JPS5833851B2 - diacetoxybutene - Google Patents

diacetoxybutene

Info

Publication number
JPS5833851B2
JPS5833851B2 JP50127776A JP12777675A JPS5833851B2 JP S5833851 B2 JPS5833851 B2 JP S5833851B2 JP 50127776 A JP50127776 A JP 50127776A JP 12777675 A JP12777675 A JP 12777675A JP S5833851 B2 JPS5833851 B2 JP S5833851B2
Authority
JP
Japan
Prior art keywords
reaction
butadiene
diacetoxybutene
catalyst
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50127776A
Other languages
Japanese (ja)
Other versions
JPS5251313A (en
Inventor
康雄 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP50127776A priority Critical patent/JPS5833851B2/en
Priority to US05/694,534 priority patent/US4075413A/en
Priority to CA254,754A priority patent/CA1095928A/en
Priority to GB24772/76A priority patent/GB1494459A/en
Priority to DE2627001A priority patent/DE2627001C2/en
Publication of JPS5251313A publication Critical patent/JPS5251313A/en
Publication of JPS5833851B2 publication Critical patent/JPS5833851B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、ブタジェン、酢酸及び酸素又は酸素含有ガス
をパラジウム系触媒の存在下接触反応させジアセトキシ
ブテンを製造する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing diacetoxybutene by catalytically reacting butadiene, acetic acid, and oxygen or an oxygen-containing gas in the presence of a palladium-based catalyst.

パラジウム系触媒の存在下ブタジェン、酢酸及び酸素を
反応させ、ジアセトキシブテンを製造することは公知で
あり種々の方法が提案されている。
It is known to produce diacetoxybutene by reacting butadiene, acetic acid, and oxygen in the presence of a palladium-based catalyst, and various methods have been proposed.

しかしながら、かかる方法に於いて長時間にわたって反
応を実施した場合、急激に触媒の活性低下が生じ、長期
間工業的に満足しうる反応率を維持することが出来ない
ことが度々ある。
However, when the reaction is carried out over a long period of time in such a method, the activity of the catalyst suddenly decreases, and it is often impossible to maintain an industrially satisfactory reaction rate for a long period of time.

本発明者は、反応触媒の活性低下の原因について種々検
討した結果、反応に使用するブタジェンと生成物が反応
系で重合して触媒表面に付着し、触媒を不活性な膜で被
うために触媒活性が低下することをつきとめた。
As a result of various studies on the causes of the decrease in the activity of the reaction catalyst, the present inventor found that butadiene used in the reaction and the products polymerize in the reaction system and adhere to the catalyst surface, covering the catalyst with an inert film. It was found that the catalyst activity decreased.

そこで、この反応系におけるブタジェンと反応生成物の
重合防止方法を鋭意研究した結果元素硫黄は触媒自体に
悪影響を与えず、しかもかかる重合の防止に顕著な効果
を発揮することを知得し、この知見にもとづいて本発明
を達成した。
Therefore, as a result of intensive research into methods for preventing the polymerization of butadiene and the reaction product in this reaction system, it was discovered that elemental sulfur does not have a negative effect on the catalyst itself, and that it has a remarkable effect on preventing such polymerization. The present invention was achieved based on this knowledge.

本発明は、ブタジェン、酢酸及び酸素から、ジアセトキ
シブテンを工業的有利に製造する方法を提供することを
目的とし、本発明の要旨は下記に存する。
The present invention aims to provide an industrially advantageous method for producing diacetoxybutene from butadiene, acetic acid, and oxygen, and the gist of the present invention is as follows.

