JPH0625104A - Continuous production of dimethyl carbonate - Google Patents

Continuous production of dimethyl carbonate

Info

Publication number
JPH0625104A
JPH0625104A JP3269950A JP26995091A JPH0625104A JP H0625104 A JPH0625104 A JP H0625104A JP 3269950 A JP3269950 A JP 3269950A JP 26995091 A JP26995091 A JP 26995091A JP H0625104 A JPH0625104 A JP H0625104A
Authority
JP
Japan
Prior art keywords
dimethyl carbonate
gas
dimethyl
methanol
methyl nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3269950A
Other languages
Japanese (ja)
Other versions
JP2795360B2 (en
Inventor
Keigo Nishihira
圭吾 西平
Hideji Tanaka
秀二 田中
Shinichi Yoshida
信一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP3269950A priority Critical patent/JP2795360B2/en
Priority to CA002073830A priority patent/CA2073830C/en
Priority to DE69207098T priority patent/DE69207098T2/en
Priority to ES92112256T priority patent/ES2080997T3/en
Priority to ZA925353A priority patent/ZA925353B/en
Priority to EP92112256A priority patent/EP0523728B1/en
Priority to US07/914,355 priority patent/US5214185A/en
Publication of JPH0625104A publication Critical patent/JPH0625104A/en
Application granted granted Critical
Publication of JP2795360B2 publication Critical patent/JP2795360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a new process capable of industrially and advantageously performing production of dimethyl carbonate by a vapor-phase reaction by using carbon monoxide and methyl nitrite as raw materials in the presence of a platinum group metal-based solid catalyst. CONSTITUTION:A new process for continuously producing dimethyl carbonate consists of (A) a reaction process wherein carbon monoxide and a methyl nitrite-containing gas are introduced to a reactor packed with a solid catalyst carrying a platinum group metal (compound) or the platinum group metal (compound) and a cocatalyst and catalytically reacted in a vapor phase to give a reactional product comprising dimethyl carbonate, (B) the reaction product is fed to an absorption column, dimethyl oxalate is used as an absorption solvent and the reactional product is separated into a nitrogen monoxide-containing concondensed gas and an absorption solution having absorbed dimethyl carbonate, (C) the noncondensed gas is sent to a recovering column, nitrogen monoxide is recovered as methyl nitrite and methyl nitrite is circulatively fed to the reactor, (D) dimethyl carbonate is separated from methanol by extractive distillation while adding further dimethyl oxalate to the absorption solution and (E) dimethyl carbonate is separated from a mixture of the separated dimethyl carbonate and dimethyl oxalate by distillation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭酸ジメチルの新規な
製法に関し、一酸化炭素と亜硝酸メチルとを原料とし
て、白金族金属系固体触媒の存在下、気相反応による炭
酸ジメチルの製造を、工業的有利に実施することのでき
る新規なプロセスを提供するものである。炭酸ジメチル
は、芳香族ポリカーボネートや医農薬等の合成原料とし
てまた溶剤として有用な化合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing dimethyl carbonate, which comprises using carbon monoxide and methyl nitrite as raw materials to produce dimethyl carbonate by a gas phase reaction in the presence of a platinum group metal-based solid catalyst. , A novel process which can be industrially advantageously carried out. Dimethyl carbonate is a compound useful as a raw material for synthesizing aromatic polycarbonate, medicines and agricultural chemicals, and as a solvent.

【0002】[0002]

【従来の技術】従来、一酸化炭素と亜硝酸メチルを白金
族金属系固体触媒に気相で接触させ、炭酸ジメチルを製
造する方法については、すでに本発明者らが特開平3−
141243号や特願平2−257042号などにより
提案している。この反応自体は、炭酸ジメチルの製法と
して極めて優れた反応である。しかし、この反応を工業
的に適用し、工業的規模で炭酸ジメチルの製造を行うた
めには、その反応および分離精製を連続的かつ効率的に
行うことのできるプロセスを必要とする。
2. Description of the Related Art Conventionally, the present inventors have already disclosed a method for producing dimethyl carbonate by bringing carbon monoxide and methyl nitrite into contact with a platinum group metal-based solid catalyst in a vapor phase.
No. 141243 and Japanese Patent Application No. 2-257042. This reaction itself is an extremely excellent reaction as a method for producing dimethyl carbonate. However, industrial application of this reaction and production of dimethyl carbonate on an industrial scale requires a process capable of continuously and efficiently carrying out the reaction and separation and purification.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、一酸化
炭素と亜硝酸メチルを、白金族金属系固体触媒に気相接
触させ、炭酸ジメチルを製造する方法において、工業的
に新規な連続プロセスを確立することを目的とし、鋭意
検討を行った。
DISCLOSURE OF THE INVENTION The present inventors have proposed an industrially novel continuous method for producing dimethyl carbonate by bringing carbon monoxide and methyl nitrite into vapor phase contact with a platinum group metal-based solid catalyst. For the purpose of establishing the process, earnest study was conducted.

【0004】一酸化炭素と亜硝酸メチルから炭酸ジメチ
ルを製造する方法については、本発明者らが提案したも
の以外に特開昭60−181051号に開示されている
ものがあるがいずれも工業的な連続プロセスとしては、
十分には開示されていなかった。本発明は、炭酸ジメチ
ルの連続製造法として、新規で工業的な連続プロセスを
供するものである。
Regarding the method for producing dimethyl carbonate from carbon monoxide and methyl nitrite, there is a method disclosed in JP-A-60-181051, in addition to the method proposed by the present inventors. As a continuous process,
It was not fully disclosed. The present invention provides a novel and industrial continuous process as a continuous production method of dimethyl carbonate.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

1.白金族金属及び/またはその化合物を担持した或い
は白金族金属及び/またはその化合物並びに助触媒を担
持した固体触媒を充填した反応器に、一酸化炭素と亜硝
酸メチルを含有するガスを導入し、気相で接触反応させ
て、炭酸ジメチルを含む反応生成物を得る第一工程、 2.第一工程における反応生成物を吸収塔に導き、吸収
溶媒としてシュウ酸ジメチルを添加して、第一工程の接
触反応で生成した一酸化炭素を含有する非凝縮ガスと生
成した炭酸ジメチルを吸収した吸収液とに分離する第二
工程、 3.第二工程における非凝縮ガスを再生塔に導き、供給
する分子状酸素含有ガスおよびメタノールと接触させ、
塔出口ガス中の一酸化窒素が2〜7容量%になるように
非吸収ガス中の一酸化窒素を亜硝酸メチルに再生し、第
一工程の反応器に循環供給する第三工程、
1. Introducing a gas containing carbon monoxide and methyl nitrite into a reactor loaded with a platinum group metal and / or a compound thereof or a solid catalyst loaded with a platinum group metal and / or a compound thereof and a cocatalyst, 1. The first step of obtaining a reaction product containing dimethyl carbonate by catalytically reacting in the gas phase. The reaction product in the first step was introduced into an absorption tower, dimethyl oxalate was added as an absorption solvent, and the non-condensed gas containing carbon monoxide produced in the catalytic reaction in the first step and the produced dimethyl carbonate were absorbed. 2. The second step of separating into an absorption liquid, The non-condensed gas in the second step is introduced into the regeneration tower and brought into contact with the supplied molecular oxygen-containing gas and methanol,
A third step of regenerating the nitric oxide in the non-absorbing gas into methyl nitrite so that the nitric oxide in the tower outlet gas is 2 to 7% by volume, and circulatingly supplying it to the reactor in the first step.

