JPS59119076A - Cryopump - Google Patents

Cryopump

Info

Publication number
JPS59119076A
JPS59119076A JP23282582A JP23282582A JPS59119076A JP S59119076 A JPS59119076 A JP S59119076A JP 23282582 A JP23282582 A JP 23282582A JP 23282582 A JP23282582 A JP 23282582A JP S59119076 A JPS59119076 A JP S59119076A
Authority
JP
Japan
Prior art keywords
reservoir
liquid helium
liquid
vacuum
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23282582A
Other languages
Japanese (ja)
Inventor
Mikihiko Goshima
五島 幹彦
Yasushi Iwasa
岩佐 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23282582A priority Critical patent/JPS59119076A/en
Publication of JPS59119076A publication Critical patent/JPS59119076A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Abstract

PURPOSE:To facilitate assembling, disassembling and repairing of a cryopump, by covering the outside of a liquid helium reservoir and an upper liquid helium reservoir by partition plates, and suspending them from a cap of a vacuum vessel. CONSTITUTION:An upper liquid helium reservoir 31 is disposed above a liquid helium reservoir 2, and the outside of the upper liquid helium reservoir 31 and the liquid helium reservoir 2 excluding the outer surface 2a of the bottom of the reservoir 2 is covered completely by partition plates 210a, 210b. These two reservoirs 2, 31 are suspended from a cap 103 of a vacuum vessel. With such an arrangement, assembling and disassembling of a cryopump can be facilitated. Further, even if the inner liquid helium reservoir 2 or the upper liquid helium reservoir 31 is damaged after assembling of the cryopump is completed, they can be repaired with ease by taking out the reservoirs to the outside of the vacuum vessel 101, 102 together with the cap 103 and cutting and removing the partition plate 210a or 210b.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超高真空装置や核融合装置等に用いるクライオ
ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryopump used in ultra-high vacuum devices, nuclear fusion devices, and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

クライオポンプ(クライオポンプには「クライオコンデ
ンセーションポンプ、クライオソープションポンプ、タ
ライオトラッピング等」のa類があるが、ここでは「ク
ライオコンデンセーションポング」を例として記述する
。)は、真空容器内に設置した金属面を液体ヘリウム(
大気圧での液体ヘリウム温度は4.20にである。:等
の冷媒で冷却し、その金属面(これを「クライオ面」と
称する。)に真空容器内の被排気ガス分子(ここで述べ
る被排気ガス分子は、通常「ヘリウムガス以外のガス」
を指す)を凝縮付着させて、真空容器内の圧力を下げる
方式の真空ポンプである。液体ヘリウムは通常高価であ
るため、液体ヘリウムを溜めた多液体ヘリウムで冷却す
る部分の周囲は、液体窒素(大気圧での液体窒素温度は
77°にである。)で冷却した而(「熱シールド板」と
称する。)で囲み、且つ真空断熱して液体ヘリウムの消
費蓋(蒸発量)を減らすようにするのが一般的である。
Cryopumps (cryo pumps include type A, such as "cryocondensation pumps, cryosorption pumps, and taliotrapping," but here we will use "cryocondensation pumps" as an example.) A metal surface placed on a metal surface is heated with liquid helium (
The temperature of liquid helium at atmospheric pressure is 4.20. The metal surface (this is called the "cryo surface") is cooled with a refrigerant such as
This is a vacuum pump that lowers the pressure inside a vacuum container by condensing and depositing the Since liquid helium is usually expensive, the area around the part to be cooled with multi-liquid helium containing liquid helium should be cooled with liquid nitrogen (liquid nitrogen temperature at atmospheric pressure is 77°). It is common to surround it with a shield plate (referred to as a "shield plate") and vacuum insulate it to reduce the consumption (evaporation amount) of liquid helium.

ただし、クライオ面に被排気ガス分子を凝縮付着させる
必要があるので、り2イオ面の近くKは液体窒素で冷却
したシェブロンバッフル(′〈”の字形の断■の板(材
質は通常アルミ又は銅)をすだれ状に並べたもので、一
方の側から他の側を直視することはできないが、被排気
ガス分子は板の間隙を通って通過することができるよう
な構造になっている。)を配置する。以下、「クライオ
ポンプ」という名称はこれらの総称を表わすものとする
However, since it is necessary to condense and adhere the exhaust gas molecules to the cryo surface, the chevron baffle (usually made of aluminum or The structure is such that it is not possible to see directly from one side to the other, but the gas molecules to be exhausted can pass through the gaps between the plates. ).Hereinafter, the name "cryo pump" will refer to these generic terms.

