JPS61236971A - Sealing method for magnetic fluid seal - Google Patents

Sealing method for magnetic fluid seal

Info

Publication number
JPS61236971A
JPS61236971A JP60078524A JP7852485A JPS61236971A JP S61236971 A JPS61236971 A JP S61236971A JP 60078524 A JP60078524 A JP 60078524A JP 7852485 A JP7852485 A JP 7852485A JP S61236971 A JPS61236971 A JP S61236971A
Authority
JP
Japan
Prior art keywords
magnetic fluid
seal
stage
pressure
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60078524A
Other languages
Japanese (ja)
Inventor
Shojiro Miyake
正二郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60078524A priority Critical patent/JPS61236971A/en
Publication of JPS61236971A publication Critical patent/JPS61236971A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force

Abstract

PURPOSE:To make it possible to prevent the occurrence of spike-shaped leakage to use a multistage magnetic fluid seal under a superhigh-vacuum condition by previously exhausting air in a space formed by the first stage seal part on the vacuum side of the multistage magnetic fluid seal to reduce its pressure lower than the proof pressure in the first stage seal part. CONSTITUTION:A multistage magnetic fluid seal is composed of the first stage seal part 5a, the second stage seal part 5b or the like which are arranged in order from the vacuum side of the seal. A space 11 formed by the first stage seal part 5a is connected with an exhaust pump 13. Consequently, this exhaust pump 13 can previously reduce the pressure in the space 11 lower than the proof pressure in the first stage seal part 5a.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、真空中で使用される磁性流体シール、特に
多段磁性流体シールの封止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for sealing a magnetic fluid seal used in a vacuum, particularly a multi-stage magnetic fluid seal.

[従来技術] 一般に、磁性流体シールを可動軸のシール機構に採用し
た場合、摩擦抵抗が小さく、シール部の摩耗がない等多
くの利点があり、多方面で実用化されている。
[Prior Art] In general, when a magnetic fluid seal is adopted as a seal mechanism for a movable shaft, it has many advantages such as low frictional resistance and no wear of the seal portion, and has been put into practical use in many fields.

このような磁性流体シールを真空中に外部から動力を導
入する可動軸のシール機構に使用する際には、シール部
が1カ所すなわち1段だけでは0.2気圧程度が耐圧力
の限界であるため、シール部を複数すなわち多段にして
耐圧力の向上を図っている。
When using such a magnetic fluid seal in a sealing mechanism for a movable shaft that introduces power from the outside into a vacuum, the maximum pressure resistance is approximately 0.2 atmospheres if there is only one seal part, that is, one stage. Therefore, a plurality of seal portions, that is, multiple seal portions are provided in order to improve pressure resistance.

このような真空用多段磁性流体シールの構造を第4図〜
第6図に示す。すなわち、磁性流体101は可動軸10
3とポールピース105との間に永久磁石107の磁束
によって保持されており、これらの部材で構成される磁
性流体シールは図外のハウジングに取付けられている。
The structure of such a multistage magnetic fluid seal for vacuum is shown in Figure 4~
It is shown in FIG. That is, the magnetic fluid 101 is attached to the movable shaft 10
3 and the pole piece 105 by the magnetic flux of a permanent magnet 107, and a magnetic fluid seal made up of these members is attached to a housing (not shown).

そして真空槽の排気時に真空側の第1段目のシール部1
01aが破壊し、このシール部101aで形成さ・れる
空@109内の圧力が第1段目のシール部101aの耐
圧値と略等しい値になったとき、再びこの第10段目の
シール部101aが形成される。その他□の第2段目以
降のシール部についても真空槽内の排気時に一旦破壊し
た後、各段の耐圧値に従って一定の圧力で安定的に保持
される構成となっている。
Then, when the vacuum chamber is evacuated, the first stage seal part 1 on the vacuum side
01a is destroyed and the pressure in the cavity @109 formed by this seal part 101a becomes approximately equal to the withstand pressure value of the first stage seal part 101a, this tenth stage seal part 101a is formed. In addition, the sealing portions of the second and subsequent stages shown in □ are also configured to be once destroyed when the vacuum chamber is evacuated, and then stably maintained at a constant pressure according to the withstand pressure value of each stage.