(1)ブタジェン、酢酸及び酸素または酸素含有ガスを
担体付パラジウム系触媒及び元素硫黄の存在下接触反応
させることを特徴とするジアセトキシブテンの製造方法 (2)ブタジェン、酢酸及び酸素または酸素含有ガスを
担体付パラジウム系触媒及び元素硫黄の存在下、接触反
応させてジアセトキシブテンを製造し、反応生成物かも
ブタジェン、酢酸及び生成したジアセトキシブテンを蒸
留分離し、得られた蒸留残渣の少くとも一部をアセトキ
シ化反応域に供給することを特徴とするジアセトキシブ
テンの製造方法 次に本発明の詳細な説明する。
(1) A method for producing diacetoxybutene, which comprises catalytically reacting butadiene, acetic acid, and oxygen or an oxygen-containing gas in the presence of a supported palladium-based catalyst and elemental sulfur. (2) Butadiene, acetic acid, and oxygen or an oxygen-containing gas. in the presence of a supported palladium-based catalyst and elemental sulfur to produce diacetoxybutene, the reaction products may be butadiene, acetic acid, and the produced diacetoxybutene are separated by distillation, and at least the resulting distillation residue is A method for producing diacetoxybutene, characterized in that a portion thereof is supplied to an acetoxylation reaction zone.The present invention will now be described in detail.

本反応に使用される担体付パラジウム系触媒としては、
パラジウム金属単独或はパラジウム金属とビスマス、セ
レン、アンチモン及ヒテルルカも選ばれた少くとも1種
の助触媒金属とを担体に担持した触媒が好適である。
The supported palladium catalyst used in this reaction is:
A catalyst in which palladium metal alone or palladium metal and at least one promoter metal selected from bismuth, selenium, antimony, and hysterol is supported on a carrier is suitable.

触媒担体としては、任意のものが選ばれるが、具体的に
は活性炭、シリカゲル、シリカアルミナ、アルミナ、粘
土、ボーキサイト、マグネシア、ケイソウ土、軽石など
が挙げられる。
Any catalyst carrier can be selected, and specific examples include activated carbon, silica gel, silica alumina, alumina, clay, bauxite, magnesia, diatomaceous earth, and pumice.

触媒中の触媒金属の担持量は、通常パラジウム金属は0
.1〜20(重量)%、他の助触媒金属は0.01〜3
0(重量)%の範囲で選ばれる。
The amount of catalyst metal supported in the catalyst is usually 0 for palladium metal.
.. 1-20% (by weight), other promoter metals 0.01-3
It is selected within the range of 0 (weight)%.

なお、助触媒成分は、担体に担持させる代りにアンチモ
ン化合物、セレン化合物、テルル化合物、ビスマス化合
物等の化合物を反応液中に含有させても良(、更には、
必要に応じ反応の際反応液中にハロゲンイオンを共存さ
せることも出来る。
In addition, instead of supporting the co-catalyst component on a carrier, a compound such as an antimony compound, a selenium compound, a tellurium compound, a bismuth compound, etc. may be included in the reaction solution (and further,
If necessary, halogen ions can be allowed to coexist in the reaction solution during the reaction.

反応は、50℃〜160°C,好ましくは80℃〜12
0℃で行なわれる。
The reaction is carried out at 50°C to 160°C, preferably 80°C to 12°C.
Performed at 0°C.

また、反応圧力は、必要な酸素分圧及びブタジェンと酸
素との爆発組成を考慮して決められ、常圧以上、通常は
5〜3001cg/ciG 、好ましくは40〜120
kg/ctA Gの範囲で選ばれる。
The reaction pressure is determined by taking into consideration the required oxygen partial pressure and the explosive composition of butadiene and oxygen, and is higher than normal pressure, usually 5 to 3001 cg/ciG, preferably 40 to 120 cg/ciG.
Selected in the range of kg/ctAG.

反応方式は、固定床、懸濁床のいずれにおいても実施す
ることが出来るが、工業的には固定床方式が有利である
Although the reaction method can be carried out in either a fixed bed or a suspended bed, the fixed bed method is industrially advantageous.

反応原料は、酸素含有ガス等の気体と酢酸、フタジエン
等の液状原料とを気液並流、或は気液向流方式で触媒と
十分接触させ得れば特に制限されないが、゛濯液充填宋
”即ち固定床で液状原料を下向に降下させ、ガス状原料
を下向に通過させるのが有利である。
The reaction raw materials are not particularly limited as long as a gas such as an oxygen-containing gas and a liquid raw material such as acetic acid or phtadiene can be brought into sufficient contact with the catalyst in a gas-liquid co-current or gas-liquid counter-current system. It is advantageous to allow the liquid feedstock to descend downwards and the gaseous feedstock to pass downwards in a fixed bed.