第1図は、従来のクライオポンプの構成を示すものであ
る。図において、1は真空容器、2は液体ヘリウム溜め
、20は液体ヘリウム溜め2の内部に溜められた液体ヘ
リウムで、20aはその液面である。21は液体ヘリウ
ム溜め2の底部外面2aを除いて、液体ヘリウム溜め2
の周囲を覆う仕切板で、その内部の空間23は排気管2
2を介して、真空容器1の外部に設置した補助真空ポン
プ5“によって真空排気できるようになっている。3は
液体ヘリウム溜め2の周囲を囲むように設置された液体
窒素溜め、30は液体窒素溜め3の内部に溜められた液
体窒素で、30aはその液面である。4はシェブロンバ
ッフルで、被排気ガス分子は”〈”の字形の@面の板の
間隙を通シ抜けて、液体ヘリウム溜め2の底部外面2a
(シェブロンバッフル4に近い面2sLで被排気ガス分
子が最も凝縮付着され易いので、この面を「クライオ面
」と称する。)に凝縮付層する。シェブロンバッフル4
はその周囲を枠4aによって固定され、その枠4aを液
体ME溜め3の下部に、図示しないボルト又は溶接等に
よシ結合することによって、熱伝導によシ液体窒素温度
まで冷却される。5は液体ヘリウム溜め2の内部を大気
圧以下に減圧するための補助真空ポンプで、通常真空容
器1の外部に設置する。5′は冷媒(液体ヘリウムおよ
び液体窒素等の総称)を供給する前に、真空容器1の内
部を予め真空引きする(冷媒の消費量(蒸発量)會減ら
すために、真空断熱する必要かめるため。)だめの他の
補助真空ポイプで、通電真空容器1の外部に設置する。
FIG. 1 shows the configuration of a conventional cryopump. In the figure, 1 is a vacuum container, 2 is a liquid helium reservoir, 20 is liquid helium stored inside the liquid helium reservoir 2, and 20a is the liquid level. 21 is the liquid helium reservoir 2, excluding the bottom outer surface 2a of the liquid helium reservoir 2.
The space 23 inside is a partition plate that covers the periphery of the exhaust pipe 2.
2, the vacuum can be evacuated by an auxiliary vacuum pump 5" installed outside the vacuum container 1. 3 is a liquid nitrogen reservoir installed to surround the liquid helium reservoir 2, and 30 is a liquid helium reservoir 2. Liquid nitrogen is stored inside the nitrogen reservoir 3, and 30a is its liquid level. 4 is a chevron baffle, and the molecules of the gas to be exhausted pass through the gap between the plates on the @ side of the "<" shape. Bottom outer surface 2a of liquid helium reservoir 2
(Since exhaust gas molecules are most likely to condense and adhere to the surface 2sL closest to the chevron baffle 4, this surface is referred to as the "cryo surface."). chevron baffle 4
is fixed around its periphery by a frame 4a, and by connecting the frame 4a to the lower part of the liquid ME reservoir 3 by bolts or welding (not shown), it is cooled to the liquid nitrogen temperature by heat conduction. Reference numeral 5 denotes an auxiliary vacuum pump for reducing the pressure inside the liquid helium reservoir 2 to below atmospheric pressure, and is usually installed outside the vacuum container 1. 5' is for pre-evacuating the inside of the vacuum container 1 before supplying the refrigerant (general term for liquid helium, liquid nitrogen, etc.) (in order to reduce the consumption (evaporation amount) of the refrigerant, it is necessary to perform vacuum insulation. .) Another auxiliary vacuum pump installed outside the energized vacuum container 1.

6は機体ヘリウム溜め2に液体ヘリウム20を供給する
液体ヘリウム供給管で、止弁7を介して外部に設置され
た液体ヘリウム容器(容器内部は通常大気圧)からの供
給管8と接続する。9は液体ヘリウム清め2ビ]で、蒸
発したヘリウムガスを外部に排出するためのヘリウムガ
ス排出管で・6k、ヘリウムガス用調節弁10及び排気
管11を経て、補助真壁ポンプ゛5に接続する。
A liquid helium supply pipe 6 supplies liquid helium 20 to the aircraft helium reservoir 2, and is connected via a stop valve 7 to a supply pipe 8 from a liquid helium container installed outside (the inside of the container is normally at atmospheric pressure). 9 is a helium gas discharge pipe for discharging evaporated helium gas to the outside. 9 is a helium gas discharge pipe for discharging evaporated helium gas to the outside. 6k is connected to the auxiliary wall pump 5 via a helium gas control valve 10 and an exhaust pipe 11. .

12は液体窒素溜め3に液体窒素30を供給する液体窒
素供給管で、13は液体窒素溜め3内で蒸発した窒素ガ
スを外部に逃すための窒素ガス排出管である。14は本
クライオポンプによシ真空引きされる他の真空容器(例
えば超高真空空間や核融合装置等の真空容器)で、前記
の真空容器1と真空シール用ガスケット15をはさんで
、ポルト16及びナツト17によ多接続される。18は
クライオ面2aによって凝着排気される真空空間(「超
高真空空間」と称する。)を示す。
12 is a liquid nitrogen supply pipe for supplying liquid nitrogen 30 to the liquid nitrogen reservoir 3, and 13 is a nitrogen gas discharge pipe for releasing nitrogen gas evaporated in the liquid nitrogen reservoir 3 to the outside. Reference numeral 14 designates another vacuum container (for example, a vacuum container for an ultra-high vacuum space or a nuclear fusion device) that is evacuated by this cryopump, and the vacuum container 1 and the vacuum sealing gasket 15 are sandwiched between them. 16 and nut 17. Reference numeral 18 indicates a vacuum space (referred to as "ultra-high vacuum space") which is coagulated and evacuated by the cryo surface 2a.

液体ヘリウム溜め2に溜められる液体ヘリウム20は通
常大気圧の状態にあシ、その時の液温(液体ヘリウムの
飽和蒸気温度)は4.20にである。
The liquid helium 20 stored in the liquid helium reservoir 2 is normally at atmospheric pressure, and the liquid temperature (saturated vapor temperature of liquid helium) at that time is 4.20.