なお、第6図中における符@111は非磁性体であり、
また各区間の同一構成要素には同一符号を付しである。
Note that the symbol @111 in FIG. 6 is a non-magnetic material,
Also, the same components in each section are given the same reference numerals.

これらの多段磁性流体シールを超高真空下で使用する場
合、磁性流体の蒸発による真空槽の汚染が心配され、ま
たこの蒸発により磁性流体の粘度が増加しトルクの増大
等シール特性の劣化を招く恐れがある。しかし、このよ
うな問題は低蒸気圧の磁性流体を使用することである程
度解消され、特にバー70ロポリエーテルやトリエステ
ル等の低蒸気圧の磁性流体を用いれば10’Torrま
での真空下で使用が可能となる。
When these multi-stage magnetic fluid seals are used under ultra-high vacuum, there is a concern that the vacuum chamber may be contaminated due to evaporation of the magnetic fluid, and this evaporation increases the viscosity of the magnetic fluid, causing deterioration of sealing characteristics such as increased torque. There is a fear. However, these problems can be solved to some extent by using a magnetic fluid with a low vapor pressure, and in particular, if a magnetic fluid with a low vapor pressure such as bar 70 polyether or triester is used, it can be used under a vacuum of up to 10'Torr. It becomes possible.

[発明が解決しようとする問題点] しかしながら、このような従来の磁性流体シールを10
’yorr以上の超高真空下で使用した場合、質1分析
計で真空槽内の残留ガス分析を行なうと、真空側に近接
する第1段目のシール部からスパイク状のリークの発生
が観察されるが、これは磁性流体の粘性トルクによる温
度上昇で第1段目のシール部により形成される空間内の
圧力が増加し、真空槽側との圧力差が大きくなって前記
第1段目のシール部では耐えきれなくなり、このシール
部が破壊することによると考えられる。
[Problems to be Solved by the Invention] However, such conventional magnetic fluid seals are
When used in an ultra-high vacuum of over 1000 yorr, when analyzing the residual gas in the vacuum chamber with a quality 1 analyzer, a spike-like leak was observed from the first stage seal close to the vacuum side. However, this is because the temperature rise due to the viscous torque of the magnetic fluid increases the pressure in the space formed by the first stage seal, and the pressure difference with the vacuum chamber side increases, causing the first stage This is thought to be due to the fact that the seal part could no longer withstand the damage, and this seal part broke.

この磁性流体シールにおける各段のシール部は前記した
ようにそれぞれの耐圧に従って一定圧力で微妙に安定し
ているので、このような圧力変動が起こると、スパイク
状のリークが発生しやすい。
As described above, the seal portions at each stage in this magnetic fluid seal are slightly stabilized at a constant pressure according to their respective withstand pressures, so when such pressure fluctuations occur, spike-like leaks are likely to occur.

このリークは、超高真空状態で用いる各種分析機器、薄
膜形成装置および各種試験装置においてそれぞれの特性
を劣化させるだけではなく、装置内部の汚染等によって
、その信頼性が著しく低下する等非常に大きな問題とな
っている。したがって1(18Torr以上の超高真空
下では磁性流体シールはあまり使用されないのが現状で
ある。
This leak not only deteriorates the characteristics of various analytical instruments, thin film forming equipment, and various testing equipment used in ultra-high vacuum conditions, but also causes a significant drop in reliability due to contamination inside the equipment. This has become a problem. Therefore, at present, magnetic fluid seals are not often used under ultra-high vacuum conditions of 1 (18 Torr or higher).

