JPS638930B2 - - Google Patents

Info

Publication number
JPS638930B2
JPS638930B2 JP54146911A JP14691179A JPS638930B2 JP S638930 B2 JPS638930 B2 JP S638930B2 JP 54146911 A JP54146911 A JP 54146911A JP 14691179 A JP14691179 A JP 14691179A JP S638930 B2 JPS638930 B2 JP S638930B2
Authority
JP
Japan
Prior art keywords
reaction
acetic acid
furan
acrolein
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54146911A
Other languages
Japanese (ja)
Other versions
JPS5671040A (en
Inventor
Akihisa Oono
Junzo Haji
Takahiro Yamaguchi
Jun Torya
Masao Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP14691179A priority Critical patent/JPS5671040A/en
Publication of JPS5671040A publication Critical patent/JPS5671040A/en
Publication of JPS638930B2 publication Critical patent/JPS638930B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はパラジウムおよびテルルの存在下にブ
タジエンをアセトキシ化してジアセトキシブテン
を製造する方法の改良に関するものである。 ブタジエンを酢酸および分子状酸素と反応させ
てジアセトキシブテンを製造するにあたり、パラ
ジウムおよびテルルを活性炭に担持させた触媒を
使用することは知られている(特公昭52−12171、
同52−29726等)。 本発明者らは、上記ブタジエンのアセトキシ化
反応を詳細に検討した結果、ジアセトキシブテン
とともに、ブタジエンの酸化生成物であるフラン
およびアクロレインが少量副生し、本反応を連続
的に行なう場合にはフランおよびアクロレインが
循環使用される反応液中に蓄積すること、およ
び、これらのフランおよびアクロレインの液中濃
度が一定濃度を越えると触媒活性が極めて速やか
に低下することを見い出し、本発明に到達したも
のである。 以下に本発明を詳細に説明する。 本発明方法において使用される触媒は活性炭に
パラジウムおよびテルルを担持させたものであ
り、触媒の調製法、還元法および活性化法につい
ては特公昭52−29726、同52−29727、同52−
12685、同52−12686、特開昭52−24180、特願昭
53−54263(特公昭62−743)、同53−77126(特公昭
61−20344)に詳細に記載されている。パラジウ
ムの担持量は活性炭に対して通常0.1〜20重量%
であり、テルルはパラジウム1グラム原子に対し
て0.01〜10グラム原子、好ましくは0.05〜5グラ
ム原子担持される。本発明方法において、上記触
媒は反応器に充填され、固定床で反応が行なわれ
る。 本反応に用いられるブタジエンは、必ずしも純
粋なものである必要はなく、窒素、アルゴン等の
不活性ガスやメタン、エタン、ブタン等の飽和炭
化水素を含有していてもよい。また、エチレン製
造時に副生するC4留分をそのままブタジエン原
料として使用することもできる。他の反応原料で
ある酢酸は、特に制限されず品質的にはJIS規格
を満足するものであれば充分であるが、反応の選
択率を考慮した場合、含水量は20(重量)%以下
であることが望ましく、また、反応器の材質の観
点からは酢酸中に含まれる蟻酸は出来るだけ1.0
(重量)%以下とするのが好ましい。酢酸の供給
源としては、新たなものは勿論のこと、反応系か
ら回収される酢酸も使用できる。酢酸の使用量
は、ブタジエン1モルに対し化学量論以上60モル
以下の範囲で適用される。 分子状酸素は、純粋なものでも窒素、アルゴン
等の不活性ガス、炭酸ガス、メタン、エタン等の
炭素数1〜3の飽和炭化水素で稀釈されたもので
もよく、簡便には空気が用いられる。いずれの場
合も、反応器内で実質的に爆発混合物を形成しな
いようにすることが好ましく、通常酸素含有ガス
中の酸素濃度は0.1〜100容量%、好ましくは1〜
10容量%の範囲で選ばれる。 本反応を実施する際、酢酸は反応原料であると
同時に反応溶媒としての作用も奏するので、特に
溶媒を用いる必要はないが、アセトキシ化反応に
対して不活性な溶媒、例えば飽和炭化水素化合
物、飽和脂肪族カルボン酸エステル、飽和脂肪族
エーテルなどを用いてもよい。 溶媒を使用する場合は、酢酸の使用量が前記の
適用量範囲内であり、且つ酢酸と溶媒の和がブタ
ジエン1重量部に対し70重量部以下となるような
割合で用いるのがよい。 反応器には、ブタジエン、酢酸および場合によ
り前記溶媒が液体状態で導入され、これらの液体
のSVは0.1〜100hr-1、好ましくは0.5〜20hr-1
反応が行なわれる。反応温度は20〜160℃、好ま
しくは40〜120℃の範囲で選択され、反応圧力は
常圧〜200Kg/cm2、好ましくは30〜100Kg/cm2の範
囲で選択される。また、分子状酸素を含むガスの
SVは、反応条件下で1〜1500hr-1、好ましくは
5〜500hr-1の範囲で適宜選択される。 本発明方法においては、アセトキシ化反応を 1/2(Fi+Ai+Fp+Ap)≦1100 ……〔〕 但し、 Fi;触媒層入口におけるフランの液中濃度
(ppm) Ai;触媒層入口におけるアクロレインの液中濃度
(ppm) Fp;触媒層出口におけるフランの液中濃度
(ppm) Ap;触媒層出口におけるアクロレインの液中濃
度(ppm) なる条件下で行なうことが必要である。〔〕式
の下限は0であることが理想的ではあるが、本反
応においては殆どいかなる条件においてもフラン
およびアクロレインの副生は避けられないため
〔〕式の下限を50よりも低く抑えることは困難
である。上記アセトキシ化反応は、通常、過剰の
酢酸を使用し、かつ、ブタジエンの転化率をあま
り高くとらずに行なわれるので、工業的に実施す
る場合には、未反応ブタジエンを簡単な蒸留によ
り回収し、次いで低沸点物を留去したのち酢酸を
蒸留回収してこれらのブタジエンおよび酢酸を反
応系に循環して再使用される。この際、アセトキ
シ化反応時に副生するフランおよびアクロレイン
は一部がブタジエンに同伴され、一部が酢酸に含
まれたままで反応系を循環し、フランおよびアク