ところが、り2イオポ/プで排気される゛(厳密には凝
縮付層される)被排気ガスは最終的にはをミとんどが水
素ガスであシ、凝縮付着される1jili(クラブ1面
)の温度が4.2°にの場合、水素の飽和蒸気圧は10
”−’Torr台である。言い換えると、クライオ面の
温度が4.2°にのクライオポンプを使用する場合には
、真空容器内の圧力は1O−7Torr台以下には下ら
ないことになる。そこで、真空容器内の圧力を10  
Torr台以下に下げたい場合には、液体ヘリウム溜め
2の内部を大気圧以下に減圧し、液体ヘリウム20の飽
和蒸気温度を4.2°に以下に下げるのが最も簡便な方
法である。
However, the exhausted gas (strictly speaking, it is condensed and layered) in the Ri-2 Iop/P is mostly hydrogen gas, and the gas that is condensed and deposited is When the temperature of the surface (surface) is 4.2°, the saturated vapor pressure of hydrogen is 10
In other words, when using a cryopump with a cryo surface temperature of 4.2°, the pressure inside the vacuum vessel will not fall below 10-7 Torr. , the pressure inside the vacuum container is 10
If it is desired to lower the temperature to below the Torr level, the simplest method is to reduce the pressure inside the liquid helium reservoir 2 to below atmospheric pressure and to lower the saturated vapor temperature of the liquid helium 20 to 4.2° or less.

下表に、液体ヘリウムの飽和蒸気圧と飽和蒸気温度の関
係、およびクライオ面の製置が液体ヘリウムの飽和蒸気
温度と等しい場合の水素の飽和蒸気圧との関係を例示す
る。
The table below exemplifies the relationship between the saturated vapor pressure and saturated vapor temperature of liquid helium, and the relationship between the saturated vapor pressure of hydrogen when the cryo surface is set equal to the saturated vapor temperature of liquid helium.

〔表〕〔table〕

第1図のクライオポンプの場合は、液体ヘリウム溜め2
が1つであるため、液体ヘリウム20を供給する時には
液体ヘリウム留め2の内圧は大気圧となシ、供給終了後
に成体へり・クム供給管6の止弁2を閉め、ヘリウムガ
ス用調節弁10を適当な開度で開いてから補助真壁ポン
プ5を作動させ、液体ヘリウム溜め2の内部を大気圧以
下の所定の圧力に減圧する必要がある。
In the case of the cryopump shown in Figure 1, the liquid helium reservoir 2
When supplying liquid helium 20, the internal pressure of the liquid helium retainer 2 must be atmospheric pressure, and after the supply is completed, the stop valve 2 of the adult hem/cum supply pipe 6 is closed, and the helium gas regulating valve 10 is closed. It is necessary to open the liquid helium reservoir 2 to an appropriate opening degree and then operate the auxiliary wall pump 5 to reduce the pressure inside the liquid helium reservoir 2 to a predetermined pressure below atmospheric pressure.

液体ヘリウム20を供給する際には、ヘリウムガス用調
節弁を閉じ止弁7を開いて液体ヘリウム20を供給する
が、この時には液体ヘリウム溜め2の内圧は再び大気圧
になる。
When supplying the liquid helium 20, the helium gas control valve is closed and the stop valve 7 is opened to supply the liquid helium 20. At this time, the internal pressure of the liquid helium reservoir 2 becomes atmospheric pressure again.

前述のように、液体ヘリウム溜め2の周囲は底部外面2
aを除いて仕切板21で覆われ、その内部の空間23は
補助真空ボンデ5“によって真空排気され、クライオ面
2thKよって凝着排気される真空空間18(「超高真
空空間」と称する。)とは別の真空空間23(「補助真
空空間」と称する。)を形成する。これは、液体ヘリウ
ム溜め2内部の圧力を38 Torrまで減圧した時、
液体ヘリウム20の温度は2.18°にとな)、液体ヘ
リウム20は「超流動状態」(超流動は粘性が消滅し、
流れがあっても圧力の勾配が生じない状態である。)と
なる。この時、液体ヘリウム溜め2の構成材に肉厚方向
を貫通する溶接部や微細欠陥があると、液体ヘリウム2
゜は通常の状態(これを「常流動状態」と称する0)に
比べて著しく漏洩し易くなる。このため、真空容器1内
の圧力をできる限シ低く下げたい場合には、液体ヘリウ
ム溜め2内の液体ヘリウム20は超流動状態になる可能
性が強いので、液体ヘリウム溜め2の周囲の空間23を
超高真空空間18とは別の真空空間として形成すること
により、超流動状態の液体ヘリウム20の補助真空空間
23への漏洩が生じたとしても、超高真空空間18への
悪影替を防止することができる。
As mentioned above, the periphery of the liquid helium reservoir 2 is the bottom outer surface 2.
A vacuum space 18 (referred to as an "ultra-high vacuum space") is covered with a partition plate 21 except for a, and the internal space 23 is evacuated by an auxiliary vacuum bonder 5", and is evacuated by a cryoplane 2thK (referred to as "ultra-high vacuum space"). A separate vacuum space 23 (referred to as "auxiliary vacuum space") is formed. This means that when the pressure inside the liquid helium reservoir 2 is reduced to 38 Torr,
The temperature of liquid helium 20 is 2.18°), and liquid helium 20 is in a "superfluid state" (in superfluidity, viscosity disappears,
This is a state in which there is no pressure gradient even though there is a flow. ). At this time, if the constituent materials of the liquid helium reservoir 2 have welds or minute defects that penetrate through the wall thickness, the liquid helium reservoir 2
° is significantly more likely to leak than the normal state (0, which is referred to as the "normal flow state"). Therefore, if you want to lower the pressure inside the vacuum container 1 as low as possible, there is a strong possibility that the liquid helium 20 in the liquid helium reservoir 2 will be in a superfluid state, so the space 20 around the liquid helium reservoir 2 By forming this as a vacuum space separate from the ultra-high vacuum space 18, even if liquid helium 20 in a superfluid state leaks into the auxiliary vacuum space 23, an adverse effect on the ultra-high vacuum space 18 can be prevented. It can be prevented.

