側に設けられて液体窒素貯溜
室を有する液体窒素シールドと、この液体窒素シールド
の内側に設けられた液体ヘリウム容器と、前記真空容器
の内側の空間と前記液体窒素シールドの内側の空間とを
連通するバルブと、前記液体ヘリウム容器の内側の空間
と前記真空容器の内側の空間とを連通するバルブと、前
記液体窒素シールドの内側の空間と前記液体窒素貯溜室
とを連通するバルブとを備え、前記液体ヘリウム容器の
内側にこの液体ヘリウム容器よりも小さい液体ヘリウム
容器を着脱自在に設けたことを特徴とするクライオスタ
ット。
a vacuum container having an opening closed by a top flange; a liquid nitrogen shield provided inside the vacuum container and having a liquid nitrogen storage chamber; a liquid helium container provided inside the liquid nitrogen shield; a valve communicating between the space inside the vacuum container and the space inside the liquid nitrogen shield; a valve communicating the space inside the liquid helium container and the space inside the vacuum container; and a valve communicating the space inside the liquid nitrogen shield with the space inside the liquid nitrogen shield. A cryostat comprising a valve that communicates an inner space with the liquid nitrogen storage chamber, and a liquid helium container smaller than the liquid helium container is detachably provided inside the liquid helium container.
JP61234334A 1986-10-03 1986-10-03 Cryostat Pending JPS6390108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234334A JPS6390108A (en) 1986-10-03 1986-10-03 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234334A JPS6390108A (en) 1986-10-03 1986-10-03 Cryostat

Publications (1)

Publication Number Publication Date
JPS6390108A true JPS6390108A (en) 1988-04-21

Family

ID=16969367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234334A Pending JPS6390108A (en) 1986-10-03 1986-10-03 Cryostat

Country Status (1)

Country Link
JP (1) JPS6390108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075911A (en) * 1997-02-13 2000-06-13 Nec Corporation Optical coupling system using gel resin and the mounting structure
JP2007205709A (en) * 2005-12-22 2007-08-16 Siemens Magnet Technology Ltd Closed-loop pre-cooling method of cryogenically cooled apparatus, and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075911A (en) * 1997-02-13 2000-06-13 Nec Corporation Optical coupling system using gel resin and the mounting structure
JP2007205709A (en) * 2005-12-22 2007-08-16 Siemens Magnet Technology Ltd Closed-loop pre-cooling method of cryogenically cooled apparatus, and its device

Similar Documents

Publication Publication Date Title
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
US3262279A (en) Extreme high vacuum apparatus
JPH0155392B2 (en)
US4072025A (en) Regeneration-type cryopump
US3358463A (en) Integrated superconducting magnetcryostat system
JPS6390108A (en) Cryostat
JP2005344991A (en) Cryogenic cryostat
JP3358053B2 (en) Liquid nitrogen recondenser
JP3858269B2 (en) Cooling tube and cryogenic cryostat using the same
WO2014203826A1 (en) Nmr system
US5477692A (en) Metal sponge for cryosorption pumping applications
JP2991566B2 (en) Physical property measurement device under magnetic field
US7482808B2 (en) Superconductive magnet apparatus and magnetic resonance imaging apparatus
JPH04263768A (en) Cooling method of superconductive magnetic sealed vessel and device therefor
JP3122539B2 (en) Superconducting magnet
JPS61236971A (en) Sealing method for magnetic fluid seal
Klipping Cryogenic centres—their tasks and their organization
JPH0786540B2 (en) Fusion reactor protection device
SU896338A1 (en) Cryostat
JPH0638209U (en) Cryostat for superconducting magnet
JPH0257349B2 (en)
JPH0298107A (en) Superconducting magnet device
JPH01245598A (en) High temperature superconductor zero magnetic field standard device
JPS59119076A (en) Cryopump
JPS6049684A (en) Cryostat