反応原料の酢酸とブタジェンの割合は任意に決められる
が、通常、ブタジェン1重量部に対し、酢酸1〜10重
量部、好ましくは4〜6重量部用いられる。
The ratio of acetic acid and butadiene as reaction raw materials can be arbitrarily determined, but usually 1 to 10 parts by weight, preferably 4 to 6 parts by weight, of acetic acid is used per 1 part by weight of butadiene.

酸素含有ガスは、供給酢酸1モルに対し5〜20モル、
好ましくは8〜15モル供給される。
The oxygen-containing gas is 5 to 20 mol per mol of acetic acid supplied,
Preferably 8 to 15 moles are supplied.

反応器は、多管の外部冷却型、断熱多段中間冷却型等反
応熱制御が容易に行なわれるものであれば特に制限され
ず、又、反応器の材質は、5US316ないし5US3
16よりもNi、Cr SM。
The reactor is not particularly limited as long as the reaction heat can be easily controlled, such as a multi-tubular external cooling type or an adiabatic multi-stage intercooled type, and the material of the reactor is 5US316 to 5US3.
Ni, Cr SM than 16.

の含量の多い鋼が望ましい。Steel with a high content of is desirable.

アセトキシ化反応は本発明方法に従い、元素硫黄の共存
下で行なうことが必要であり、これによって触媒の活性
低下を著しく阻止することが出来、かかる効果は特に高
い反応温度に於て顕著である。
According to the method of the invention, the acetoxylation reaction must be carried out in the presence of elemental sulfur, which makes it possible to significantly prevent a decrease in the activity of the catalyst, and this effect is particularly noticeable at high reaction temperatures.

第1図は、反応系に添加される元素硫黄の量と触媒の失
活速度(初期活性が172になるに要する時間)との関
係を示すものであり、パラジウム系触媒20Si’の存
在下、酢酸40 ?/ hr ブタジェン15′?/h
r及び窒素と酸素の混合ガス160 Nl /hrを圧
力40kg/caG、温度100℃、酸素濃度3%の条
件下で反応させ、その際、ブタジェンに対し種々の量の
元素硫黄を反応に供し、触媒に及ぼす影響を調べた結果
である。
Figure 1 shows the relationship between the amount of elemental sulfur added to the reaction system and the deactivation rate of the catalyst (the time required for the initial activity to reach 172). Acetic acid 40? / hr Butadiene 15'? /h
r and a mixed gas of nitrogen and oxygen at 160 Nl/hr under the conditions of a pressure of 40 kg/caG, a temperature of 100°C, and an oxygen concentration of 3%, at which time various amounts of elemental sulfur were subjected to the reaction with respect to butadiene, This is the result of investigating the effect on the catalyst.

触媒は4〜6メツシユの活性炭(表面積850mF/f
)にpd(2wt%)とTe (Te/ pd=0.3
0 :原子比)を担持させたものを20f使用した。
The catalyst is activated carbon with 4 to 6 meshes (surface area 850 mF/f
) with pd (2wt%) and Te (Te/ pd=0.3
0: atomic ratio) was used.

この結果から明らかなように、元素硫黄の量は、あまり
に少い量では効果がなく、逆に多すぎると悪影響を及ぼ
すこともある。
As is clear from this result, if the amount of elemental sulfur is too small, there is no effect, and if it is too large, it may have an adverse effect.

従って通常ブタジェン1重量部に対しo、ooooi〜
0.007重量部の範囲で適用され、もつとも効果のあ
る範囲は0.0002〜0.002重量部であり触媒寿
命は実に2倍以上に延びる。
Therefore, usually o, ooooi~ for 1 part by weight of butadiene.
It is applied in a range of 0.007 parts by weight, but the most effective range is 0.0002 to 0.002 parts by weight, and the catalyst life is actually more than doubled.