このように構成されたクライオポンプでは、製作の際に
は内側の部分より逐次組立てていく必要があ)、組立完
了後クライオポンプの使用時等に仕切板21や液体ヘリ
ウム溜め2に欠陥が生じ、超高真空空間18への漏洩が
発生した場合には、補修が著しく困難でらシ事実上補修
不能となる。(外側の液体窒素溜め3を一旦切断し、内
部の補修後再組立する必要がある。)このため、クライ
オポンプの組立時には1工程毎に詳細な漏洩テスト非破
壊検査等を行なって、構成材料に欠陥が無いことを確認
する必要があシ、非常に手間がかかル且つ気を使う。
With a cryopump configured in this way, it is necessary to assemble the inner parts sequentially during manufacture), and defects may occur in the partition plate 21 or liquid helium reservoir 2 when the cryopump is used after assembly is completed. If leakage into the ultra-high vacuum space 18 occurs, repair is extremely difficult and virtually impossible. (It is necessary to temporarily cut the outer liquid nitrogen reservoir 3 and reassemble it after repairing the inside.) Therefore, when assembling the cryopump, detailed leakage tests and non-destructive inspections are carried out for each process, and the constituent materials are It is necessary to confirm that there are no defects, which is very time-consuming and requires careful attention.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような事情に鑑みてなされたもので、そ
の目的は組立9分解が容易でしかも補修が可能な信頼性
の高いクライオポンプを提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a highly reliable cryopump that is easy to assemble and disassemble, and can be repaired.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、上部真空容器お
よび下部真空容器から成る真空容器内に配設され、液温
4.2°K又は4.20に以下の液体ヘリウムを溜める
液体ヘリウム溜めの底部外面に被排気ガス分子を凝着排
気させるものにおいて、前記真空容器内であって前記液
体ヘリウム溜めの上部に液温77°にの液体窒素を溜め
る上部液体窒素溜めを設け、前記液体ヘリウム溜めの底
部外面を除いた周囲と前記上部液体窒素溜めの周囲を仕
切板で完全に覆ってこれらを前記真空容器の蓋から′吊
シ下げ、前記真空容器の外部に設置した補助真空ポンプ
によって前記仕切板と前記液体ヘリウム溜めおよび上部
液体窒素溜めとの間の空間を真空排気し、前記クライオ
面の排気による真空空間と分離された別の真空空間を形
成し、更に前記真空容器内であって前記仕切板の外側に
液温770にの液体窒素を溜める外側液体窒素溜めを設
け、その底部外面に液体窒素で冷却されるシェブロンバ
ッフルを取シ付けてこれらを下部真空容器から吊シ下げ
て構成し、この上部真空容器と前記真空容器の童と下部
真空容器とを接続して成ることを特徴とする。
In order to achieve the above object, the present invention provides a liquid helium reservoir that is disposed in a vacuum container consisting of an upper vacuum container and a lower vacuum container, and stores liquid helium at a liquid temperature of 4.2°K or 4.20°C. In the apparatus in which gas molecules to be exhausted are deposited on the outer surface of the bottom and exhausted, an upper liquid nitrogen reservoir for storing liquid nitrogen at a liquid temperature of 77° is provided in the vacuum vessel and above the liquid helium reservoir, and the liquid helium reservoir The surrounding area excluding the bottom outer surface of the liquid nitrogen reservoir and the upper liquid nitrogen reservoir are completely covered with a partition plate, and these are suspended from the lid of the vacuum container, and the partition plate is removed by an auxiliary vacuum pump installed outside the vacuum container. A space between the plate and the liquid helium reservoir and the upper liquid nitrogen reservoir is evacuated to form another vacuum space separated from the vacuum space created by the evacuation of the cryosurface, and An outer liquid nitrogen reservoir for storing liquid nitrogen at a liquid temperature of 770°C is provided on the outside of the partition plate, and a chevron baffle cooled by the liquid nitrogen is attached to the outer surface of the bottom of the reservoir, and these are suspended from the lower vacuum container. , the upper vacuum container is connected to the bottom of the vacuum container and the lower vacuum container.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例について説明す
る。第2図は本発明によるクライオポンプの構成断面図
を示すものであ夛、第1図と同一部分には同一符号を付
してその説明を省略する。第2図および第3図において
、31は液体ヘリウム溜め2の上部に設置する上部液体
窒素溜め、30は上部液体窒素溜め31の内部に溜めら
れた液体窒素で、30aはその液面である。液体ヘリウ
ム溜め2と上部液体窒素溜め31の周囲は、液体ヘリウ
ム溜め2の底部外面、?af除いて、仕切板210a、
210bによって覆われている。仕切板;110aの一
端は液体ヘリウム溜め2の底部付近で、また他端は仕切
板210bの下部で溶接等によシ取付けられる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows a cross-sectional view of the structure of the cryopump according to the present invention, and the same parts as in FIG. In FIGS. 2 and 3, 31 is an upper liquid nitrogen reservoir installed above the liquid helium reservoir 2, 30 is liquid nitrogen stored inside the upper liquid nitrogen reservoir 31, and 30a is its liquid level. The surroundings of the liquid helium reservoir 2 and the upper liquid nitrogen reservoir 31 are the bottom outer surface of the liquid helium reservoir 2, ? Except for af, the partition plate 210a,
210b. One end of the partition plate 110a is attached near the bottom of the liquid helium reservoir 2, and the other end is attached by welding or the like to the lower part of the partition plate 210b.