この発明はとのような従来の問題点に着目してなされた
もので、10°s’rorr以上の超高真空下において
もスパイク状のリークの発生を抑えて使用可能にした磁
性流体シールの提供を目的としている。
This invention was made by focusing on the conventional problems as described above, and it is a magnetic fluid seal that can be used even under ultra-high vacuum of 10°s'rorr or more by suppressing the occurrence of spike-like leaks. intended to provide.

[問題点を解決するための手段] この目的を達成するためにこの発明は、多段磁性流体シ
ールの真空側の第1段目のシール部で形成される空間の
圧力を、あらかじめ前記第1段目のシール部の耐圧に比
べて小さい圧力に排気するようにしたものである。
[Means for Solving the Problems] In order to achieve this object, the present invention sets the pressure in the space formed by the seal portion of the first stage on the vacuum side of the multistage magnetic fluid seal to The exhaust pressure is lower than the withstand pressure of the eye seal.

[実施例] 以下、第1図〜第3図に基づきこの発明の実施例を詳細
に説明する。
[Example] Hereinafter, an example of the present invention will be described in detail based on FIGS. 1 to 3.

第1図はこの発明の一実施例である磁性流体シールの断
面図で、可動軸1とこの可動軸1の外周を覆うポールピ
ース3との間の微小隙間には、低蒸気圧の磁性流体5が
各ポールピース3間に介装された永久磁石7の磁束によ
り保持されている。
FIG. 1 is a cross-sectional view of a magnetic fluid seal which is an embodiment of the present invention. In the minute gap between the movable shaft 1 and the pole piece 3 that covers the outer periphery of the movable shaft 1, there is a magnetic fluid with a low vapor pressure. 5 is held by the magnetic flux of a permanent magnet 7 interposed between each pole piece 3.

これら、ポールピース3、磁性流体5、永久磁”石7等
で構成される磁性流体シールはハウジング9に取付けら
れており、このハウジング9の図□中で左側が真空側で
ある。この真空側のシール部5aが第1段目のシール部
で、このシール部5aから右へ第2段目のシール部5b
、第3段目のシー・ル部5C・・・・・・となっている
These magnetic fluid seals consisting of the pole piece 3, magnetic fluid 5, permanent magnet 7, etc. are attached to a housing 9, and the left side of the housing 9 in the figure □ is the vacuum side.This vacuum side The seal portion 5a is the first seal portion, and from this seal portion 5a to the right is the second seal portion 5b.
, the third stage seal portion 5C...

そして、第1段目のシール部5aと第2段目のシール部
5bとの間の空間11と排気ポンプ13とは、永久磁石
7とハウジング9とを貫通して設けられた配管15によ
り連通しており、これによりこの空間11を第1段目の
シール部5aの耐圧に比べ著しく低い値にまで排気する
ことが可能となっている。    □ このた□め、可動軸1の回転時の温度上昇により空間1
1内の圧力が多少上昇してもシール部が破壊することな
く突発的なスパイク状のリークの発生することはない。
The space 11 between the first-stage seal part 5a and the second-stage seal part 5b and the exhaust pump 13 communicate with each other through a pipe 15 provided through the permanent magnet 7 and the housing 9. As a result, this space 11 can be evacuated to a pressure significantly lower than the withstand pressure of the first stage seal portion 5a. □ For this reason, the temperature rise during rotation of movable shaft 1 causes space 1 to
Even if the pressure inside 1 rises to some extent, the seal portion will not be destroyed and no sudden spike-like leaks will occur.

なお、この実施例では、第2段目のシール部5bが破壊
した場合であっても、空間11が体積的に余裕のある構
造となっているので、それぞれの段のシール部で圧力が
安定し、真空側の第1@目のシール部5aが破壊するこ
とはない。
In addition, in this embodiment, even if the seal portion 5b of the second stage is destroyed, the space 11 has a structure with sufficient volume, so that the pressure is stabilized in the seal portion of each stage. However, the first @th seal portion 5a on the vacuum side will not be destroyed.