第2図は、元素硫黄1000wt 添加し99m たときの反応温度と触媒失活速度(初期活性が1/2に
なるのに要する時間)との関係を示すものである。
FIG. 2 shows the relationship between the reaction temperature and the catalyst deactivation rate (the time required for the initial activity to be reduced to 1/2) when 1000 wt of elemental sulfur was added and 99 m2 was added.

なお、反応条件は、反応温度を変動させた以外第1図に
おけるのと同様である。
The reaction conditions were the same as in FIG. 1 except that the reaction temperature was varied.

80℃以下では、ブタジェン及び反応生成物の重合速度
は、触媒活性に影響を与えるほどには大きくなく、しが
も、通常、ブタジェン中に添加されているターシャリ−
ブチルカテコール(TBC)が重合防止効果を保ってい
る。
Below 80°C, the polymerization rate of butadiene and the reaction product is not large enough to affect the catalyst activity;
Butylcatechol (TBC) maintains its polymerization prevention effect.

しかるに80℃以上になると重合速度自体も大きくなり
、又TBCが重合防止機能を保たなくなるので触媒活性
は急激に低下する。
However, when the temperature exceeds 80° C., the polymerization rate itself increases, and TBC no longer maintains its polymerization prevention function, so that the catalyst activity rapidly decreases.

しかし、第2図から明らかなように、本発明方法に従い
元素硫黄を共存させれば、80℃以上のより高温におい
て触媒活性の低下は極めて効果的に抑制される。
However, as is clear from FIG. 2, if elemental sulfur is present in accordance with the method of the present invention, the decrease in catalytic activity can be extremely effectively suppressed at higher temperatures of 80° C. or higher.

元素硫黄は、反応に供する液状のブタジェン、酢酸又l
まブタジェンと酢酸の混合物にあらかじめ溶解させてか
ら反応器に供給しさえすればよく、その方法に特に制限
はないが、元素硫黄をより高い濃度で溶解させた酢酸を
ポンプで必要量だけ反応域に供給するのがよい。
Elemental sulfur can be used in liquid butadiene, acetic acid or
There are no particular restrictions on the method, as long as mabutadiene and acetic acid are pre-dissolved in a mixture and then fed to the reactor; however, acetic acid with a higher concentration of elemental sulfur dissolved therein can be pumped into the reaction zone in the required amount. It is better to supply

その際、反応域への供給のみならず、溶液状態のブタジ
ェンが80℃以上の温度にさらされる前の段階、即ちブ
タジェンの予熱器への導入前の段階に供給するのが好ま
しい。
In this case, it is preferable to supply not only to the reaction zone but also at a stage before the butadiene in a solution state is exposed to a temperature of 80° C. or higher, that is, at a stage before the butadiene is introduced into the preheater.

尚、ブタジェンの予熱はブタジェンだけを行っても良い
が、酢酸、さらには原料酸素含有ガスとの混合状態で実
施するのが有利である。
Note that preheating of butadiene may be performed only with butadiene, but it is advantageous to preheat it in a mixed state with acetic acid and further with a raw material oxygen-containing gas.

反応系に添加される元素硫黄は必ずしも新たなものであ
る必要はなく元素硫黄を含有している反応液をリサイク
ルすることによっても同様な効果を得ることができる。
The elemental sulfur added to the reaction system does not necessarily have to be new, and similar effects can be obtained by recycling the reaction solution containing elemental sulfur.

しかしながら、反応液を直接リサイクルすると重合物の
生成防止の効果は達せられるが、他面では所望の生成物
も同時に反応器に供給されるので生成物により反応速度
が抑制される不利が生ずる。
However, although direct recycling of the reaction solution achieves the effect of preventing the formation of polymers, on the other hand, the desired product is also simultaneously supplied to the reactor, resulting in the disadvantage that the reaction rate is suppressed by the product.

本発明者は、反応系に供給する元素硫黄の有効利用につ
いて検討した結果、反応生成物から所望のジアセトキシ
ブテンを蒸留分離した残渣をそのまま反応系に供給して
もアセトキシ化反応を阻害せず、しかも元素硫黄による
重合反応の抑制効果も十分達せられることを知った。
As a result of studying the effective use of elemental sulfur supplied to the reaction system, the present inventor found that the acetoxylation reaction is not inhibited even if the residue obtained by distilling the desired diacetoxybutene from the reaction product is supplied to the reaction system as it is. Moreover, it was found that the effect of suppressing the polymerization reaction by elemental sulfur can be sufficiently achieved.