第3図は、液体ヘリウム溜め2への仕切板210aの溶
接による取υ付は状態を示したもので、液体ヘリウム溜
め2の構成材料の肉厚方向を貫通する溶接部2Wが超高
真空空間18にさらされないように仕切板210aで覆
い、仕切板210hの下端を液体ヘリウム溜め2の底部
外面付近で溶接210Wする。勿論、クライオ面2aは
補助真空空間23で憶うことはできないので、クライオ
面2aには浴接部は設けないようにし、且つこの面を構
成する材料には非破壊検査等を行なって、微細欠陥、の
無い材料を使用する等の配慮が必要でらる〇 一方、第2図において、仕切板210bの一端は上部液
体窒素溜め31の底部付近で、また他Mは真空容器の蓋
103に溶−#:等によシ取シ付けられる。よって、液
体ヘリウム溜め2、上部液体窒素溜め31および仕切板
210a、210b等は、真空容器の蓋103がら吊シ
下けられた構造となる。仕切板210bの下部の一端に
は、数個の小穴211を設けておシ、液体ヘリウム溜め
2と上部液体窒素溜め31と仕切板210aによって形
成される空間23mは、上部液体窒素溜め3ノと真空容
器の蓋103と仕切板210bKよって形成される空間
23bと依がシ、儲103を貫通して設けられた排気管
220を介して、外部に設置された補助真空ボンデ5”
によって真空排気され、クライオ面2aの凝着排気てよ
る超高真空空間18と分離された補助Jlc望究閲23
m、23bを形成する。仕切板21θbの下端を上部液
体窒素溜め31の底部付近に取p付けるのは、仕切板2
10bの下部および仕切板210aの上部の温度を液体
窒素温度にし、室温の蓋103から仕切板210bを通
って熱伝導によって侵入する熱を除去するためである。
Figure 3 shows how the partition plate 210a is attached to the liquid helium reservoir 2 by welding. The lower end of the partition plate 210h is welded 210W near the outer surface of the bottom of the liquid helium reservoir 2. Of course, the cryo surface 2a cannot be memorized in the auxiliary vacuum space 23, so the cryo surface 2a should not be provided with a bath contact part, and the material constituting this surface should be subjected to non-destructive testing, etc. Care must be taken to use materials free of defects. On the other hand, in FIG. 2, one end of the partition plate 210b is near the bottom of the upper liquid nitrogen reservoir 31, and the other end M is near the bottom of the lid 103 of the vacuum container. It is attached by melting to -#: etc. Therefore, the liquid helium reservoir 2, the upper liquid nitrogen reservoir 31, the partition plates 210a, 210b, etc. are suspended from the lid 103 of the vacuum container. Several small holes 211 are provided at one end of the lower part of the partition plate 210b, and the space 23m formed by the liquid helium reservoir 2, the upper liquid nitrogen reservoir 31, and the partition plate 210a is divided into three holes of the upper liquid nitrogen reservoir. The space 23b formed by the lid 103 of the vacuum container and the partition plate 210bK is connected to the auxiliary vacuum bonder 5'' installed outside via an exhaust pipe 220 provided through the lid 103.
The auxiliary JLC research laboratory 23 is evacuated by the cryo surface 2a and separated from the ultra-high vacuum space 18 by evacuation of the coagulation on the cryo surface 2a.
m, forming 23b. The lower end of the partition plate 21θb is attached near the bottom of the upper liquid nitrogen reservoir 31.
This is to set the temperature of the lower part of the lid 10b and the upper part of the partition plate 210a to liquid nitrogen temperature, and to remove the heat that enters from the room temperature lid 103 through the partition plate 210b by thermal conduction.

32は仕切板210a、210bの外側に設けられた外
側液体窒素溜め、30′はその内部に溜められた液体窒
素で、30a′はその液面である012′は液体窒素3
0′を外部よシ供給する液体窒素供給管で、13′は蒸
発した蓋紫ガスを外部へ排出する窒素ガス排出管である
0外側液体窒素溜め32の底部には、周囲を枠4aによ
って固定されたシェブロンバッフル4が、その枠4aを
介して図示しないボルト又は浴接等によって接合され、
熱伝導により液体、屋素温度まで冷却される。これらの
外側液体窒素溜め32やシェブロンバッフル4等は、外
側仕切板33の下端を外側液体窒素溜め32に、上端を
上部真空容器102に浴接等で取シ付けることによって
、上部真空容器102から吊シ下げられた構造となる。
32 is an outer liquid nitrogen reservoir provided outside the partition plates 210a and 210b, 30' is liquid nitrogen stored inside, 30a' is the liquid level, and 012' is the liquid nitrogen 3
13' is a liquid nitrogen supply pipe that supplies 0' from the outside, and 13' is a nitrogen gas discharge pipe that discharges the evaporated lid purple gas to the outside.A pipe 13' is a nitrogen gas discharge pipe that discharges the evaporated lid purple gas to the outside. The chevron baffle 4 is joined via the frame 4a by bolts or bath welding (not shown),
The liquid is cooled down to room temperature by heat conduction. These outer liquid nitrogen reservoir 32, chevron baffle 4, etc. are connected to the upper vacuum container 102 by attaching the lower end of the outer partition plate 33 to the outer liquid nitrogen reservoir 32 and the upper end to the upper vacuum container 102 by bath welding or the like. It has a suspended structure.