【0006】4.第二工程で得られた炭酸ジメチルとメ
タノールおよびシュウ酸ジメチルの混合液に更にシュウ
酸ジメチルを添加しながら炭酸ジメチルをメタノールか
ら抽出蒸留分離する第四工程、 5.第四工程におけるメタノールから分離された炭酸ジ
メチルとシュウ酸ジメチルの混合物から炭酸ジメチルを
蒸留分離して炭酸ジメチルを製品として得る。また、シ
ュウ酸ジメチルは、第四工程に循環供給する第五工程、 の各工程からなるプロセスを採用すれば、極めて工業的
に有利な炭酸ジメチルが得られることを見出し、その連
続的製法の開発に到った。
4. 4. A fourth step in which dimethyl carbonate is extracted and distilled from methanol while adding dimethyl oxalate to the mixed solution of dimethyl carbonate, methanol and dimethyl oxalate obtained in the second step. Dimethyl carbonate is distilled off from the mixture of dimethyl carbonate and dimethyl oxalate separated from methanol in the fourth step to obtain dimethyl carbonate as a product. In addition, it was found that if a process consisting of the fifth step of supplying dimethyl oxalate to the fourth step in a circulating manner is adopted, dimethyl carbonate that is extremely industrially advantageous can be obtained, and the continuous production method was developed. Came to.

【0007】次に、本発明の各工程について、以下に詳
細に説明する。 第一工程 白金族金属及び/またはその化合物を担持した或いは白
金族金属及び/またはその化合物並びに助触媒を担持し
た固体触媒を充填した反応器に、一酸化炭素および亜硝
酸メチルを含有する原料ガスを導入し、気相で接触反応
させる。反応器としては、単管式あるいは多管式触媒充
填塔が有効で、白金族金属系固体触媒と原料ガスとの接
触時間は、好適には10秒以下、好ましくは0.2〜5
秒となるように設定する。白金族金属系固体触媒として
は、特願平3−141243号や特願平1−20114
6号に記載されている白金族金属の化合物を担体に担持
した触媒あるいは白金族金属の陽イオンとして担体に担
持した触媒、さらに銅や鉄の塩類を助触媒として添加し
たものが有効である。
Next, each step of the present invention will be described in detail below. First step A raw material gas containing carbon monoxide and methyl nitrite in a reactor loaded with a platinum group metal and / or a compound thereof or a solid catalyst loaded with a platinum group metal and / or compound and a co-catalyst Is introduced and the catalytic reaction is carried out in the gas phase. As the reactor, a single-tube type or multi-tube type catalyst packed column is effective, and the contact time between the platinum group metal-based solid catalyst and the raw material gas is suitably 10 seconds or less, preferably 0.2 to 5
Set to be seconds. As the platinum group metal-based solid catalyst, Japanese Patent Application No. 3-141243 and Japanese Patent Application No. 1-201114 are available.
A catalyst in which a platinum group metal compound described in No. 6 is supported on a carrier, a catalyst in which a platinum group metal cation is supported on a carrier, and a salt of copper or iron added as a cocatalyst is effective.

【0008】単体は、活性炭、アルミナ、シリカ、珪藻
土、ゼオライト、粘土鉱物などが使用される。また原料
ガスである一酸化炭素および亜硝酸メチル含有ガスは通
常窒素、炭酸ガスなどの反応に不活性なガスで希釈され
る。
As the simple substance, activated carbon, alumina, silica, diatomaceous earth, zeolite, clay mineral and the like are used. The gas containing carbon monoxide and methyl nitrite, which is a raw material gas, is usually diluted with a reaction-inert gas such as nitrogen or carbon dioxide.

【0009】反応温度については、反応は低温でも充分
速やかに進行し、また反応温度が低いほど副反応が少な
いため、所望の空時収量が維持される限り比較的低温、
すなわち好適には50〜200℃、好ましくは80〜1
50℃である。また反応圧力については、好適には常圧
ないし10kg/cm(ゲージ圧)、好ましくは常圧
ないし5kg/cm(ゲージ圧)の圧力で実施され、
場合によっては常圧よりやや低い圧力であってもよい。
Regarding the reaction temperature, the reaction proceeds sufficiently quickly even at low temperature, and the lower the reaction temperature is, the less side reactions occur. Therefore, the reaction temperature is relatively low as long as the desired space-time yield is maintained.
That is, it is preferably 50 to 200 ° C., preferably 80 to 1
It is 50 ° C. The reaction pressure is suitably atmospheric pressure to 10 kg / cm 2 (gauge pressure), preferably atmospheric pressure to 5 kg / cm 2 (gauge pressure).
In some cases, the pressure may be slightly lower than normal pressure.

【0010】原料ガス中の亜硝酸メチルの濃度は、広範
囲に変えることができるが、満足すべき反応速度を得る
ためには、その濃度が好適には1容量%以上となるよう
に存在させることが必要であり、逆に、亜硝酸メチル
は、爆発性化合物であるので高濃度にすることは安全性
の面から好ましくなく、従って好ましくは3〜25容量
%である。原料ガス中の一酸化炭素の濃度は、広範囲に
変わってよく、好適には10〜90容量%の範囲で選ぶ
ことができるが、連続プロセスでは、不活性ガスの濃度
を一定に保つために循環ガスの一部をパージするため、
高濃度にすると系外にロスが増えるので、5〜30容量
%で行うのが経済的に好ましい。
The concentration of methyl nitrite in the raw material gas can be varied over a wide range, but in order to obtain a satisfactory reaction rate, the concentration should preferably be 1 vol% or more. On the contrary, since methyl nitrite is an explosive compound, it is not preferable to increase the concentration of methyl nitrite from the viewpoint of safety. Therefore, it is preferably 3 to 25% by volume. The concentration of carbon monoxide in the raw material gas may vary over a wide range and can be suitably selected in the range of 10 to 90% by volume, but in the continuous process, it is circulated to keep the concentration of the inert gas constant. To purge some of the gas,
Since the loss increases outside the system when the concentration is increased, it is economically preferable to perform the treatment at 5 to 30% by volume.