ロレインの触媒層入口および出口における液中濃
度が次第に高くなる。そのために、本発明方法に
従つて前記式〔〕を満足する条件で反応を行な
うには、回収したブタジエンを精製するかまたは
蒸留の際に実質的にブタジエンのみを留出させ、
フランおよびアクロレインは他の低沸点物ととも
に酢酸およびジアセトキシブテンより蒸留分離す
ることにより、ワンパスで副生する量に相当する
フランおよびアクロレインを系外に排出すること
が必要である。 本反応においては、通常の化学反応と同様に反
応温度が高いほど反応速度が大きいが、フランお
よびアクロレインの副生量も多くなるので、でき
るかぎり低い温度で反応を行なうことが好まし
い。また、SVも低すぎるとフランおよびアクロ
レインの副生量が多くなるのであまり低くしない
ことが望ましい。 次に本発明を実施例により更に具体的に説明す
るが、本発明はその要旨を越えない限り、以下の
実施例に限定されるものではない。 実施例 1 4〜6メツシユのヤシガラ破砕炭9.5Kgに水5.5
Kgおよび60重量%硝酸水溶液7.13Kgを加え、90〜
94℃に3時間保持した。冷却後、過して硝酸を
除去し、硝酸パラジウムおよびテルルを硝酸に溶
解して得られたパラジウム濃度16g/、テルル
濃度5.2g/の水溶液15.2Kgを添加し30℃に3
時間保持したのち5時間放冷した。次いで固形物
を取し、240mmHgの圧力下に最高139℃で8時
間乾燥した。得られた未還元触媒はパラジウム
2.72重量%およびテルル0.49重量%(いずれも単
体換算値)を含有していた。 上記未還元触媒500c.c.を内径2.8cm(有効断面積
5.4cm2)のステンレス製還元容器に充填し(層高
98cm)、メタノールガス8容量%を含有する窒素
を650N/hrの流量で流通させながら毎時50℃
の割合で昇温して400℃に到達したところで4時
間保持したのち、窒素気流中で室温まで放冷し
た。次に流通ガスを酸素ガス2容量%を含有する
窒素に切り換え、流量650N/hrで流通させな
がら300℃に15時間保持したのち、窒素気流中で
室温まで放冷した。次いで、8容量%のメタノー
ルガスを含有する窒素を650N/hrの割合で流
通させながら毎時50℃の割合で昇温し、400℃に
15時間保持したのち、窒素気流中で室温まで冷却
し、続いて酸素ガス2容量%を含有する窒素を
650N/hrで流通させながら300℃に1時間保持
したのち窒素気流中で冷却し、還元済触媒を得
た。 上記還元済触媒25c.c.を有効断面積5.0cm2の耐熱
ガラス製活性化容器に装入し、水素ガスを32.5N
/hrの割合で流通させながら、毎時50℃の割合
で昇温し、400℃に到達したところで4時間保持
し、窒素気流中で室温まで冷却した。次に流通ガ
スを酸素ガス2容量%を含有する窒素に切り換
え、流量32.5N/hrで流通させながら300〜315
℃に15時間保持したのち窒素気流中で室温まで冷
却した。引き続き、水素ガス32.5N/hrに切り
換え、毎時50℃の割合で昇温し、400℃に到達し
たところで4時間保持したのち、窒素気流中で室
温まで放冷し、活性化処理を終了した。得られた
触媒にはパラジウム3.03重量%およびテルル0.55
重量%(いずれも単体換算値)が含有されてい
た。 上記触媒10c.c.(約4g)を内径12mm、有効断面
積0.848cm2のステンレス製反応管に充填し、反応
圧力60Kg/cm2、反応温度100℃において、1,3
−ブタジエン0.122mole/hr、氷酢酸2.5mole/
hrおよび酸素(窒素により6容量%に稀釈して使
用)0.257mole/hrの割合で流通させて連続的に
反応を行なつた。 反応を開始して740時間経過した時点で、1時
間あたり触媒1gについてジアセトキシブテンの
生成量(1,4一体と1,3一体の合計量)は
3.29mmol/hr・g−catであつた。 次いで、氷酢酸をフラン含有率1100ppmの氷酢
酸に切り換えて更に550時間反応を行なつたとこ
ろ、ジアセトキシブテン生成量は3.07mmol/
hr・g−catに低下した。また、このときの触媒
層出口におけるフランおよびアクロレインの液中
濃度はそれぞれ1000ppmおよび100ppmであつた。
1000時間あたりの触媒活性の低下率を表−2に示
す。 実施例 2 実施例1と同様に調製した触媒を使用し、実施
例1と同様にして反応を開始した。1700時間経過
した時点ではジアセトキシブテンの生成量は2.98
mmol/hr・g−catであつた。 次いで、氷酢酸をアクロレイン含有率890ppm
の氷酢酸に切り換えて更に650時間反応を行なつ
たところ、ジアセトキシブテン生成量は2.82m
mol/hr・g−catに低下した。このときの触媒
層出口におけるフランおよびアクロレインの液中
濃度はそれぞれ100ppmおよび890ppmであつた。
1000時間あたりの触媒活性の低下率を表−2に示
す。 実施例 3 実施例1と同様にして調製した触媒を使用し、
実施例1と同様にして反応を開始した。750時間
経過後のジアセトキシブテンの生成量は2.98m
mol/hr・g−catであり、1150時間経過後のジ
アセトキシブテンの生成量は2.76mmol/hr・g
−catであつた。この間の触媒層出口におけるフ
ランおよびアクロレインの液中濃度はそれぞれ
80ppmおよび90ppmであつた。1000時間あたりの
触媒活性の低下率を表−2に示す。 比較例 1、2 実施例1と同様に調製した触媒を使用し、実施
例1と同様の反応条件で反応を開始した。反応の
概要を表−1に示す。 即ち、比較例1では反応時間550時間から1100
時間に亘りフラン4600ppmを含有する酢酸を用い
て反応を行ない、比較例2では、反応時間2400時
間から2700時間に亘り、フラン3690ppm及びアク
ロレイン880ppmを含有する酢酸を用いて反応を
行なつた。
The present invention relates to an improvement in a method for producing diacetoxybutene by acetoxylating butadiene in the presence of palladium and tellurium. It is known that a catalyst in which palladium and tellurium are supported on activated carbon is used to produce diacetoxybutene by reacting butadiene with acetic acid and molecular oxygen (Japanese Patent Publication No. 52-12171,