そして、上部真空容器102の下側フランジは下S共空
谷器101の上側フランジに真空シール用ガスケット1
5′をはさんで、ボルト161およびナツト17′によ
って接続し、上部真空容器102の上側72ンジは真空
容器の蓋103に、真空シール用ガスケット15″をは
さんでボルト16“およびナツト17“によって接続し
てクライオポンプを構成する0 かかる構成とすることによシ、クライオポンプの組立1
分解が容易になると共に、クライオポンプの組立完了後
に内部の液体ヘリウム溜め2や上部液体窒素溜め31に
欠陥が生じたとしても、真空容器の蓋103のボルト1
6“、ナツト12“を外して蓋103と共に真空容器1
01゜102の外部へ取シ出し、仕切板210a又は仕
切板210bを切断、除去することによシ、内部の液体
ヘリウム溜め2や上部液体窒素溜め31の補修を容易に
行なうことができる。補修後、仕切板2108又は仕切
板210bのみ再度取シ付ければ良い。また、仕切板2
10a、210b再取シ付は時の浴接部等の漏洩テスト
も容易である。さらに、補助真空空間23 a 、 2
3’l)とクライオ面2ILの排気による超高真壁空間
18が完全に分離されているので、補助真空空間23m
、23b内の少しの汚れや微小な漏洩があっ苑としても
、補助真空ポンプ5″で真空排気できる範囲においては
、クライオポンプの運転上例ら差し支えない。
The lower flange of the upper vacuum container 102 is connected to the upper flange of the lower S-valley vessel 101 with a vacuum sealing gasket 1.
The upper vacuum container 102 is connected to the lid 103 of the vacuum container by a bolt 16" and a nut 17" with a vacuum sealing gasket 15" in between. The cryopump is constructed by connecting the cryopump with the above structure.
In addition to making disassembly easier, even if a defect occurs in the internal liquid helium reservoir 2 or upper liquid nitrogen reservoir 31 after the assembly of the cryopump is completed, the bolts 1 of the lid 103 of the vacuum vessel can be removed.
6", remove the nut 12" and remove the vacuum container 1 together with the lid 103.
By taking out the liquid helium reservoir 2 and the upper liquid nitrogen reservoir 31 to the outside and cutting and removing the partition plate 210a or 210b, the internal liquid helium reservoir 2 and upper liquid nitrogen reservoir 31 can be easily repaired. After repair, only the partition plate 2108 or the partition plate 210b needs to be reattached. In addition, partition plate 2
Reinstalling 10a and 210b also makes it easy to test for leaks at bath contact parts, etc. Furthermore, auxiliary vacuum spaces 23a, 2
3'l) and the ultra-high wall space 18 created by exhausting the cryoplane 2IL are completely separated, so the auxiliary vacuum space 23m
, 23b, even if there is a small amount of dirt or a small leak, it will not cause any problem in the operation of the cryopump as long as it can be evacuated by the auxiliary vacuum pump 5''.

g4図は、不発明の他の実施列を示すもので、WJ2図
の仕切板210m、210bの代シに、両端に接続用の
金具の付いたベローズ肯212a、212bを設けたも
のである。このうす肉の金属製(通常はステンレス鋼製
)のペーズ管212m、212bを用いることによシ、
室温の真空容器の蓋103からの熱伝導による熱侵入量
を減らし、よって液体ヘリウム溜め2への熱伝導による
熱侵入量を減らすことができるので、高価な液体ヘリウ
ムの消費量(蒸発量)を減らすことができる。
Figure G4 shows another embodiment of the invention, in which bellows fittings 212a and 212b with connecting fittings at both ends are provided in place of the partition plates 210m and 210b in Figure WJ2. By using these thin-walled metal (usually stainless steel) paze tubes 212m and 212b,
The amount of heat intrusion due to heat conduction from the lid 103 of the vacuum container at room temperature can be reduced, and therefore the amount of heat intrusion due to heat conduction into the liquid helium reservoir 2 can be reduced, so the amount of consumption (amount of evaporation) of expensive liquid helium can be reduced. can be reduced.