【0011】第二工程 第一工程における反応生成物をガス分離を行う吸収塔下
部に導き、同時にこの吸収塔上部よりシュウ酸ジメチル
をフィードし、反応ガス中の炭酸ジメチルをシュウ酸ジ
メチルによって吸収分離する。炭酸ジメチルが分離され
たガス中には少量の炭酸ジメチルおよびシュウ酸ジメチ
ルが同伴し、これは第三工程で一酸化窒素の再生時、加
水分解され全くのロスとなるので、同伴する炭酸ジメチ
ルおよびシュウ酸ジメチルを回収するため吸収塔頂部よ
り少量のメタノールをフィードすることが好ましい。
Second step The reaction product in the first step is led to the lower part of the absorption tower for gas separation, and at the same time, dimethyl oxalate is fed from the upper part of the absorption tower, and dimethyl carbonate in the reaction gas is absorbed and separated by dimethyl oxalate. To do. A small amount of dimethyl carbonate and dimethyl oxalate are entrained in the gas from which dimethyl carbonate is separated, and this is hydrolyzed to a complete loss during the regeneration of nitric oxide in the third step. In order to recover dimethyl oxalate, it is preferable to feed a small amount of methanol from the top of the absorption tower.

【0012】シュウ酸ジメチルの流量量は、吸収塔に入
ってくる炭酸ジメチルの量によるが、炭酸ジメチルに対
し、好適には3〜10重量倍でよくさらに好ましくは4
〜6重量倍を必要とする。また、塔頂からフィードする
メタノール量としては、メタノール自体は、第四工程で
分離しなければならないものであるから少ないほうが好
ましいがあまり少ないと炭酸ジメチル、シュウ酸ジメチ
ルのロスが多くなるので、反応ガス中の炭酸ジメチルに
対して好適には5〜30重量%がよく、さらに好ましく
は10〜20重量%が必要である。
The flow rate of dimethyl oxalate depends on the amount of dimethyl carbonate entering the absorption tower, but it is preferably 3 to 10 times by weight, and more preferably 4 times the weight of dimethyl carbonate.
~ 6 times weight is required. Further, as the amount of methanol fed from the top of the column, it is preferable that the amount of methanol itself be separated in the fourth step because it is to be separated, but if it is too small, the loss of dimethyl carbonate and dimethyl oxalate increases, so the reaction The amount is preferably 5 to 30% by weight, more preferably 10 to 20% by weight, based on dimethyl carbonate in the gas.

【0013】吸収塔の操作温度としては、炭酸ジメチル
の吸収を効率よく行うためには、低い方がよいが、あま
り低くするとシュウ酸ジメチルの固化が起こり、またエ
ネルギー的にも不利であるので、好適には0℃〜80
℃、好ましくは10℃〜50℃で行うのがよい。シュウ
酸ジメチルによって吸収分離した炭酸ジメチルとシュウ
酸ジメチルの混合液は、メタノールおよび反応で生成し
た微量のギ酸メチルなどの低沸点化合物を除去するため
に、第四工程へ送られる。一方、非凝縮ガスは第一工程
の接触反応で生成した一酸化窒素のほかに、未反応の一
酸化炭素、亜硝酸メチルなどが含まれており、第三工程
へ送られる。
The operating temperature of the absorption tower is preferably low in order to efficiently absorb dimethyl carbonate, but if it is too low, solidification of dimethyl oxalate occurs and it is also disadvantageous in terms of energy. Suitably 0 ° C to 80
C., preferably 10 to 50.degree. C. The mixed solution of dimethyl carbonate and dimethyl oxalate absorbed and separated by dimethyl oxalate is sent to the fourth step in order to remove methanol and a small amount of low boiling point compounds such as methyl formate produced in the reaction. On the other hand, the non-condensed gas contains unreacted carbon monoxide, methyl nitrite, etc. in addition to the nitric oxide produced in the contact reaction in the first step, and is sent to the third step.

【0014】第三工程 第二工程で分離された非吸収ガスを再生塔に導き、分子
状酸素含有ガスおよびメタノールと接触させて、ガス中
の一酸化窒素を亜硝酸メチルに再生する。この工程にお
ける再生塔としては、充填塔、気泡塔、スプレー塔、段
塔などの通常の気液接触装置が用いられる。
Third Step The non-absorption gas separated in the second step is introduced into a regeneration tower and brought into contact with the molecular oxygen-containing gas and methanol to regenerate nitrogen monoxide in the gas to methyl nitrite. As the regeneration tower in this step, a usual gas-liquid contact device such as a packed tower, a bubble tower, a spray tower or a plate tower is used.

【0015】メタノールと接触させる非吸収ガスおよび
分子状酸素含有ガスは、個別にまたは混合状態で再生塔
に導入することができる。この再生塔では、一酸化窒素
の一部を分子状酸素含有ガスにより二酸化窒素に酸化す
るとともに、これらをメタノールに吸収反応させて亜硝
酸メチルに再生するものである。分子状酸素含有ガスと
しては、純酸素または不活性ガスで希釈された酸素を使
用し、再生ガス中の一酸化窒素の濃度が2〜7容量%に
なるようにフィードされる。これは、該ガスを第一工程
の反応器に循環使用する場合、一酸化窒素の濃度が、8
容量%以上であると反応の阻害効果が顕著になり、また
2容量%以下になると、再生ガス中にかなりの量の酸素
および二酸化窒素が含有されることになり、これらが触
媒の活性を低下させる要因になるからである。
The non-absorbed gas and the molecular oxygen-containing gas which are brought into contact with methanol can be introduced into the regeneration column individually or in a mixed state. In this regeneration tower, a part of nitric oxide is oxidized to nitrogen dioxide by a molecular oxygen-containing gas, and at the same time, these are absorbed in methanol to be reacted to regenerate methyl nitrite. As the molecular oxygen-containing gas, pure oxygen or oxygen diluted with an inert gas is used and is fed so that the concentration of nitric oxide in the regeneration gas is 2 to 7% by volume. This means that when the gas is recycled to the reactor of the first step, the concentration of nitric oxide is 8
If it is more than volume%, the reaction inhibiting effect becomes remarkable, and if it is less than 2 volume%, a considerable amount of oxygen and nitrogen dioxide will be contained in the regeneration gas, which reduces the activity of the catalyst. It will be a factor to cause.