52-29726 etc.) As a result of a detailed study of the acetoxylation reaction of butadiene, the present inventors found that, together with diacetoxybutene, a small amount of furan and acrolein, which are oxidation products of butadiene, were produced as by-products. The present invention was achieved by discovering that furan and acrolein accumulate in a reaction solution that is recycled, and that when the concentration of furan and acrolein in the solution exceeds a certain level, the catalytic activity decreases extremely quickly. It is something. The present invention will be explained in detail below. The catalyst used in the method of the present invention is one in which palladium and tellurium are supported on activated carbon.For the preparation, reduction and activation methods of the catalyst, see Japanese Patent Publications No. 52-29726, No. 52-29727, No. 52-
12685, 52-12686, Japanese Patent Application Publication No. 52-24180, Patent Application
53-54263 (Tokuko Shou 62-743), 53-77126 (Tokuko Sho 62-743)
61-20344). The amount of palladium supported is usually 0.1 to 20% by weight based on activated carbon.
0.01 to 10 gram atoms, preferably 0.05 to 5 gram atoms of tellurium are supported per gram atom of palladium. In the method of the present invention, the above catalyst is packed into a reactor and the reaction is carried out in a fixed bed. The butadiene used in this reaction does not necessarily have to be pure, and may contain an inert gas such as nitrogen or argon, or a saturated hydrocarbon such as methane, ethane or butane. Furthermore, the C 4 fraction produced as a by-product during ethylene production can be used as is as a raw material for butadiene. Acetic acid, which is another raw material for the reaction, is not particularly limited and is sufficient in terms of quality as long as it satisfies JIS standards. However, when considering the selectivity of the reaction, the water content must be 20% (by weight) or less. It is desirable that the formic acid contained in acetic acid is 1.0% as much as possible from the viewpoint of the material of the reactor.
(weight)% or less. As a source of acetic acid, not only fresh acetic acid but also acetic acid recovered from the reaction system can be used. The amount of acetic acid used is within the range of stoichiometric or more and 60 mol or less per 1 mol of butadiene. Molecular oxygen may be pure or diluted with an inert gas such as nitrogen or argon, or a saturated hydrocarbon having 1 to 3 carbon atoms such as carbon dioxide, methane, or ethane, and air is conveniently used. . In any case, it is preferred that substantially no explosive mixture is formed in the reactor, and the oxygen concentration in the oxygen-containing gas usually ranges from 0.1 to 100% by volume, preferably from 1 to 100% by volume.