第5図も本発明の他の実施例で、液体ヘリウム溜め2と
は別に減圧用液体ヘリウム溜め41を設け、その底部゛
外面41gをクライオ面としたクライオポンプ(%顧昭
56−214934号参照)に対するものである。仕切
板210Cは、一端を減圧用液体ヘリウム溜め41の底
部付近で、また他端を仕切板210aの下部に溶接等に
よって取シ付けることによシ、底部外面41mを除いれ
減圧用液体ヘリウム溜め41、液体ヘリウム用流調弁4
2、接続管42psoおよび熱交換部51等の周囲を、
仕切板210Cで榎うことができる。この仕切板210
Cの内部の空間23cは、液体ヘリウム用流調弁42の
駆動軸43を通すために、液体ヘリウム溜め2と上部液
体窒素溜め31に設けられた貫通管201゜301を介
して、仕切板210 a 、210 b内の空間23m
、23bと接がシ、排気管220を介して外部に設置さ
れた補助真空ポンプ5“によシ具空引きされて、補助真
空空間23m、23b。
FIG. 5 also shows another embodiment of the present invention, in which a liquid helium reservoir 41 for depressurization is provided separately from the liquid helium reservoir 2, and the cryopump (see %Reference No. 56-214934) has its bottom outer surface 41g as a cryosurface. ). The partition plate 210C has one end near the bottom of the liquid helium reservoir 41 for depressurization, and the other end is attached to the lower part of the partition plate 210a by welding or the like. 41, Liquid helium flow control valve 4
2. Around the connecting pipe 42pso and the heat exchange section 51, etc.,
This can be done using the partition plate 210C. This partition plate 210
The internal space 23c of C is connected to the partition plate 210 through a through pipe 201.degree. Space 23m inside a, 210 b
, 23b, and is evacuated by an externally installed auxiliary vacuum pump 5'' via an exhaust pipe 220, thereby evacuating the auxiliary vacuum spaces 23m, 23b.

23cを形成する。よって本実施列の場合には、仕切板
210bの下端付近に設けられた小穴(第2図及び第4
図の211)は不要となる。
23c is formed. Therefore, in the case of this implementation row, small holes (see FIGS. 2 and 4) provided near the lower end of the partition plate 210b are
211) in the figure becomes unnecessary.

本実施例のように、補助真空空間23m、23b。As in this embodiment, auxiliary vacuum spaces 23m and 23b.

23c内に収納される部品の数が多くなり、被雑になる
につれてクライオポンプの組立2分解が容易で、内部の
補修が可能な本構成は特に有動的である。
As the number of parts housed in the cryopump 23c increases and the number of parts becomes more complicated, this structure is especially useful as the cryopump can be easily assembled and disassembled, and the interior can be repaired.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、液体ヘリウム1留め
(減圧用液体ヘリウム溜めを含む。)や上部液体窒素溜
めの周囲を仕切板で援い、クライオ向での排気による超
高真空空間と分離した補助真空空間を形成し且つ真空容
器の蓋から吊シ下げられる構成としたので、クライオポ
ンプの組立1分解が容易となシまた仕切板を切断。
As explained above, according to the present invention, the area around the liquid helium 1 retainer (including the liquid helium reservoir for depressurization) and the upper liquid nitrogen reservoir is supported by a partition plate, and an ultra-high vacuum space is created by exhausting in the cryo direction. Since a separate auxiliary vacuum space is formed and the structure is suspended from the lid of the vacuum container, assembly and disassembly of the cryopump is easy and the partition plate can be cut.