【0016】このために、再生塔に導入されるガス中の
一酸化窒素1モルに対して、分子状酸素含有ガスを酸素
基準で0.08〜0.2モル供給し、これらのガスを6
0℃以下の温度でメタノールと接触させるのがよく、そ
の接触時間は0.5〜2秒が好ましい。またメタノール
の使用量は、生成する二酸化窒素およびこれとほぼ等モ
ルの一酸化窒素とを、完全に吸収反応させる必要量以上
用いられ、通常再生塔に導入されるガス中の一酸化窒素
1容量部に対し、メタノールを2〜5容量部用いるのが
好ましい。
For this purpose, 0.08 to 0.2 mol of a molecular oxygen-containing gas based on oxygen is supplied to 1 mol of nitric oxide in the gas introduced into the regeneration tower, and these gases are mixed at 6 mol.
It is preferable to contact with methanol at a temperature of 0 ° C. or lower, and the contact time is preferably 0.5 to 2 seconds. The amount of methanol used is at least the amount required to completely absorb and react the produced nitrogen dioxide and almost equimolar amount of nitric oxide, and usually 1 volume of nitric oxide in the gas introduced into the regeneration tower. It is preferable to use 2 to 5 parts by volume of methanol per part.

【0017】なお、この発明は連続プロセスであるた
め、亜硝酸メチルが、吸収塔の吸収液や再生塔の缶液に
少量溶解して系外に同伴したり、循環ガスの一部をパー
ジしたりすることにより、酸化窒素分が損失するので、
その補給は第一工程の反応器に亜硝酸メチルを供給する
か、あるいは第三工程の再生塔に一酸化窒素、二酸化窒
素、三酸化二窒素、四酸化二窒素などの窒素酸化物また
は硝酸を導入することによっても行える。
Since the present invention is a continuous process, a small amount of methyl nitrite is dissolved in the absorption liquid of the absorption tower or the bottom liquid of the regeneration tower and is entrained outside the system, or part of the circulating gas is purged. Nitric oxide content is lost due to
To supply it, methyl nitrite is supplied to the reactor in the first step, or nitrogen oxide such as nitric oxide, nitrogen dioxide, dinitrogen trioxide, and dinitrogen tetraoxide or nitric acid is supplied to the regeneration tower in the third step. It can also be done by introducing it.

【0018】また、第二工程における非吸収ガス中の一
酸化窒素の含有量が多く、第三工程で一酸化窒素を亜硝
酸エステルに化合する際、必要量以上の亜硝酸メチルが
得られる場合には、非吸収ガスを全量再生塔に導くこと
なく、その一部は第一工程における反応器に直接循環供
給してもよい。再生塔から導出される液は、再生反応で
副生した水を含むメタノール溶液であるので、これは蒸
留などの操作によって、メタノール中の水分が好適には
2容量%以下、好ましくは0.2容量%以下に精製した
後、第三公定や第二工程で再使用するのが工業的に有利
である。
Further, when the content of nitric oxide in the non-absorbed gas in the second step is large, and more than the necessary amount of methyl nitrite is obtained when the nitric oxide is combined with the nitrite ester in the third step. In addition, a part of the non-absorption gas may be directly circulated to the reactor in the first step without being guided to the regeneration column. Since the liquid discharged from the regeneration tower is a methanol solution containing water by-produced in the regeneration reaction, the water content in methanol is suitably 2% by volume or less, preferably 0.2% by an operation such as distillation. It is industrially advantageous to refine the product to a volume% or less and then reuse it in the third official determination or in the second step.

【0019】第四工程 第二工程から導出される炭酸ジメチル、メタノールおよ
びシュウ酸ジメチルの混合液は、メタノールを除去する
ための抽出蒸留塔下部へフィードされる。抽出蒸留塔へ
は同時に、メタノールと炭酸ジメチルの共沸を防止する
ためにあらたにシュウ酸ジメチルを搭下部にフィードす
る。シュウ酸ジメチルのフィード量は、塔へフィードさ
れる炭酸ジメチルとメタノールの全モル数に対して好適
には0.1〜2倍モルが良く、好ましくは0.5〜1.
5倍モルが必要である。シュウ酸ジメチルの量は、炭酸
ジメチルの留出側への実質的な損失を防止するための重
要な吸収剤の役割をするものであり、プロセスを循環使
用するため分離するための蒸留塔段数の増加および分離
する際のエネルギー使用量により定まるのである。すな
わち、シュウ酸ジメチルの流量があまり少ないと、炭酸
ジメチルの留出側への損失が大きくなり収率を悪化させ
たり、また吸収分離する吸収塔も高い段数が必要とな
る。逆に多い方は、ある量以上になれば炭酸ジメチルの
留出側への損失は、実質的になくなるのでそれ以上流し
ても効果はなく、エネルギー的に無駄となるだけだから
である。
Fourth Step The mixed liquid of dimethyl carbonate, methanol and dimethyl oxalate derived from the second step is fed to the lower part of the extractive distillation column for removing methanol. At the same time, dimethyl oxalate is newly fed to the extractive distillation column at the bottom of the tower to prevent azeotropic distillation of methanol and dimethyl carbonate. The amount of dimethyl oxalate fed is preferably 0.1 to 2 times, and preferably 0.5 to 1. 1 times the total number of moles of dimethyl carbonate and methanol fed to the column.
Five times the molar amount is required. The amount of dimethyl oxalate serves as an important absorbent to prevent substantial loss of dimethyl carbonate to the distillate side, and the number of distillation column plates for separation to separate the process for recycling. It depends on the amount of energy used when increasing and separating. That is, when the flow rate of dimethyl oxalate is too low, the loss of dimethyl carbonate to the distilling side becomes large and the yield is deteriorated, and the absorption tower for absorption and separation requires a high number of stages. On the contrary, if the amount is more than a certain amount, the loss of dimethyl carbonate to the distilling side is practically eliminated, so that flowing more than that is not effective and is wasted in terms of energy.