Selected within a range of 10% by volume. When carrying out this reaction, acetic acid acts both as a reaction raw material and as a reaction solvent, so there is no need to use a particular solvent, but a solvent that is inert to the acetoxylation reaction, such as a saturated hydrocarbon compound, Saturated aliphatic carboxylic acid esters, saturated aliphatic ethers, etc. may also be used. When a solvent is used, it is preferable that the amount of acetic acid used is within the above-mentioned application amount range, and in such a proportion that the sum of acetic acid and solvent is 70 parts by weight or less per 1 part by weight of butadiene. Butadiene, acetic acid, and optionally the solvent are introduced in a liquid state into the reactor, and the reaction is carried out at an SV of 0.1 to 100 hr -1 , preferably 0.5 to 20 hr -1 . The reaction temperature is selected in the range of 20 to 160°C, preferably 40 to 120°C, and the reaction pressure is selected in the range of normal pressure to 200Kg/cm 2 , preferably 30 to 100Kg/cm 2 . In addition, gases containing molecular oxygen
SV is appropriately selected within the range of 1 to 1500 hr -1 , preferably 5 to 500 hr -1 under the reaction conditions. In the method of the present invention, the acetoxylation reaction is reduced to 1/2 (F i + A i + F p + A p )≦1100...[] However, F i : Concentration of furan in the liquid at the inlet of the catalyst layer (ppm) A i : Catalyst Concentration of acrolein in the liquid at the inlet of the bed (ppm) F p ; Concentration of furan in the liquid at the outlet of the catalyst bed (ppm) A p ; Concentration of acrolein in the liquid at the outlet of the catalyst bed (ppm) be. Ideally, the lower limit of the formula [] is 0, but in this reaction, the by-products of furan and acrolein are unavoidable under almost any conditions, so it is difficult to keep the lower limit of the formula [] lower than 50. Have difficulty. The above acetoxylation reaction is usually carried out using excess acetic acid and without achieving a very high conversion rate of butadiene. Therefore, when carried out industrially, unreacted butadiene is recovered by simple distillation. Then, after distilling off low-boiling substances, acetic acid is distilled and recovered, and these butadiene and acetic acid are recycled to the reaction system and reused. At this time, furan and acrolein, which are by-produced during the acetoxylation reaction, are partially entrained in butadiene and partially remain contained in acetic acid and circulate through the reaction system, resulting in the concentration of furan and acrolein in the liquid at the inlet and outlet of the catalyst layer. gradually increases. Therefore, in order to carry out the reaction under conditions that satisfy the above formula [] according to the method of the present invention, the recovered butadiene is purified or substantially only butadiene is distilled out during distillation.