本発明方法に於ては、かかる知見に基すき、元素硫黄を
含有しているアセトキシ化反応物からジアセトキシブテ
ンを蒸留分離し、得られた残渣の少くとも一部を元素硫
黄源として反応系に循環する。
Based on this knowledge, in the method of the present invention, diacetoxybutene is separated by distillation from the acetoxylation reaction product containing elemental sulfur, and at least a part of the obtained residue is used as an elemental sulfur source in the reaction system. circulates.

その方法は種々の方法であるが、反応生成物よりまずブ
タジェンを、続いて未反応酢酸を蒸留留出分離し、最後
に生成物のジアセトキシブテンを蒸留留出分離した後の
残部をリサイクルするのがもつとも好ましい。
There are various methods to do this, but first, butadiene is separated from the reaction product, then unreacted acetic acid is separated by distillation, and finally the product diacetoxybutene is separated by distillation, and the remainder is recycled. It is also preferable.

第3図に従い、本発明によろリサイクルの方法の一例を
示す。
According to FIG. 3, an example of the recycling method according to the present invention is shown.

溶解槽■に元素硫黄を■より酢酸を■より供給、溶解し
、酸素又は酸素含有ガスは■、ブタジェンは■より、又
酢酸は溶解槽から供給される硫黄とともに■から予熱器
■にて所定の温度に加熱され、2基のアセトキシ化反応
塔■に導入される。
Elemental sulfur is supplied from ■ and acetic acid is supplied from ■ to the dissolution tank ■ and dissolved, oxygen or oxygen-containing gas is supplied from ■, butadiene is supplied from ■, and acetic acid is heated from ■ together with sulfur supplied from the dissolution tank in a preheater ■. The mixture is heated to a temperature of 1, and introduced into two acetoxylation reaction towers.

反応物は気液分離塔■にて、気液分離され気体は冷却、
圧縮後■より一部は反応系に循環し一部は排出される。
The reactants are separated into gas and liquid in the gas-liquid separation tower ■, and the gas is cooled.
After compression, part of it is recycled to the reaction system and part of it is discharged.

液体は■よりブタジェン回収塔■に導入される。The liquid is introduced into the butadiene recovery tower (■) from (■).

■よりブタジェンが留出回収され、塔底液は■より酢酸
回収塔■に導入される。
Butadiene is distilled and recovered from (2), and the bottom liquid is introduced from (2) into the acetic acid recovery column (4).

[相]より酢酸を主成分とする留分を除去し、塔底液は
@よりジアセトキシブテン分離塔■に導入されろ。
Remove the fraction containing acetic acid as the main component from the [phase], and the bottom liquid is introduced into the diacetoxybutene separation column ①.

ジアセトキシブテンは@より回収され、塔底部から抜き
だされた残渣は[相]より溶解槽■へ導入され再び反応
系に供給される。
Diacetoxybutene is recovered from the @, and the residue taken out from the bottom of the column is introduced from the [phase] into the dissolution tank ① and is again supplied to the reaction system.

反応系にリサイクルされる残渣の割合は、反応条件、蒸
留での濃縮条件、新たに添加する元素硫黄の量によって
異なるので画一的に決めることはできないが、通常ジア
セトキシブテン分離塔の塔底残渣の5〜80%、好まし
くは10〜50%である。
The proportion of residue recycled to the reaction system cannot be uniformly determined because it varies depending on the reaction conditions, concentration conditions during distillation, and the amount of newly added elemental sulfur, but it is usually recycled to the bottom of the diacetoxybutene separation column. 5-80% of the residue, preferably 10-50%.