なお、この実施例では排気ポンプを真空槽の排気ポンプ
とは別に設けたが、真空槽の排気ポンプを併用し、空間
11の排気を行なった後空間11に連通する配管内のパ
ルプを締めるようにしてもよい。
In this embodiment, the exhaust pump was provided separately from the exhaust pump for the vacuum chamber, but the exhaust pump for the vacuum chamber was also used to tighten the pulp in the piping communicating with the space 11 after evacuating the space 11. You can also do this.

第2図は他の実施例を示す。なお、この実施例では前述
の実施例と同一構成要素には同一符号を付して説明を簡
略化する。これは、真空側の第1段目のシール部5aを
形成するポールピース3と第2段目のシール部5bを形
成するポールピース3との閤に設けられた永久磁石7の
内周側に電磁石17を配設したものである。
FIG. 2 shows another embodiment. In this embodiment, the same components as in the previous embodiment are given the same reference numerals to simplify the explanation. This is applied to the inner peripheral side of the permanent magnet 7 provided between the pole piece 3 forming the first stage sealing part 5a on the vacuum side and the pole piece 3 forming the second stage sealing part 5b. An electromagnet 17 is provided.

この電磁石17は真空排気時に永久磁石の磁束を打消す
ように作用させて第1段目と第2段目とのシール部5a
と5bとの磁性流体が封入される微小隙間の磁束密度を
小さくする。これにより、真空排気時に第1段目と第2
段目のシール部5aと5bとは破壊して空間11は真空
側に排気される。その後空fm11内がシール耐圧より
充分低い圧力に排気された所で、電磁石7への通電を停
止させると、破壊されたシール部5aと5bとの微小隙
間に永久磁石7による磁束が回復し、磁性流体が図外の
貯蔵部から補給されて第1段目のシール部5aと第2段
目のシール部5bとが再び形成される。
This electromagnet 17 acts to cancel the magnetic flux of the permanent magnet during evacuation, and seals the first and second stage seal portions 5a.
and 5b, the magnetic flux density of the minute gap in which the magnetic fluid is sealed is reduced. This allows the first stage and second stage to be
The seal portions 5a and 5b of the tiers are destroyed and the space 11 is evacuated to the vacuum side. After that, when the air fm11 is evacuated to a pressure sufficiently lower than the seal pressure, when the power supply to the electromagnet 7 is stopped, the magnetic flux by the permanent magnet 7 is restored in the minute gap between the broken seal parts 5a and 5b. The magnetic fluid is replenished from a storage portion (not shown), and the first-stage seal portion 5a and the second-stage seal portion 5b are formed again.

この実施例においても第1段目のシール部5aにかかる
圧力が小さくなるので超高真空下においても突発的なス
パイク状のリークが発生するようなことはない。また、
電磁石17への通電は真空排気時にのみ行なって、可動
軸1の回転中すなわち可動軸1に連動する図外の装置の
動作時には行なう必要がないので電力の消費量が問題と
なる程大きくなることはない。
In this embodiment as well, since the pressure applied to the first stage seal portion 5a is small, sudden spike-like leakage does not occur even under ultra-high vacuum. Also,
The electromagnet 17 is energized only during evacuation, and does not need to be energized while the movable shaft 1 is rotating, that is, when a device (not shown) that is linked to the movable shaft 1 is operating, so the power consumption becomes large enough to become a problem. There isn't.

なお、第1段目のシール部5aを形成するポールピース
3と第2段目のシール部5bを形成するポールピース3
との間に永久磁石を設けずに電磁石のみを設けてもよい
。ただし、この場合は電磁石によりシール部を形成させ
るため、可動軸1の回転中は常に電磁石を通電状態にし
ておく必要がある。
Note that the pole piece 3 forming the first stage sealing part 5a and the pole piece 3 forming the second stage sealing part 5b
Only an electromagnet may be provided without providing a permanent magnet between the two. However, in this case, since the seal portion is formed by an electromagnet, it is necessary to keep the electromagnet energized at all times while the movable shaft 1 is rotating.