【0020】操作圧力は、特に制限はないが、減圧から
加圧までの広い範囲で行うことが可能であるが、常圧〜
2kg/cmGの範囲で操作するのが好ましい。抽出
蒸留塔から留出するメタノールは、第二工程や第三工程
で再使用するのが工業プロセスとして好ましいが、第一
工程の反応で副生物として少量生成するギ酸メチル、メ
チラールがこの留出メタノール中に含まれているので、
これらを蒸留分離した後、メタノールを再使用するのが
望ましい。なお、分離された蒸留残渣のギ酸メチル、メ
チラールは焼却等により廃棄されるが、アルカリ分解等
によりこれらからさらにメタノールとして回収すること
も可能である。抽出蒸留塔の缶液は、ほぼ炭酸ジメチル
とシュウ酸ジメチルの二成分の溶液状態で第五工程へ供
給される。
The operating pressure is not particularly limited, but it can be carried out in a wide range from depressurization to pressurization.
It is preferable to operate in the range of 2 kg / cm 2 G. Methanol distilled from the extractive distillation column is preferably reused as an industrial process in the second and third steps, but methyl formate and methylal, which are produced in small amounts as by-products in the reaction of the first step, are the distillate methanol. Since it is included in the
It is desirable to reuse methanol after distilling them off. The separated distillation residues, methyl formate and methylal, are discarded by incineration or the like, but can be further recovered as methanol from these by alkaline decomposition or the like. The bottom liquid of the extractive distillation column is supplied to the fifth step in the state of a binary solution of dimethyl carbonate and dimethyl oxalate.

【0021】第五工程 第四工程でメタノールその他の低沸点生成物を分離した
液は、第五工程では製品の炭酸ジメチルを得るためのの
蒸留塔で炭酸ジメチルが蒸留分離され、高品質の炭酸ジ
メチルが連続して取り出される。操作圧力に特に制限は
なく、加圧から減圧の広い範囲で行うことが可能であ
る。一方、この蒸留塔の缶液は、かなり純度の高いシュ
ウ酸ジメチルが得られ、第二工程および第三工程にその
まま供給され、第一工程の反応で副生物として生成する
量は、副生品として抜き出される。シュウ酸ジメチル自
体も多様な用途を持つ化合物であるため、缶液の状態で
も純度の高いものであるが必要ならさらに蒸留精製され
る。なお、第四工程、第五工程における蒸留塔は、充填
塔、棚段塔など通常の装置が用いられる。
Fifth step In the fifth step, the liquid from which methanol and other low-boiling products have been separated is subjected to high-quality carbon dioxide by distilling and separating dimethyl carbonate in a distillation column for obtaining dimethyl carbonate as a product. Dimethyl is continuously taken out. The operating pressure is not particularly limited, and it can be performed in a wide range from pressurization to depressurization. On the other hand, the bottom liquid of this distillation column gives dimethyl oxalate having a considerably high purity and is supplied to the second step and the third step as it is. The amount produced as a by-product in the reaction of the first step is a by-product. Is extracted as. Since dimethyl oxalate itself is a compound with various uses, it is highly pure even in the state of a can, but if necessary, it is further purified by distillation. As the distillation column in the fourth step and the fifth step, a usual device such as a packed column or a plate column is used.

【0021】次にこの発明のプロセスを、この発明の一
実施態様を示すフローシート図面に従って具体的に説明
する。白金族金属系固体触媒を反応管に充填した多管式
反応器1の上部に、一酸化炭素、亜硝酸メチル、一酸化
窒素を含有するガスを、導管20に設置するガス循環機
(図示せず)で加圧して導管22を通して導入する。反
応器1において気相で接触反応を行い、触媒層を通過し
た反応生成ガスは下部から取り出され、導管11を通し
て吸収塔2に導入される。
Next, the process of the present invention will be specifically described with reference to the flow sheet drawings showing one embodiment of the present invention. A gas circulator (not shown) in which a gas containing carbon monoxide, methyl nitrite, and nitric oxide is installed in a conduit 20 above the multitubular reactor 1 having a reaction tube filled with a platinum group metal-based solid catalyst. (No.) and introduced through conduit 22. The reaction reaction gas is carried out in the gas phase in the reactor 1, and the reaction product gas that has passed through the catalyst layer is taken out from the lower part and introduced into the absorption tower 2 through the conduit 11.

【0022】吸収塔2では、導管13、14から導入さ
れるメタノール、シュウ酸ジメチルと接触させながら反
応生成ガス中の炭酸ジメチルを、シュウ酸ジメチルに吸
収分離し、炭酸ジメチルとシュウ酸ジメチルおよびメタ
ノールからなる液は下部から導管15を通して抽出蒸留
塔4に導かれる。一方、未反応の一酸化炭素と亜硝酸メ
チルおよび副生した一酸化窒素などを含む非吸収ガス
は、上部から導管12をを通して再生塔3の下部に導入
される。
In the absorption tower 2, dimethyl carbonate in the reaction product gas is absorbed and separated into dimethyl oxalate while contacting with methanol and dimethyl oxalate introduced from the conduits 13 and 14, and dimethyl carbonate, dimethyl oxalate and methanol are separated. The liquid consisting of is introduced into the extractive distillation column 4 through the conduit 15 from the lower part. On the other hand, the non-absorbed gas containing unreacted carbon monoxide, methyl nitrite, and by-produced nitric oxide, etc. is introduced into the lower part of the regeneration tower 3 from the upper part through the conduit 12.

【0023】再生塔3において非吸収ガスは、下部に導
管16を通して導入される分子状酸素含有ガスを混合
し、上部に導管19を通して導入されるメタノールと向
流接触により反応させて、亜硝酸メチルを再生させる。
この再生塔3では、一酸化窒素の二酸化窒素への酸化反
応に引き続きメタノールへの吸収反応が起こり、亜硝酸
メチルが生成するのである。なお亜硝酸メチルを生成す
るに十分な窒素源が不足する場合には導管17を通して
窒素酸化物を混入してもよい。
In the regenerator 3, the non-absorption gas is mixed with the molecular oxygen-containing gas introduced through the conduit 16 in the lower portion and reacted with the methanol introduced through the conduit 19 in the upper portion by countercurrent contact to generate methyl nitrite. To play.
In the regeneration tower 3, the oxidation reaction of nitric oxide to nitrogen dioxide is followed by the absorption reaction to methanol, and methyl nitrite is produced. If there is insufficient nitrogen source to generate methyl nitrite, nitrogen oxide may be mixed through the conduit 17.

【0024】再生塔3で生成した亜硝酸メチル含有ガス
は、導管20、22を通して、導管21より新しく供給
される一酸化炭素とともに、反応器1に循環供給され
る。一方、再生塔3で副生した水は、メタノール水溶液
の形で底部から導管18を通して取り出される。このメ
タノール水溶液は、蒸留などの操作によって液中の水分
を除去した後、前記導管13、19を通して吸収塔2ま
たは再生塔3に供給されるメタノールとして循環再利用
される。
The methyl nitrite-containing gas produced in the regeneration tower 3 is circulated to the reactor 1 through the conduits 20 and 22 together with carbon monoxide newly supplied from the conduit 21. On the other hand, the water by-produced in the regeneration tower 3 is taken out from the bottom through the conduit 18 in the form of an aqueous methanol solution. This aqueous methanol solution is circulated and reused as methanol to be supplied to the absorption tower 2 or the regeneration tower 3 through the conduits 13 and 19 after removing water in the liquid by an operation such as distillation.