以上、本発明方法に従って、担体付パラジウム系触媒の
存在下、ブタジェン、酢酸及び酸素を接触反応させジア
セトキシブテンを製造する際、元素硫黄を共存させるこ
とにより、ブタジェンと反応生成物との重合を抑制して
触媒活性の低下を阻止し、触媒の寿命をのばすことが出
来、長期にわたってアセトキシ化反応を安定に実施し得
る。
As described above, when diacetoxybutene is produced by catalytically reacting butadiene, acetic acid, and oxygen in the presence of a supported palladium-based catalyst according to the method of the present invention, the presence of elemental sulfur prevents the polymerization of butadiene and the reaction product. It is possible to inhibit the catalyst activity from decreasing, extend the life of the catalyst, and stably carry out the acetoxylation reaction over a long period of time.

又、生成したジアセトキシブテンを蒸留分離にした後の
蒸留残渣を本発明方法に従って元素硫黄源として反応酸
にリサイクルすることにより、経済的有利にジアセトキ
シブテンを得ることができる。
In addition, diacetoxybutene can be economically advantageously obtained by recycling the distillation residue after distillation separation of the produced diacetoxybutene as a source of elemental sulfur according to the method of the present invention.

次に、本発明方法を実施例により具体的に説明するが、
本発明はその要旨を超えない限り以下の実施例に限定さ
れるものではない。
Next, the method of the present invention will be specifically explained using examples.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

尚、下記実施例に限定されるものではない。Note that the present invention is not limited to the following examples.

尚、下記実施例中ppmは重量単位を示す。In addition, ppm in the following examples indicates a weight unit.

実施例 ■ 塩化パラジウム10■−mol及び二酸化テルル10■
−molを6N−塩酸80尻lに溶解し、これに4〜6
メツシユの活性炭20グを加えて湯浴上でゆっくり乾固
させた。
Example ■ Palladium chloride 10■-mol and tellurium dioxide 10■mol
-mol in 80 l of 6N-hydrochloric acid, and add 4 to 6
20 g of mesh activated carbon was added and slowly dried on a hot water bath.

これをさらに150℃において2時間窒素気流を通じで
乾燥させた後、室温で水及びメタノールを飽和させた窒
素を11グ分の流速で通じ、900℃で2時間、次いで
400℃で1時間還元し、これを触媒とした。
This was further dried at 150°C for 2 hours with a stream of nitrogen, then reduced at room temperature with nitrogen saturated with water and methanol at a flow rate of 11 grams, at 900°C for 2 hours, and then at 400°C for 1 hour. , which was used as a catalyst.

上記の如く調製した触媒を内径20mm、長さ300m
m+7)SUS 316 L製のジャケット付反応器に
充填し、反応器温度を100℃に保持した。
The catalyst prepared as above was prepared with an inner diameter of 20 mm and a length of 300 m.
m+7) A jacketed reactor made of SUS 316L was filled, and the reactor temperature was maintained at 100°C.

これに蟻酸10 ppm(wt ) 、元素硫黄0.0
375wt%をそれぞれ含む酢酸40 ?/ hr、ブ
タジェン(p−t−ブチルカテコール20 pprn及
びビニルシクロヘキセンlppm 含有) 15 y/
hr、及び酸素含有ガス(N2中02は3vo1%)
16ONl/hrを圧力40ky/crAGで反応器上
部より通じた。
This was supplemented with 10 ppm (wt) of formic acid and 0.0 elemental sulfur.
Acetic acid 40 each containing 375 wt%? / hr, butadiene (contains 20 pprn pt-butylcatechol and lppm vinylcyclohexene) 15 y/
hr, and oxygen-containing gas (02 in N2 is 3vo1%)
16 ONl/hr was passed from the top of the reactor at a pressure of 40 ky/crAG.

この場合、ブタジェンに対する硫黄の量は1000 p
pm である。
In this case, the amount of sulfur for butadiene is 1000 p
It is pm.

反応器下部より流出した反応液を20℃に冷却し、溶存
ブタジェンを除去した後、ガスクロマトグラフィーで分
析した。
The reaction liquid flowing out from the bottom of the reactor was cooled to 20°C to remove dissolved butadiene, and then analyzed by gas chromatography.