It is necessary to separate furan and acrolein from acetic acid and diacetoxybutene by distillation together with other low-boiling substances, thereby discharging the amount of furan and acrolein equivalent to by-products in one pass out of the system. In this reaction, as in normal chemical reactions, the higher the reaction temperature, the higher the reaction rate, but since the amount of by-products of furan and acrolein also increases, it is preferable to carry out the reaction at as low a temperature as possible. Furthermore, if the SV is too low, the amount of by-products of furan and acrolein will increase, so it is desirable not to make it too low. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 9.5 kg of crushed coconut charcoal of 4 to 6 meshes and 5.5 kg of water
Kg and 7.13 Kg of 60 wt% nitric acid aqueous solution, 90 ~
It was held at 94°C for 3 hours. After cooling, nitric acid was removed by filtration, and 15.2 kg of an aqueous solution with a palladium concentration of 16 g/tellurium concentration and a tellurium concentration of 5.2 g/1 obtained by dissolving palladium nitrate and tellurium in nitric acid was added, and the mixture was heated to 30°C for 30 minutes.
After holding for an hour, the mixture was allowed to cool for 5 hours. The solid was then removed and dried at a maximum temperature of 139° C. for 8 hours under a pressure of 240 mm Hg. The resulting unreduced catalyst is palladium
It contained 2.72% by weight and 0.49% by weight of tellurium (all values calculated as a single substance). The above unreduced catalyst 500c.c. has an inner diameter of 2.8cm (effective cross-sectional area
5.4 cm 2 ) stainless steel reduction container (layer height
98cm), at 50°C per hour while flowing nitrogen containing 8% methanol gas by volume at a flow rate of 650N/hr.
The temperature was increased at a rate of 400°C, which was held for 4 hours, and then allowed to cool to room temperature in a nitrogen stream. Next, the flowing gas was changed to nitrogen containing 2% by volume of oxygen gas, and after being kept at 300° C. for 15 hours while flowing at a flow rate of 650 N/hr, it was allowed to cool to room temperature in a nitrogen stream. Next, the temperature was increased to 400°C at a rate of 50°C per hour while flowing nitrogen containing 8% by volume of methanol gas at a rate of 650N/hr.
After holding for 15 hours, it was cooled to room temperature in a nitrogen stream, and then nitrogen containing 2% by volume of oxygen gas was added.
The mixture was maintained at 300° C. for 1 hour while flowing at 650 N/hr, and then cooled in a nitrogen stream to obtain a reduced catalyst. 25 c.c. of the above reduced catalyst was charged into a heat-resistant glass activation container with an effective cross-sectional area of 5.0 cm 2 , and hydrogen gas was added at 32.5N.
The temperature was raised at a rate of 50° C./hour while flowing at a rate of 400° C./hr, and when it reached 400° C., it was held for 4 hours and cooled to room temperature in a nitrogen stream. Next, the circulating gas was changed to nitrogen containing 2% by volume of oxygen gas, and while flowing at a flow rate of 32.5 N/hr, the
After being maintained at ℃ for 15 hours, it was cooled to room temperature in a nitrogen stream. Subsequently, the hydrogen gas was switched to 32.5 N/hr, the temperature was raised at a rate of 50°C per hour, and when it reached 400°C, it was held for 4 hours, and then allowed to cool to room temperature in a nitrogen stream to complete the activation process. The resulting catalyst contained 3.03% palladium and 0.55% tellurium by weight.