【0025】抽出蒸留塔4では、導管25より導入され
るシュウ酸ジメチルとの向流接触によって炭酸ジメチル
のみの抽出を行い、メタノールと分離される。分離され
たメタノールは上部より導管24によってメタノール精
製を行う蒸留塔6に導かれ、精製された後、前記導管1
3、19を通して吸収塔2、再生塔3に供給されるメタ
ノールとして循環再利用を行う。また、メタノールを分
離した炭酸ジメチルとシュウ酸ジメチルの混合液は導管
23を通して、蒸留塔5に導かれる。
In the extractive distillation column 4, only dimethyl carbonate is extracted by countercurrent contact with dimethyl oxalate introduced through the conduit 25 and separated from methanol. The separated methanol is introduced from the upper portion to a distillation column 6 for purifying methanol by a conduit 24, and after purification, the conduit 1
It is recycled and reused as methanol supplied to the absorption tower 2 and the regeneration tower 3 through 3 and 19. Further, the mixed liquid of dimethyl carbonate and dimethyl oxalate from which methanol has been separated is introduced into the distillation column 5 through the conduit 23.

【0026】蒸留塔5では、上部より炭酸ジメチルを製
品目的物として導管27を通して取得する。缶液は純度
の高いシュウ酸ジメチルであり、一部は副生物として導
管28を通して取得されるが、残りは導管26、14、
25を通して、吸収塔2および蒸留塔4に供給される。
In the distillation column 5, dimethyl carbonate is obtained from the top through the conduit 27 as a product object. The bottom liquid is high-purity dimethyl oxalate, part of which is obtained as a by-product through the conduit 28, and the rest is contained in the conduits 26 and 14.
Through 25, it is supplied to the absorption tower 2 and the distillation tower 4.

【0027】[0027]

【実施例】次に実施例によって具体的に説明する。 実施例 1 内径27.1mm,高さ500mmのチューブ6本より
なるステンレス製多管反応器のチューブ内に、特願平2
−257042号で示されるような活性炭(武田(株)
白鷺4mmφ×6mm)にパラジウムを担持した触媒7
80g(1.731)を充填した。この触媒層に上部か
らダイヤフラム式ガス循環ポンプで、2.5kg/cm
(ゲージ圧)に圧縮した原料ガス(組成:一酸化炭素
15.0容量%、亜硝酸メチル15.0容量%、一酸化
窒素3.5容量%、メタノール1.8容量%、炭酸ガス
2.2容量%および窒素62.5容量%)を予め熱交換
器で約90℃に予熱した後6.9Nm/hrの速度で
供給し、反応器のシェル側に熱水を通すことにより触媒
層の中央部温度を約120℃に保持した。この反応の炭
酸ジメチル生成の反応速度は、STYが430kg/m
hrであった。
EXAMPLES Next, specific examples will be described. Example 1 In a tube of a stainless multi-tube reactor composed of 6 tubes having an inner diameter of 27.1 mm and a height of 500 mm, Japanese Patent Application No.
Activated carbon as indicated by No. -257042 (Takeda Corporation)
Catalyst 7 with Palladium supported on Shirasagi 4mmφ × 6mm)
80 g (1.731) were charged. 2.5kg / cm with a diaphragm type gas circulation pump from the top to this catalyst layer
Raw material gas compressed to 2 (gauge pressure) (composition: carbon monoxide 15.0% by volume, methyl nitrite 15.0% by volume, nitric oxide 3.5% by volume, methanol 1.8% by volume, carbon dioxide 2 (2% by volume and 62.5% by volume of nitrogen) was preheated to about 90 ° C. in a heat exchanger and then fed at a rate of 6.9 Nm 3 / hr, and hot water was passed through the shell side of the reactor to form a catalyst. The temperature in the middle of the layer was kept at about 120 ° C. The reaction rate of dimethyl carbonate formation in this reaction is 430 kg / m for STY.
It was 3 hr.

【0028】触媒層を通過したガスを、内径100m
m,高さ1300mmのラシヒリング充填式気液接触吸
収器の塔底に導き、該塔頂からメタノール0.2l/h
rをまた塔頂から200mm下のところからシュウ酸ジ
メチル2.65kg/hrの速度で導入し、塔頂温度5
℃、塔底温度20℃で向流接触した。塔底から吸収液
(組成:シュウ酸ジメチル76.7重量%、炭酸ジメチ
ル19.6重量%、メタノール3.7重量%、ギ酸メチ
ル0.1重量%)3.8kg/hrを得た。一方塔頂か
ら非吸収ガス(組成:一酸化炭素12.8容量%、亜硝
酸メチル10.3容量%、一酸化窒素8.7容量%、メ
タノール1.9容量%、炭酸ガス2.2容量%および窒
素64.0容量%)6.8Nm/hrを得た。
The gas which has passed through the catalyst layer has an inner diameter of 100 m.
m, height 1300 mm, led to the bottom of a Raschig ring-filled gas-liquid contact absorber, and from the top of the tower methanol 0.2 l / h
In addition, r was introduced at a rate of 2.65 kg / hr of dimethyl oxalate from a position 200 mm below the top of the column, and the temperature at the top of the column was 5
And countercurrent contact were carried out at a column bottom temperature of 20 ° C. From the bottom of the column, 3.8 kg / hr of absorbing liquid (composition: dimethyl oxalate 76.7% by weight, dimethyl carbonate 19.6% by weight, methanol 3.7% by weight, methyl formate 0.1% by weight) was obtained. On the other hand, non-absorbed gas (composition: carbon monoxide 12.8% by volume, methyl nitrite 10.3% by volume, nitric oxide 8.7% by volume, methanol 1.9% by volume, carbon dioxide gas 2.2% by volume from the top of the tower. % And nitrogen 64.0% by volume) 6.8 Nm 3 / hr was obtained.