その結果、反応液中には、l・4−ジアセトキシブテン
−2が16wt%含まれていた。
As a result, the reaction solution contained 16 wt % of 1.4-diacetoxybutene-2.

この条件下で反応を続行したところ、ioo。When the reaction was continued under these conditions, ioo.

時間後に生成反応液中の1・4−ジアセトキシプテン−
2の量が8wt%に低下した。
1,4-diacetoxybutene in the reaction solution produced after hours.
The amount of 2 decreased to 8 wt%.

実施例 2 前記実施例において、ブタジェンに対する元素硫黄の量
を下記に示す量とした以外は、同様にして反応を行い、
生成反応液中の1・4−ジアセトキシブテン−2の量が
8wt%に低下する時間を求めた。
Example 2 The reaction was carried out in the same manner as in the previous example, except that the amount of elemental sulfur relative to butadiene was changed to the amount shown below,
The time required for the amount of 1,4-diacetoxybutene-2 in the produced reaction solution to decrease to 8 wt% was determined.

その結果を下記に示す。実施例 3 実施例1で得たブタジェンを分離したのち生成物40k
gを5US316L製内径50mm、高さ3m(SUS
316Lデイクソンパツキン充填)の回分式蒸留塔の塔
底部に仕込み、まず圧力150mmHgで酢酸を留出さ
せ、次に圧力50mmHgでジアセトキシブテンを留出
させ釜残を500f得た。
The results are shown below. Example 3 After separating the butadiene obtained in Example 1, the product 40k
g is made of 5US316L with an inner diameter of 50mm and a height of 3m (SUS
The mixture was charged into the bottom of a 316L batch distillation column (packed with Dickson packing), and acetic acid was first distilled off at a pressure of 150 mmHg, and then diacetoxybutene was distilled off at a pressure of 50 mmHg to obtain 500 f of the bottom residue.

これを全量新たな酢酸40kgに溶解して実施例1の原
料酢酸に代え、以下実施例1と同様の操作を行なったと
ころ、生成物中の1・4−ジアセトキシブテン−1の量
が半分になるのに700時間要した。
The entire amount of this was dissolved in 40 kg of fresh acetic acid to replace the raw acetic acid in Example 1, and the same operation as in Example 1 was carried out. As a result, the amount of 1,4-diacetoxybutene-1 in the product was halved. It took 700 hours to complete.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は元素硫黄の量がアセトキシ化反応触媒に及ぼす
影響を示す図であり、縦軸は触媒の失活速度(初期活性
が172になる時間)を、横軸はブタジェン1重量部に
対する元素硫黄の量を表わす。 第2図は、元素硫黄1000 ppm[重量〕添加した
場合、アセトキシ化反応触媒に及ぼす温度の影響を示す
図であり、縦軸は触媒の失活速度、横軸は反応温度を表
わす。 第3図は本発明の実施態様の一例を示す工程線図である
。 図中■は溶解槽、■は予熱器、■は反応器、■は気液分
離器、V、VI、■は蒸留塔を示す。
Figure 1 is a diagram showing the effect of the amount of elemental sulfur on the acetoxylation reaction catalyst, where the vertical axis represents the deactivation rate of the catalyst (the time when the initial activity reaches 172), and the horizontal axis represents the amount of elemental sulfur per part by weight of butadiene. Represents the amount of sulfur. FIG. 2 is a diagram showing the effect of temperature on the acetoxylation reaction catalyst when 1000 ppm [by weight] of elemental sulfur is added, where the vertical axis represents the deactivation rate of the catalyst and the horizontal axis represents the reaction temperature. FIG. 3 is a process diagram showing an example of an embodiment of the present invention. In the figure, ■ indicates a dissolution tank, ■ indicates a preheater, ■ indicates a reactor, ■ indicates a gas-liquid separator, and V, VI, and ■ indicate a distillation column.