% by weight (all values are calculated as a single unit). A stainless steel reaction tube with an inner diameter of 12 mm and an effective cross-sectional area of 0.848 cm 2 was filled with 10 cc.
−Butadiene 0.122 mole/hr, glacial acetic acid 2.5 mole/hr
hr and oxygen (used diluted to 6% by volume with nitrogen) at a rate of 0.257 mole/hr to carry out the reaction continuously. When 740 hours have passed since the reaction started, the amount of diacetoxybutene produced (total amount of 1,4-unit and 1,3-unit) per 1g of catalyst per hour is
It was 3.29 mmol/hr·g-cat. Next, when the glacial acetic acid was changed to glacial acetic acid with a furan content of 1100 ppm and the reaction was continued for an additional 550 hours, the amount of diacetoxybutene produced was 3.07 mmol/
It decreased to hr/g-cat. Furthermore, the concentrations of furan and acrolein in the liquid at the outlet of the catalyst layer at this time were 1000 ppm and 100 ppm, respectively.
Table 2 shows the rate of decrease in catalyst activity per 1000 hours. Example 2 A reaction was started in the same manner as in Example 1 using a catalyst prepared in the same manner as in Example 1. After 1700 hours, the amount of diacetoxybutene produced was 2.98
It was mmol/hr・g-cat. Then, glacial acetic acid was added to the acrolein content of 890ppm.
When the reaction was continued for an additional 650 hours by switching to glacial acetic acid, the amount of diacetoxybutene produced was 2.82 m
It decreased to mol/hr·g-cat. At this time, the concentrations of furan and acrolein in the liquid at the catalyst bed outlet were 100 ppm and 890 ppm, respectively.
Table 2 shows the rate of decrease in catalyst activity per 1000 hours. Example 3 Using a catalyst prepared in the same manner as in Example 1,
The reaction was started in the same manner as in Example 1. The amount of diacetoxybutene produced after 750 hours was 2.98m
mol/hr・g-cat, and the amount of diacetoxybutene produced after 1150 hours is 2.76 mmol/hr・g.
-It was cat. During this period, the concentrations of furan and acrolein in the liquid at the outlet of the catalyst bed are respectively
They were 80ppm and 90ppm. Table 2 shows the rate of decrease in catalyst activity per 1000 hours. Comparative Examples 1 and 2 Using a catalyst prepared in the same manner as in Example 1, a reaction was started under the same reaction conditions as in Example 1. A summary of the reaction is shown in Table-1. That is, in Comparative Example 1, the reaction time was changed from 550 hours to 1100 hours.
The reaction was carried out using acetic acid containing 4600 ppm of furan over a period of time, and in Comparative Example 2, the reaction was carried out using acetic acid containing 3690 ppm of furan and 880 ppm of acrolein for a reaction time of 2400 to 2700 hours.