第3図は上記各実施例で示したような磁性流体シール1
9を、フランジ21により真空槽壁23側に装着された
ハウジング25内に取付けた例を示している。この磁性
流体シール19は、ハウジング25内に設けられ可動軸
1を支持する軸受27の真空側に配置しており、これに
より軸受27のグリース等による真空槽内の汚染を防止
している。また、この磁性流体シール19の周囲のハウ
ジング25内には環状の冷却水通路29が形成され、こ
の通路29に連通してハウジング25の外部に突出した
冷却水注入口31が装着さ竺ている。
Figure 3 shows a magnetic fluid seal 1 as shown in each of the above embodiments.
9 is attached in a housing 25 attached to the vacuum chamber wall 23 side by a flange 21. The magnetic fluid seal 19 is disposed on the vacuum side of a bearing 27 that is provided in the housing 25 and supports the movable shaft 1, thereby preventing contamination of the inside of the vacuum chamber by grease or the like on the bearing 27. Further, an annular cooling water passage 29 is formed in the housing 25 around the magnetic fluid seal 19, and a cooling water inlet 31 that communicates with this passage 29 and projects to the outside of the housing 25 is installed. .

すなわち、冷却水通路29に冷却水を供給することによ
り、シール部が冷却され磁性流体の蒸発量を低減させる
ことができ、また、この冷却により磁性流体が高温化し
劣化することなく真空槽のベーキングが可能である。な
お、磁性流体の蒸気が、真空槽中に直接飛来しないよう
に真空槽、側にカバーを設けるようにしてもよい。
That is, by supplying cooling water to the cooling water passage 29, the seal portion is cooled and the amount of evaporation of the magnetic fluid can be reduced, and this cooling also prevents the magnetic fluid from heating up and deteriorating, allowing baking of the vacuum chamber. is possible. Note that a cover may be provided on the side of the vacuum chamber to prevent the vapor of the magnetic fluid from directly flying into the vacuum chamber.

[発明の効果] 以上のようにこの発明によれば、真空側の第1段目の磁
性流体シールにかかる圧力をシール耐圧に比べ小さく設
定できるようにしたため、突発的なスパイク状のリーク
の発生を招くことなく、1QJvorr以上の超高真空
下での磁性流体シールの使用が可能となる。
[Effects of the Invention] As described above, according to the present invention, the pressure applied to the first stage magnetic fluid seal on the vacuum side can be set to be lower than the seal pressure resistance, thereby preventing the occurrence of sudden spike-like leaks. It becomes possible to use the magnetic fluid seal under an ultra-high vacuum of 1QJvorr or more without causing problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の磁性流体シールの断面図
、第2図は他の実施例の同断面図、第3図はこれらの磁
性流体シールの適用例を示す断面図、第4図〜第6図は
従来の磁性流体シールの断面図である。 5・・・磁性流体、 5a・・・第1段目のシール部、 5b・・・第2段目のシール部、 11・・・空間 第!因 第2図 第8図
FIG. 1 is a cross-sectional view of a magnetic fluid seal according to one embodiment of the present invention, FIG. 2 is a cross-sectional view of another embodiment, FIG. 3 is a cross-sectional view showing an application example of these magnetic fluid seals, and FIG. 6 are cross-sectional views of conventional magnetic fluid seals. 5...Magnetic fluid, 5a...First stage seal part, 5b...Second stage seal part, 11...Space! Fig. 2 Fig. 8

Claims (1)