【0029】この非吸収ガスに、酸素87.2Nl/h
rおよび一酸化窒素14.0容量%を含む窒素ガス7.
5Nl/hrを混入した後、内径158mm,高さ14
00mmの気液接触式再生塔の塔底に導き、該塔頂から
メタノール5.0l/hrの速度で導入し、塔頂温度3
0℃、塔底温度40℃で向流接触させ、ガス中の一酸化
窒素を亜硝酸メチルに再生した。再生塔における再生ガ
ス(組成:一酸化炭素12.8容量%、亜硝酸メチル1
5.4容量%、一酸化窒素3.7容量%、メタノール
1.9容量、炭酸ガス2.3容量%および窒素64.1
容量%)6.6Nm/hrは、前記ガス循環ポンプに
供給圧縮した。次いで吐出ガスに一酸化炭素0.2Nm
/hrを補給混合して反応器へ導いた。一方この再生
塔から導出された2.2重量%含水メタノール4.0l
/hrは、蒸留によって水を除去後、該塔におけるメタ
ノール源として再使用した。
Oxygen 87.2 Nl / h was added to this non-absorption gas.
nitrogen gas containing r and 14.0% by volume of nitric oxide 7.
After mixing 5Nl / hr, inner diameter 158mm, height 14
It is led to the bottom of a gas-liquid contact type regeneration tower of 00 mm, and introduced at a rate of 5.0 l / hr of methanol from the top of the tower, and the temperature of the top of the tower is 3
Countercurrent contact was carried out at 0 ° C. and a column bottom temperature of 40 ° C. to regenerate nitrogen monoxide in the gas into methyl nitrite. Regeneration gas in the regeneration tower (composition: carbon monoxide 12.8% by volume, methyl nitrite 1
5.4 vol%, nitric oxide 3.7 vol%, methanol 1.9 vol, carbon dioxide 2.3 vol% and nitrogen 64.1
6.6 Nm 3 / hr was supplied to the gas circulation pump and compressed. Next, carbon monoxide is 0.2 Nm in the discharge gas.
3 / hr was replenished and mixed, and then introduced into the reactor. On the other hand, 4.0 l of 2.2 wt% hydrous methanol derived from this regeneration tower
/ Hr was reused as a methanol source in the column after removing water by distillation.

【0030】前記吸収塔から導出された吸収液3.5k
g/hrを、内径50mm,高さ2500mmの蒸留塔
の中段に導き、塔頂から300mm下にシュウ酸ジメチ
ル液を1.4kg/hrの速度で導入し、塔頂温度64
℃、塔底温度146℃で蒸留した。塔底から、炭酸ジメ
チル14.3重量%、シュウ酸ジメチル87.5重量%
の混合液4.78kg/hを得た。一方、塔頂から、メ
タノール94.5重量%、ギ酸メチル5.2重量%、炭
酸ジメチル0.3重量%からなる留出液0.13kg/
hrを得た。このメタノール液は蒸溜塔で精製されて前
記再生塔および吸収塔に循環再使用した。
3.5 k of absorption liquid derived from the absorption tower
g / hr was introduced into the middle stage of the distillation column having an inner diameter of 50 mm and a height of 2500 mm, and dimethyl oxalate liquid was introduced at a rate of 1.4 kg / hr at a distance of 300 mm from the top of the column, and the top temperature was 64
Distillation was performed at a temperature of 146 ° C and a bottom temperature of 146 ° C. From the bottom of the column, dimethyl carbonate 14.3% by weight, dimethyl oxalate 87.5% by weight
A mixed solution of 4.78 kg / h was obtained. On the other hand, from the top of the column, 0.13 kg / of distillate consisting of 94.5% by weight of methanol, 5.2% by weight of methyl formate and 0.3% by weight of dimethyl carbonate.
got hr. This methanol solution was purified in a distillation tower and circulated and reused in the regeneration tower and absorption tower.

【0031】この蒸留塔から導出された炭酸ジメチルと
シュウ酸ジメチルの混合液を、内径65mm,高さ16
00mmの充填塔に導き、塔頂温度90℃、塔底温度1
63℃で蒸留した。塔頂からは純度99.4%の炭酸ジ
メチル0.68kg/hrを得た。また、塔底からはほ
ぼ100%純度のシュウ酸ジメチル4.69kg/hr
を抜き出し、この内4.05kg/hrは吸収塔と抽出
蒸留塔に循環供給した。この結果、反応で生成した炭酸
ジメチルから、98%の生成収率で高純度の炭酸ジメチ
ルを連続的に得ることができた。
A mixed solution of dimethyl carbonate and dimethyl oxalate discharged from this distillation column was set to have an inner diameter of 65 mm and a height of 16 mm.
It is introduced into a 00 mm packed tower, the tower top temperature is 90 ° C, and the tower bottom temperature is 1.
Distilled at 63 ° C. From the top of the column, 0.68 kg / hr of dimethyl carbonate having a purity of 99.4% was obtained. Further, from the bottom of the tower, dimethyl oxalate having a purity of almost 100% 4.69 kg / hr
Was extracted and 4.05 kg / hr of this was circulated and supplied to the absorption tower and the extractive distillation tower. As a result, high-purity dimethyl carbonate could be continuously obtained from the dimethyl carbonate produced in the reaction with a production yield of 98%.