【表】 1000時間あたりの触媒活性の低下率を表−2に
示す。
[Table] Table 2 shows the rate of decrease in catalyst activity per 1000 hours.

【表】 実施例 4 比較例2において、2700時間経過した時点で触
媒層入口のフランおよびアクロレインの液中濃度
を0にして更に150時間反応を継続したところ、
触媒層出口におけるフランおよびアクロレインの
液中濃度はそれぞれ90ppmおよび110ppmであり、
ジアセトキシブテンの生成量は1.32mmol/hr・
g−catに回復した。
[Table] Example 4 In Comparative Example 2, when 2700 hours had elapsed, the concentration of furan and acrolein in the liquid at the inlet of the catalyst layer was reduced to 0, and the reaction was continued for an additional 150 hours.
The concentrations of furan and acrolein in the liquid at the outlet of the catalyst bed are 90 ppm and 110 ppm, respectively.
The amount of diacetoxybutene produced is 1.32 mmol/hr・
It recovered to g-cat.

Claims (1)

【特許請求の範囲】 1 パラジウムおよびテルルを活性炭に担持させ
た触媒を充填した触媒層に、ブタジエン、酢酸及
び分子状酸素を流通させてブタジエンをアセトキ
シ化し、反応域から回収される未反応ブタジエン
及び酢酸を反応域に循環することからなるジアセ
トキシブテンの製造方法に於て、循環使用される
ブタジエン及び酢酸中のフラン及びアクロレイン
を反応系外に排出することにより、該アセトキシ
化反応を式() 1/2(Fi+Ai+Fo+Ao)≦1100 ……() (式中、Fi及びAiは夫々、フラン及びアクロレ
インの触媒層入口における液中濃度(ppm)を、
Fo及びAoは、夫々、フラン及びアクロレインの
触媒層出口における液中濃度(ppm)を表わす) なる条件下で行なうことを特許とするジアセトキ
シブテンの製造法。
[Claims] 1. Butadiene, acetic acid, and molecular oxygen are passed through a catalyst bed filled with a catalyst in which palladium and tellurium are supported on activated carbon to acetoxylate the butadiene, and unreacted butadiene and In the method for producing diacetoxybutene, which involves circulating acetic acid into the reaction zone, the acetoxylation reaction can be carried out using the formula () by discharging the furan and acrolein in the recycled butadiene and acetic acid to the outside of the reaction system. 1/2 (Fi + Ai + Fo + Ao) ≦ 1100 ... () (In the formula, Fi and Ai respectively represent the concentration of furan and acrolein in the liquid at the inlet of the catalyst layer (ppm),
(Fo and Ao represent the concentration (ppm) of furan and acrolein in the liquid at the outlet of the catalyst layer, respectively).
JP14691179A 1979-11-13 1979-11-13 Preparation of diacetoxybutene Granted JPS5671040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14691179A JPS5671040A (en) 1979-11-13 1979-11-13 Preparation of diacetoxybutene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14691179A JPS5671040A (en) 1979-11-13 1979-11-13 Preparation of diacetoxybutene

Publications (2)

Publication Number Publication Date
JPS5671040A JPS5671040A (en) 1981-06-13
JPS638930B2 true JPS638930B2 (en) 1988-02-25

Family

ID=15418347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14691179A Granted JPS5671040A (en) 1979-11-13 1979-11-13 Preparation of diacetoxybutene

Country Status (1)

Country Link
JP (1) JPS5671040A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714695A (en) * 1985-04-18 1987-12-22 The Standard Oil Company Method for the preparation of high activity palladium based catalysts
JP2552161B2 (en) * 1988-02-03 1996-11-06 ダイセル化学工業株式会社 Method for producing allyl acetate
JP2008056951A (en) * 2006-08-29 2008-03-13 Mitsubishi Chemicals Corp Nanocolloidal particle, method for producing the same, catalyst for diacetoxylation reaction of conjugated diene, and method for producing dicarboxylic acid diester
TWI370117B (en) * 2008-05-21 2012-08-11 Showa Denko Kk Process for producing n-propyl acetate

Also Published As

Publication number Publication date
JPS5671040A (en) 1981-06-13

Similar Documents

Publication Publication Date Title
AU2000249242B2 (en) Integrated process for the production of vinyl acetate
JPS638930B2 (en)
US4121039A (en) Process for producing an unsaturated glycol diester using a catalyst comprising palladium containing thorium as a promotor
WO2020022364A1 (en) Method for producing 1,3-bisacyloxy-2-methylene propane
JP2870738B2 (en) Method for producing carbonic acid diester
US3637818A (en) Process for preparing mixtures of acetaldehyde acetic acid and vinyl acetate
JP2882561B2 (en) Method for producing carbonic acid diester
WO1994011335A1 (en) Process for producing carbonic diester
JPH0625104A (en) Continuous production of dimethyl carbonate
JPS628113B2 (en)
JPH04297445A (en) Production of carbonic acid diester
JP7168565B2 (en) Method for producing bisacyloxylated exomethylene compound
EP0108332B1 (en) Preparation of acetone dicarboxylic acid diester
US5180700A (en) Regeneration and extension of lifetime of dehydrogenation catalysts used in the preparation of 2-alkylpyrimidines
KR100689647B1 (en) Integrated process for the production of vinyl acetate
JPS584704B2 (en) Method for producing methyl methacrylate
JPH04297443A (en) Production of carbonic acid diester
JPS5821642A (en) Preparation of adipic acid
JPH0825961B2 (en) Method for producing carbonic acid diester
JPS6145975B2 (en)
JPS6136818B2 (en)
RU2247709C2 (en) Integrated method for vinyl acetate production
JP2962454B2 (en) Continuous production method of dimethyl carbonate
JPH04297444A (en) Production of carbonic acid diester
JPS5833851B2 (en) diacetoxybutene