JPH0298107A - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JPH0298107A
JPH0298107A JP63249827A JP24982788A JPH0298107A JP H0298107 A JPH0298107 A JP H0298107A JP 63249827 A JP63249827 A JP 63249827A JP 24982788 A JP24982788 A JP 24982788A JP H0298107 A JPH0298107 A JP H0298107A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
container
nitrogen
liquid
pressurizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63249827A
Other languages
Japanese (ja)
Inventor
Shinichi Kimura
信一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63249827A priority Critical patent/JPH0298107A/en
Publication of JPH0298107A publication Critical patent/JPH0298107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To discharge a coolant by only operating a valve by providing a pressurizer which is connected between the liquid phase section and gaseous phase section of a coolant container with pipes and provided on the outside of the coolant container and a liquid discharge pipe inserted into the coolant container until reaching the bottom. CONSTITUTION:Liquid nitrogen 4 is introduced into a pressurizer 12 by opening a pressure valve 13 after pole valves respectively fitted to a liquid nitrogen injecting port 9a and vaporized gas recovering port 9b are closed and a discharge valve 15 is opened. The liquid nitrogen introduced into the pressurizer 12 swells in volume by vaporization when the liquid nitrogen is heated by means of a heater 16 or makes heat exchange with air and the liquid nitrogen is sent to the gaseous phase section of a nitrogen container 3. The pressure inside the container 3 rises and the nitrogen 4 is discharged to the outside through a liquid nitrogen discharging pipe 14. Therefore, only when the valves are opened or closed, the liquid nitrogen can be discharged without making any preparatory works and using any nitrogen gas cylinder.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は超電導マグネット装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a superconducting magnet device.

(従来の技術) 酸化物超電導材料より成る超電導マグネツ1〜は液体窒
素温度で超電導状態となるため各種機器に広く利用され
る。第2図に従来の技術による超電導マグネット装置の
一例を示しその構造について説明する。図において2は
酸化物超電導材料より成る液体窒素温度で超電導状態を
示す超電導4体を巻回して構成された超電導コイルであ
る。3はこの超電導コイル2とこれを冷却する液体窒素
4を収納する液体窒素容器である。5はステンレス鋼等
より成る真空容器で真空バルブ6を介し図示しない真空
排気装置により真空排気し対流による熱侵入を抑える。
(Prior Art) Superconducting magnets 1 to 1 made of oxide superconducting materials become superconducting at liquid nitrogen temperature and are therefore widely used in various devices. FIG. 2 shows an example of a conventional superconducting magnet device, and its structure will be explained. In the figure, reference numeral 2 denotes a superconducting coil constructed by winding four superconducting bodies made of an oxide superconducting material and exhibiting a superconducting state at liquid nitrogen temperature. 3 is a liquid nitrogen container that stores this superconducting coil 2 and liquid nitrogen 4 for cooling it. Reference numeral 5 denotes a vacuum container made of stainless steel or the like, which is evacuated via a vacuum valve 6 by a vacuum evacuation device (not shown) to suppress heat intrusion due to convection.

7は超電導コイル2を支持する支持材、8は超電導コイ
ル2に電流を供給する電流リードである。9はステンレ
ス鋼等より成るトップフランジで図示しないOリングを
介し図示しないボルトにより真空容器に取付けられる。
7 is a support material that supports the superconducting coil 2, and 8 is a current lead that supplies current to the superconducting coil 2. Reference numeral 9 denotes a top flange made of stainless steel or the like, which is attached to the vacuum vessel via an O-ring (not shown) and bolts (not shown).

トップフランジ9にはボールバルブ付の液体窒素注入ポ
ート9aと、蒸発したガスを回収するボールバルブ付の
窒素ガス回収ボー1〜9bを設けている。
The top flange 9 is provided with a liquid nitrogen injection port 9a with a ball valve and nitrogen gas recovery ports 1 to 9b with ball valves for recovering evaporated gas.

(9!明が解決しようとする課題) 超電導コイル2の運転終了後は、液体窒素4を排出し、
コイルを加温する。この排出方法を第3図をもとに説明
する。ボールバルブ付の液体窒素注入ボー1−9aに窒
素ガスボンベ10を図示しない減圧弁を介し接続する。
(9! The problem that Akira is trying to solve) After the operation of the superconducting coil 2 is finished, the liquid nitrogen 4 is discharged,
Warm up the coil. This ejection method will be explained based on FIG. A nitrogen gas cylinder 10 is connected to a liquid nitrogen injection port 1-9a equipped with a ball valve via a pressure reducing valve (not shown).