【特許請求の範囲】[Claims] 多段磁性流体の真空側の第1段目のシール部で形成され
る空間の圧力を、あらかじめ前記第1段目のシール部の
耐圧に比べて小さい圧力に排気することを特徴とする磁
性流体シールの封止方法。
A magnetic fluid seal characterized in that the pressure in the space formed by the first stage seal portion on the vacuum side of the multistage magnetic fluid is evacuated in advance to a pressure lower than the withstand pressure of the first stage seal portion. Sealing method.
JP60078524A 1985-04-15 1985-04-15 Sealing method for magnetic fluid seal Pending JPS61236971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60078524A JPS61236971A (en) 1985-04-15 1985-04-15 Sealing method for magnetic fluid seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078524A JPS61236971A (en) 1985-04-15 1985-04-15 Sealing method for magnetic fluid seal

Publications (1)

Publication Number Publication Date
JPS61236971A true JPS61236971A (en) 1986-10-22

Family

ID=13664310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078524A Pending JPS61236971A (en) 1985-04-15 1985-04-15 Sealing method for magnetic fluid seal

Country Status (1)

Country Link
JP (1) JPS61236971A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418628U (en) * 1987-07-23 1989-01-30
US5340122A (en) * 1992-06-22 1994-08-23 Ferrofluidics Corporation Differentially-pumped ferrofluidic seal
CN102606745A (en) * 2012-04-06 2012-07-25 哈尔滨工业大学 Magnetic fluid multi-pole multi-level sealing device based on toothed groove structure
JP2014029208A (en) * 2007-10-18 2014-02-13 Rigaku Innovative Technologies Inc Magnetic fluid seal with precise control of fluid volume at each seal stage
US11506288B2 (en) * 2017-07-18 2022-11-22 Eagle Industry Co., Ltd. Shaft seal device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418628U (en) * 1987-07-23 1989-01-30
US5340122A (en) * 1992-06-22 1994-08-23 Ferrofluidics Corporation Differentially-pumped ferrofluidic seal
JP2014029208A (en) * 2007-10-18 2014-02-13 Rigaku Innovative Technologies Inc Magnetic fluid seal with precise control of fluid volume at each seal stage
CN102606745A (en) * 2012-04-06 2012-07-25 哈尔滨工业大学 Magnetic fluid multi-pole multi-level sealing device based on toothed groove structure
US11506288B2 (en) * 2017-07-18 2022-11-22 Eagle Industry Co., Ltd. Shaft seal device

Similar Documents

Publication Publication Date Title
US4407518A (en) Nonbursting multiple-stage ferrofluid seal and system
US4357024A (en) Ferrofluid rotary-shaft seal apparatus and method
EP0929764B1 (en) Magnetic fluid sealing device
US6857635B1 (en) Ultra high vacuum ferrofluidic seals and method of manufacture
US4357022A (en) Ferrofluid rotary-shaft seal apparatus and method
US3467396A (en) Internally cooled seal assembly
US4526380A (en) Single pole piece multiple-stage ferrofluid seal apparatus
US4550593A (en) Turbomolecular pump suitable for performing counterflow leakage tests
JPS61236971A (en) Sealing method for magnetic fluid seal
JP3256458B2 (en) Sealing device using magnetic fluid
US3155393A (en) Sealed quench collar
JPH0389080A (en) Seal mechanism for vacuum pump lubricating oil
JP3480280B2 (en) Vertical processing equipment
US4211087A (en) Device for maintaining a vacuum in a compartment of a rotating member
JPS61160670A (en) Magnetic fluid sealing device
JPH04258576A (en) Shaft seal device
Jin et al. Vacuum system of the Space Plasma Environment Research Facility
Ladd et al. ITER vacuum pumping and leak detection systems
JPH04347070A (en) Multistage magnetic fluid sealing device for vacuum
RU2789162C1 (en) High vacuum system for industrial and laboratory installations
JPH08320072A (en) Multistage magnetic fluid shaft sealing device
JPH1061782A (en) Magnetic seal device
Raj et al. Mass spectrometric studies of material evolution from magnetic liquid seals
Wertelaers SHiP Hidden Sector Vacuum System
US3249290A (en) Vacuum pump apparatus