【0032】[0032]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、この発明の一実施例を示すフローシー
トである。 符号の説明 1は反応器、2は吸収塔、3は再生塔、4は抽出蒸留
塔、5、6は蒸留塔を示し、11〜29は導管を示す。
FIG. 1 is a flow sheet showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 is a reactor, 2 is an absorption column, 3 is a regeneration column, 4 is an extractive distillation column, 5 and 6 are distillation columns, and 11 to 29 are conduits.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1.白金族金属及び/またはその化合物を
担持した或いは白金族金属及び/またはその化合物並び
に助触媒を担持した固体触媒を充填した反応器に、一酸
化炭素と亜硝酸メチルを含有するガスを導入し、気相で
接触反応させて、炭酸ジメチルを含む反応生成物を得る
第一工程、 2.第一工程における反応生成物を吸収塔に導き、吸収
溶媒としてシュウ酸ジメチルを添加して、第一工程の接
触反応で生成した一酸化窒素を含有する非凝縮ガスと生
成した炭酸ジメチルを吸収した吸収液とに分離する第二
工程、 3.第二工程における非凝縮ガスを再生塔に導き、供給
する分子状酸素含有ガスおよびメタノールと接触させ、
塔出口ガス中の一酸化窒素が2〜7容量%になるように
非吸収ガス中の一酸化窒素を亜硝酸メチルに再生し、第
一工程の反応器に循環供給する第三工程、 4.第二工程で得られた炭酸ジメチルとメタノールおよ
びシュウ酸ジメチルの混合液に更にシュウ酸ジメチルを
添加しながら炭酸ジメチルをメタノールから抽出蒸留分
離する第四工程、 5.第四工程におけるメタノールから分離された炭酸ジ
メチルとシュウ酸ジメチルの混合物から炭酸ジメチルを
蒸留分離して炭酸ジメチルを製品として得る。また、シ
ュウ酸ジメチルは、第四工程に循環供給する第五工程、 の各工程から成ることを特徴とする炭酸ジメチルの連続
的製法。
1. Introducing a gas containing carbon monoxide and methyl nitrite into a reactor loaded with a platinum group metal and / or a compound thereof or a solid catalyst loaded with a platinum group metal and / or a compound thereof and a cocatalyst, 1. The first step of obtaining a reaction product containing dimethyl carbonate by catalytically reacting in the gas phase. The reaction product in the first step was introduced into an absorption tower, dimethyl oxalate was added as an absorption solvent, and the non-condensed gas containing nitric oxide produced in the catalytic reaction in the first step and the produced dimethyl carbonate were absorbed. 2. The second step of separating into an absorption liquid, The non-condensed gas in the second step is introduced into the regeneration tower and brought into contact with the supplied molecular oxygen-containing gas and methanol,
3. A third step in which nitric oxide in the non-absorbed gas is regenerated into methyl nitrite so that the nitric oxide in the tower outlet gas becomes 2 to 7% by volume, and is circulated and supplied to the reactor in the first step. 4. A fourth step in which dimethyl carbonate is extracted and distilled from methanol while adding dimethyl oxalate to the mixed solution of dimethyl carbonate, methanol and dimethyl oxalate obtained in the second step. Dimethyl carbonate is distilled off from the mixture of dimethyl carbonate and dimethyl oxalate separated from methanol in the fourth step to obtain dimethyl carbonate as a product. Further, dimethyl oxalate comprises a fifth step in which the dimethyl oxalate is circulated and fed into the fourth step, and a continuous process for producing dimethyl carbonate.
JP3269950A 1991-07-19 1991-07-19 Continuous production of dimethyl carbonate Expired - Lifetime JP2795360B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3269950A JP2795360B2 (en) 1991-07-19 1991-07-19 Continuous production of dimethyl carbonate
CA002073830A CA2073830C (en) 1991-07-19 1992-07-14 Continuous process for preparing dimethyl carbonate
ES92112256T ES2080997T3 (en) 1991-07-19 1992-07-17 CONTINUOUS PROCESS TO PREPARE DIMETHYL CARBONATE.
ZA925353A ZA925353B (en) 1991-07-19 1992-07-17 Continuous process for preparing dimethyl carbonate
DE69207098T DE69207098T2 (en) 1991-07-19 1992-07-17 Continuous process for the production of dimethyl carbonate
EP92112256A EP0523728B1 (en) 1991-07-19 1992-07-17 Continuous process for preparing dimethyl carbonate
US07/914,355 US5214185A (en) 1991-07-19 1992-07-17 Continuous process for preparing dimethyl carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3269950A JP2795360B2 (en) 1991-07-19 1991-07-19 Continuous production of dimethyl carbonate

Publications (2)

Publication Number Publication Date
JPH0625104A true JPH0625104A (en) 1994-02-01
JP2795360B2 JP2795360B2 (en) 1998-09-10

Family

ID=17479471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3269950A Expired - Lifetime JP2795360B2 (en) 1991-07-19 1991-07-19 Continuous production of dimethyl carbonate

Country Status (2)

Country Link
JP (1) JP2795360B2 (en)
ZA (1) ZA925353B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844464B2 (en) 2002-03-18 2005-01-18 Ube Industries, Ltd. Process for producing alkyl nitrite
US7674742B2 (en) 2003-04-18 2010-03-09 Mitsubishi Heavy Industries, Ltd. Catalyst for dimethyl carbonate synthesis
JP2014129283A (en) * 2012-12-28 2014-07-10 Ube Ind Ltd Production method of dialkyl oxalate
CN113200820A (en) * 2021-05-08 2021-08-03 青岛科技大学 Method for separating dimethyl carbonate and methanol by using imidazole ionic liquid
CN115193364A (en) * 2022-09-16 2022-10-18 山东海科新源材料科技股份有限公司 Device and method for synthesizing dimethyl carbonate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844464B2 (en) 2002-03-18 2005-01-18 Ube Industries, Ltd. Process for producing alkyl nitrite
US7714160B2 (en) 2002-03-18 2010-05-11 Ube Industries, Ltd. Process for producing alkyl nitrite
US7674742B2 (en) 2003-04-18 2010-03-09 Mitsubishi Heavy Industries, Ltd. Catalyst for dimethyl carbonate synthesis
US7790914B2 (en) 2003-04-18 2010-09-07 Mitsubishi Heavy Industries, Ltd. Method for dimethyl carbonate synthesis
JP2014129283A (en) * 2012-12-28 2014-07-10 Ube Ind Ltd Production method of dialkyl oxalate
CN113200820A (en) * 2021-05-08 2021-08-03 青岛科技大学 Method for separating dimethyl carbonate and methanol by using imidazole ionic liquid
CN113200820B (en) * 2021-05-08 2022-11-18 青岛科技大学 Method for separating dimethyl carbonate and methanol by using imidazole ionic liquid
CN115193364A (en) * 2022-09-16 2022-10-18 山东海科新源材料科技股份有限公司 Device and method for synthesizing dimethyl carbonate

Also Published As

Publication number Publication date
ZA925353B (en) 1993-04-28
JP2795360B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US5214185A (en) Continuous process for preparing dimethyl carbonate
US6663692B2 (en) Process for purifying carbon dioxide-containing gas streams
EP0046598B1 (en) Process for continuously preparing a diester of oxalic acid
US5631396A (en) Process for continuously producing dimethyl carbonate
KR20130043606A (en) Process for producing allyl alcohol
US5534648A (en) Process for continuously producing dimethyl carbonate
JPH1017529A (en) Continuous production of aryl carbonate
JP3810144B2 (en) Continuous production method of diaryl carbonate
JP2795360B2 (en) Continuous production of dimethyl carbonate
JP2937292B2 (en) Continuous production method of dimethyl carbonate
JP6048135B2 (en) Process for producing dialkyl oxalate
JPS6126977B2 (en)
EP0256479B1 (en) Process for the catalytic transhalogenation of a poly-iodo-benzene
JP3541720B2 (en) How to recover methyl nitrite
JP2962454B2 (en) Continuous production method of dimethyl carbonate
US4152525A (en) Method of recovering butadiene gas from an acetoxylation process
JP3206340B2 (en) Continuous production method of dimethyl carbonate
JP3206338B2 (en) Continuous production of dimethyl carbonate
US4228301A (en) Process for the preparation of diacetoxybutene
JP2552160B2 (en) How to remove acrolein
JPH06116209A (en) Production of carbonic acid diester
JP2000302728A (en) Production of dialkyl carbonate
JPH0234335B2 (en)
JPH10168032A (en) Production of diacetoxybutene
JP2001233829A (en) Method for producing benzyl acetate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 14