次にボールバルブ付の窒素ガス回収ボート9bよりステ
ンレス鋼等より成る液排出管11を容器底まで挿入する
。この作業後、窒素ガスボンベ10から窒素ガスを液体
窒素容器3に送り、圧力を上げることにより液体窒素4
を液排出’!?11からJ1″出する。このように液体
室メ・3の排出には窒素ボンベの配管接続、液排出管の
挿入などの準備作業を要し、また窒素ガスボンベを使用
しなければならないといった問題があった。
Next, a liquid discharge pipe 11 made of stainless steel or the like is inserted to the bottom of the container from the nitrogen gas recovery boat 9b equipped with a ball valve. After this work, nitrogen gas is sent from the nitrogen gas cylinder 10 to the liquid nitrogen container 3, and by increasing the pressure, the liquid nitrogen 4
'Drain the liquid'! ? 11 to J1". In this way, discharging the liquid chamber Me.3 requires preparation work such as connecting the nitrogen cylinder piping and inserting the liquid discharge pipe, and there are also problems such as having to use a nitrogen gas cylinder. there were.

以」二の事情は、超電導材として酸化物以外のもの、例
えば有機系のものを用い、冷媒も液体窒素以外の超電導
材を超電導にしつるものを用いた場合にもあてはまる。
The following two circumstances apply even when a superconducting material other than oxides, such as an organic material, is used, and a refrigerant that makes a superconducting material other than liquid nitrogen superconducting is used.

本発明の目的は、冷媒の排出に準備作業を要せず、しか
もガスボンベを使用することのない超電導マグネット装
置を提供することである。
An object of the present invention is to provide a superconducting magnet device that does not require preparatory work for discharging a refrigerant and does not use a gas cylinder.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明においては、冷媒容器
の上部と下部のあいだに加圧器を配管接続し、また液排
出管を設ける。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a pressurizer is connected by piping between the upper and lower parts of the refrigerant container, and a liquid discharge pipe is also provided.

(作用) このような超電導マグネット装置では、加圧器内に流入
した冷媒をガス化することにより冷媒容器内の圧力を」
−げることができ、液排出管より冷媒を排出できる。
(Function) In such a superconducting magnet device, the pressure inside the refrigerant container is reduced by gasifying the refrigerant that has flowed into the pressurizer.
The refrigerant can be discharged from the liquid discharge pipe.

(実施例) 以下本発明の一実施例を第1図をもとに説明する。第1
図において12はアルミニラ11等より成るパイプ外周
にフィン等を取付けた加圧器で、入口側は加圧バルブ1
3を介し配管により液体窒素容器底に接続し、出口側は
配管により液体窒素容器3の気相部に接続する。14は
ステンレス鋼等より成り液体窒素容器底まで挿入された
液体排出管で端部に排出バルブ15を設ける。また、加
圧器12には加熱器I6をとりつける。
(Example) An example of the present invention will be described below with reference to FIG. 1st
In the figure, 12 is a pressurizer made of aluminum 11 etc. with fins attached to the outer circumference of the pipe, and the inlet side is the pressurizing valve 1.
It is connected to the bottom of the liquid nitrogen container via piping 3, and the outlet side is connected to the gas phase part of the liquid nitrogen container 3 through piping. Reference numeral 14 is a liquid discharge pipe made of stainless steel or the like and inserted to the bottom of the liquid nitrogen container, and a discharge valve 15 is provided at the end thereof. Further, a heater I6 is attached to the pressurizer 12.

液体窒素4を排出する手順は、液体窒素注入ボー1−9
a、蒸発ガス回収ボート9bに取付けられたそれぞれの
ボールバルブを閉、排出バルブ15を開とする。次に加
圧バルブを開とすることにより液体窒素4を加圧器に導
入する。加圧器内の液体窒素は加熱器16による加熱ま
たは大気との熱交換により蒸発気化し体積膨張して液体
窒素容器3の気相部に送られる。液体窒素容器3内の圧
力は上がり液体窒素4は液体窒素排出管14を通り容器
外へ押し出され排出される。
The procedure for discharging liquid nitrogen 4 is to
a. Close each ball valve attached to the evaporative gas recovery boat 9b and open the discharge valve 15. Next, liquid nitrogen 4 is introduced into the pressurizer by opening the pressurization valve. The liquid nitrogen in the pressurizer is evaporated and vaporized by heating by the heater 16 or by heat exchange with the atmosphere, expands in volume, and is sent to the gas phase portion of the liquid nitrogen container 3. The pressure inside the liquid nitrogen container 3 increases, and the liquid nitrogen 4 is pushed out of the container through the liquid nitrogen discharge pipe 14 and discharged.