除去することによシ内部の補修も可能となシ、製作が容
易で信頼性の繻いクライオポンプが提供できる。
By removing it, the internal parts can be repaired, and a cryopump that is easy to manufacture and reliable can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のクライオポンプを示す断面図、第2図は
本発明の一実施例を示す断面図、第3図は第2図の部分
詳細図、第4図は本発明の曲の実施しUを示す断面図、
第5図は本発明の池の実施列を示す断面図である。 101・・・下部真空容器、102・・・上部真空容器
、103・・・真空容器の蓋、2・・・液体ヘリウム溜
め、4ノ・・・減圧用液体ヘリウム溜め12a。 41a・・・クライオ面、31・・・上部液体窒素溜め
、32・・・外側液体輩素溜め、33・・・外側仕切板
、4・・・シェブロンバッフル、5,5′、5“・・・
補助真壁ポンプ、22o−m気管、210a、210b
。 ;110cm仕切板、23m、23b、23cm補助真
空空間、18・・・超高^空空間。 出願人代理人  弁理士 鈴 江 武 彦$1図 第2図 笥4図 8 第5図
Fig. 1 is a sectional view showing a conventional cryopump, Fig. 2 is a sectional view showing an embodiment of the present invention, Fig. 3 is a detailed view of a part of Fig. 2, and Fig. 4 is an implementation of the song of the present invention. A sectional view showing U;
FIG. 5 is a sectional view showing an implementation row of ponds according to the present invention. 101...Lower vacuum container, 102...Upper vacuum container, 103...Lid of vacuum container, 2...Liquid helium reservoir, 4...Liquid helium reservoir 12a for pressure reduction. 41a... Cryo surface, 31... Upper liquid nitrogen reservoir, 32... Outer liquid nitrogen reservoir, 33... Outer partition plate, 4... Chevron baffle, 5, 5', 5"...・
Auxiliary Makabe pump, 22o-m trachea, 210a, 210b
. ;110cm partition plate, 23m, 23b, 23cm auxiliary vacuum space, 18... super high empty space. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 4 Figure 8 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)上部真空容器および下部真空容器から成る真空容
器内に配設され、液温か最高4.2°にの液体ヘリウム
を溜める液体ヘリウム溜めの底部外面に被排気ガス分子
を凝着排気させるものにおいて、前記真空容器内であっ
て前記液体ヘリウム溜めの上部に液温770にの液体窒
素を溜める上部液体窒素溜めを設け、前記液体ヘリウム
溜めの底部外面を除いた周囲と前記上部液体窒素溜めの
周囲を仕切板で完全に覆ってこれらを前記真空容器の蓋
から吊夛下げ、前記真空容器の外部に設置した補助真空
ポンプによって前記仕切板と前記液体ヘリウム溜めおよ
び上部液体窒素溜めとの間の空間を真空排気し、前記り
2イオ面の排気による真空空間と分離された別の真空を
間を形成し、更に前記真空容器内であって前記仕切板の
外側に液温770にの液体窒素を溜める外側液体窒素溜
めを設け、その底部外面に液体窒素で冷却されるシェブ
ロンバッフルを取シ付けてこれらを上部真空容器から吊
シ下げて構成し、この上部真空容器と前記真空容器の蓋
と下部真空容器とを接続して成ることを特徴とするクラ
イオポンプ。
(1) A device that collects and evacuates gas molecules to be exhausted on the bottom outer surface of the liquid helium reservoir, which is disposed in a vacuum container consisting of an upper vacuum container and a lower vacuum container, and stores liquid helium at a maximum temperature of 4.2°. An upper liquid nitrogen reservoir for storing liquid nitrogen at a liquid temperature of 770 is provided in the vacuum container above the liquid helium reservoir, and the surroundings of the liquid helium reservoir except for the bottom outer surface and the upper liquid nitrogen reservoir are The surroundings are completely covered with a partition plate and suspended from the lid of the vacuum vessel, and an auxiliary vacuum pump installed outside the vacuum vessel is used to connect the partition plate and the liquid helium reservoir and upper liquid nitrogen reservoir. The space is evacuated to form another vacuum space separated from the vacuum space created by the evacuation of the two ion surfaces, and liquid nitrogen at a liquid temperature of 770°C is added inside the vacuum container and outside the partition plate. An outer liquid nitrogen reservoir is provided, and a chevron baffle cooled by liquid nitrogen is attached to the outer surface of the bottom of the reservoir, and these are suspended from an upper vacuum container, and the upper vacuum container and the lid of the vacuum container are connected to each other. A cryopump characterized by being connected to a lower vacuum vessel.
(2)前記仕切板をうす肉の金MHベローズ管で構成し
たことを特徴とする特許請求の範囲第(1)項記載のク
ライオポンプ。
(2) The cryopump according to claim (1), wherein the partition plate is constructed of a thin-walled gold MH bellows tube.
JP23282582A 1982-12-25 1982-12-25 Cryopump Pending JPS59119076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23282582A JPS59119076A (en) 1982-12-25 1982-12-25 Cryopump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23282582A JPS59119076A (en) 1982-12-25 1982-12-25 Cryopump

Publications (1)

Publication Number Publication Date
JPS59119076A true JPS59119076A (en) 1984-07-10

Family

ID=16945365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23282582A Pending JPS59119076A (en) 1982-12-25 1982-12-25 Cryopump

Country Status (1)

Country Link
JP (1) JPS59119076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006943A1 (en) * 1996-08-09 1998-02-19 Leybold Vakuum Gmbh Cryopump
EP3543542A4 (en) * 2016-11-18 2020-07-08 Kawasaki Jukogyo Kabushiki Kaisha Heat insulating container for low-temperature liquefied gas pumps

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006943A1 (en) * 1996-08-09 1998-02-19 Leybold Vakuum Gmbh Cryopump
US6092373A (en) * 1996-08-09 2000-07-25 Leybold Vakuum Gmbh Cryopump
EP3543542A4 (en) * 2016-11-18 2020-07-08 Kawasaki Jukogyo Kabushiki Kaisha Heat insulating container for low-temperature liquefied gas pumps
US11339799B2 (en) 2016-11-18 2022-05-24 Kawasaki Jukogyo Kabushiki Kaisha Heat insulating vessel for low temperature liquefied gas pump

Similar Documents

Publication Publication Date Title
JP2574586B2 (en) Method for regenerating a cryopump and a cryopump suitable for performing the method
US3320969A (en) Nuclear containment vessels
US4765153A (en) Cryostat with radiation shields cooled by refrigerator
US4514204A (en) Bakeable cryopump
KR20000005007A (en) Combination cryopump/getterpump and regenerating method thereof
WO2020224632A1 (en) Method for testing leakage performance of aerospace composite material member in low temperature environment
US2907177A (en) Container and method of dispensing liquefied gases therefrom
EP0188976B1 (en) Dilution cryostat
JPS59119076A (en) Cryopump
JP2016160884A (en) Cryopump system, cryopump control device and cryopump regeneration method
US3306058A (en) Cryostat
JP3016093B2 (en) Heat absorbing wall for space environment test equipment
US3224277A (en) Environmental apparatus
JPS636300A (en) Internal inspecting robot carrying-in method for double shell cryostat tank
JPS58113590A (en) Cryopump
US2737779A (en) Condensable vapor extraction apparatus
JPS6390108A (en) Cryostat
JPS6246430B2 (en)
RU2198356C2 (en) Cryostat
JPS58186974A (en) Cooled photoelectric converter
JPH10256625A (en) Gas laser
US20230110192A1 (en) Superconducting magnet device and method for increasing temperature thereof
Lange et al. Commissioning of the Heidelberg Cryogenic Trap for Fast ion beams (CTF)
JP2000357607A (en) Withstand voltage evaluation method for current introducing terminal and withstand voltage evaluation device
JPH05205686A (en) Differential air exhaust resistance device