Claims (1)

【特許請求の範囲】 1 ブタジェン、酢酸及び酸素または酸素含有ガスを担
体付パラジウム系触媒及び元素硫黄の存在下接触反応さ
せることを特徴とするジアセトキシブテンの製造方法。 2 ブタジェン、酢液及び酸素または酸素含有ガスを担
体付パラジウム系触媒及び元素硫黄の存在下、接触反応
させてジアセトキシブテンを製造し、反応生成物からブ
タジェン、酢酸及び生成したジアセトキシブテンを蒸留
分離し、得られた蒸留残渣の少くとも一部をアセトキシ
化反応域に供給することを特徴とするジアセトキシブテ
ンの製造方法。
[Scope of Claims] 1. A method for producing diacetoxybutene, which comprises catalytically reacting butadiene, acetic acid, and oxygen or an oxygen-containing gas in the presence of a supported palladium-based catalyst and elemental sulfur. 2 Produce diacetoxybutene by catalytically reacting butadiene, vinegar solution, and oxygen or oxygen-containing gas in the presence of a supported palladium-based catalyst and elemental sulfur, and distilling butadiene, acetic acid, and the generated diacetoxybutene from the reaction product. A method for producing diacetoxybutene, which comprises separating and supplying at least a part of the obtained distillation residue to an acetoxylation reaction zone.
JP50127776A 1975-06-17 1975-10-23 diacetoxybutene Expired JPS5833851B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP50127776A JPS5833851B2 (en) 1975-10-23 1975-10-23 diacetoxybutene
US05/694,534 US4075413A (en) 1975-06-17 1976-06-10 Process for preparation of diacetoxybutene
CA254,754A CA1095928A (en) 1975-06-17 1976-06-14 Process for preparation of diacetoxybutene
GB24772/76A GB1494459A (en) 1975-06-17 1976-06-15 Process for preparation of diacetoxybutene
DE2627001A DE2627001C2 (en) 1975-06-17 1976-06-16 Process for the preparation of diacetoxybutene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50127776A JPS5833851B2 (en) 1975-10-23 1975-10-23 diacetoxybutene

Publications (2)

Publication Number Publication Date
JPS5251313A JPS5251313A (en) 1977-04-25
JPS5833851B2 true JPS5833851B2 (en) 1983-07-22

Family

ID=14968397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50127776A Expired JPS5833851B2 (en) 1975-06-17 1975-10-23 diacetoxybutene

Country Status (1)

Country Link
JP (1) JPS5833851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532414A (en) * 1976-06-25 1978-01-11 Sumitomo Chem Co Ltd Preparation of diacetoxybutene

Also Published As

Publication number Publication date
JPS5251313A (en) 1977-04-25

Similar Documents

Publication Publication Date Title
US3305586A (en) Process for preparing cyclohexanone
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JPH03204832A (en) Dehalogenation of alpha-halogenated carboxylic acid and dehalogenation catalyst
US4683329A (en) Beneficial use of water in catalytic conversion of formamides to isocyanates
US4387082A (en) Removal of nitrous oxide from exit gases containing this compound during the production of hydroxylammonium salts
JPH07188117A (en) Method of treating liquid reaction product obtained in production dimethyl carbonate in the presence of cu catalyst
US4225729A (en) Process for hydrogenation of diacetoxybutene
JPS5833851B2 (en) diacetoxybutene
US4003984A (en) Production of sulfuryl fluoride
US4075413A (en) Process for preparation of diacetoxybutene
JPH07304721A (en) Production of aromatic carbodiimide
US3838019A (en) Inhibition of polymer formation during distillation of crude vinyl acetate
JP2795360B2 (en) Continuous production of dimethyl carbonate
JPS5926611B2 (en) Method for producing acetic anhydride
JPS5941924B2 (en) Purification method of thionyl chloride
JPS638930B2 (en)
JP2870738B2 (en) Method for producing carbonic acid diester
JPS60500091A (en) Method for producing dihydrocarbyl oxalate
EP0057090B1 (en) Process for the production of carbon monoxide
WO1994011335A1 (en) Process for producing carbonic diester
JP3682805B2 (en) Method for producing saturated aliphatic carboxylic acid amide
EP0222535B1 (en) Cryogenic brine separation of water and isocyanates
US3413361A (en) Process for the production of vinyl fluoride
JPS62273927A (en) Production of xylylene glycol
US2914575A (en) Method for preparing perchloroethylene