従、って、液体窒素の排出はバルブの開閉のみで可能と
なり、準備作業を要せず、しかも窒素ガスボンベを使用
しなくてよい。
Therefore, liquid nitrogen can be discharged by simply opening and closing the valve, and no preparation work is required and there is no need to use a nitrogen gas cylinder.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、冷媒容器に加圧器
とこれに通じる加圧バルブおよび液排出管を設けたこと
により、冷媒の排出はバルブ操作のみで可能となり、準
備作業を要せず、しかもガスボンベも必要としない。
As explained above, according to the present invention, by providing the refrigerant container with a pressurizer, a pressurizing valve connected to the pressurizing valve, and a liquid discharge pipe, refrigerant can be discharged only by operating the valve, and no preparatory work is required. , and does not require a gas cylinder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導マグネット装置の縦
断面図、第2図は従来の超電導マグネット装置の縦断面
図、第3図は従来の超電導マグネット装置の液体窒素排
出方法を示す縦断面図である。 2・・超電導コイル  3・・・液体窒素容器4・・・
液体窒素    5・・・真空容器9・・トップフラン
ジ 9a・・・液体窒素注入ボート 9b・・・蒸発ガス回収ボート12・・・加圧器13・
・・加圧バルブ   14・・・液体窒素排出管15・
・排出バルブ   16・・・加熱器代理人 弁理士 
則 近 憲 佑 同  第子丸 健
FIG. 1 is a vertical cross-sectional view of a superconducting magnet device according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of a conventional superconducting magnet device, and FIG. 3 is a vertical cross-sectional view showing a method of discharging liquid nitrogen from a conventional superconducting magnet device. It is a front view. 2...Superconducting coil 3...Liquid nitrogen container 4...
Liquid nitrogen 5... Vacuum container 9... Top flange 9a... Liquid nitrogen injection boat 9b... Evaporated gas recovery boat 12... Pressurizer 13...
・・Pressure valve 14・・Liquid nitrogen discharge pipe 15・
・Discharge valve 16... Heater agent Patent attorney
Ken Chika Yudo Ken Daishimaru

Claims (1)

【特許請求の範囲】[Claims]  超電導材料より成る超電導マグネットと、超電導マグ
ネットを冷却する冷媒と、超電導マグネットおよび冷媒
を収納する冷媒容器と、この冷媒容器を真空断熱する真
空容器を有する超電導マグネット装置において、前記冷
媒容器の液相部と気相部のあいだに配管接続され冷媒容
器の外部に設けられた加圧器と、冷媒容器の底まで挿入
した液排出管を設けたことを特徴とする超電導マグネッ
ト装置。
A superconducting magnet device comprising a superconducting magnet made of a superconducting material, a refrigerant for cooling the superconducting magnet, a refrigerant container for storing the superconducting magnet and the refrigerant, and a vacuum container for vacuum insulating the refrigerant container, wherein a liquid phase portion of the refrigerant container is provided. A superconducting magnet device comprising: a pressurizer connected by piping between the refrigerant container and the gas phase portion and provided outside the refrigerant container; and a liquid discharge pipe inserted to the bottom of the refrigerant container.
JP63249827A 1988-10-05 1988-10-05 Superconducting magnet device Pending JPH0298107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249827A JPH0298107A (en) 1988-10-05 1988-10-05 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249827A JPH0298107A (en) 1988-10-05 1988-10-05 Superconducting magnet device

Publications (1)

Publication Number Publication Date
JPH0298107A true JPH0298107A (en) 1990-04-10

Family

ID=17198777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249827A Pending JPH0298107A (en) 1988-10-05 1988-10-05 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH0298107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173460A (en) * 2005-12-21 2007-07-05 Mitsubishi Electric Corp Superconducting electromagnet device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173460A (en) * 2005-12-21 2007-07-05 Mitsubishi Electric Corp Superconducting electromagnet device

Similar Documents

Publication Publication Date Title
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
JPS6012541B2 (en) Improved cryostat structure
US20100236260A1 (en) Undercooled horizontal cryostat configuration
JPH0298107A (en) Superconducting magnet device
US4926646A (en) Cryogenic precooler for superconductive magnets
JP2712096B2 (en) Cryogenic liquid pumping method and apparatus
JP2743014B2 (en) Working fluid filling method in heat pipe
CN111043805B (en) High-power variable temperature pressure experiment system for liquid nitrogen temperature zone
CN112361691A (en) Biological preservation device and refrigeration control method thereof
TW406162B (en) Combination cryopump/getter pump and method for regenerating same, and method for manufacturing integrated circuits using same
JPS6319837Y2 (en)
JPS6042235Y2 (en) cryopump
KR20000007125A (en) Production method and apparatus of heat pipe, heat-exchanger having vacuum and operation material inserting valve device installed
CN211977316U (en) Refrigerant tank capable of improving refrigeration compression efficiency
US3348386A (en) Apparatus and method for pumping and storing gases
JPS6314858A (en) Vacuum deposition device
JPS585247Y2 (en) Sample introduction device
DE2512235C3 (en)
CN220119614U (en) Direct-cooling type cryogenic condenser for VOCs
JPH0257349B2 (en)
CN113053614B (en) Device system for indirectly cooling superconducting magnet and method for indirectly cooling superconducting magnet
JP3043089B2 (en) Cryogenic liquid injection device
JPH10104138A (en) Apparatus for analyzing cooled sample
JPS5984481A (en) Device for preventing reverse pressure of low temperature container
SU1730500A1 (en) Cryostat