JPS6388720A - Electrode structure for vacuum breaker - Google Patents

Electrode structure for vacuum breaker

Info

Publication number
JPS6388720A
JPS6388720A JP23357686A JP23357686A JPS6388720A JP S6388720 A JPS6388720 A JP S6388720A JP 23357686 A JP23357686 A JP 23357686A JP 23357686 A JP23357686 A JP 23357686A JP S6388720 A JPS6388720 A JP S6388720A
Authority
JP
Japan
Prior art keywords
electrode
arc
circuit breaker
vacuum circuit
electrode structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23357686A
Other languages
Japanese (ja)
Inventor
伸一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23357686A priority Critical patent/JPS6388720A/en
Publication of JPS6388720A publication Critical patent/JPS6388720A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空遮断器の短絡遮断性能を改善するため
になされたもので、電極の材質と構造に関するものであ
る。短絡遮断の際の電極消耗が均一化される結果、通電
性能、溶着性能、耐電圧性能ならびに電気的寿命などの
基本性能が改善され、小形な真空遮断器を提供すること
ができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention was made to improve the short-circuit breaking performance of a vacuum circuit breaker, and relates to the material and structure of electrodes. As a result of equalizing electrode consumption during short-circuit breaking, basic performances such as current carrying performance, welding performance, withstand voltage performance, and electrical life are improved, making it possible to provide a compact vacuum circuit breaker.

〔従来の技術〕[Conventional technology]

第5図は特開昭55−30174号公報に示された従来
の真空遮断器の電極構造を示す平面図で、(イ)はたと
えば固定側電極、(2))はたとえば可動側電極を示す
。対向面から見て前者は布巻、後者は圧巻のスパイラル
形電極であるn Itl 、 (Im)は相互に接離可
能な部材で接触部と呼ばれる。+21 、 (2m)は
アークランナーである。スパイラル溝f41 、 (4
8)は接触部ix+ 、 (us) jこ終端を有し、
アークランナ、(:l 、 (2m)を千−れぞれ区分
している。各アークランナーはその先端部+31 、 
(38) iごて電極外周部と接している。なお、アー
クランナーの枚数は任意である。図で電極はたとえばC
u−BM(銅・−ビスマス)を含む合金やCu−Cr 
(銅−タロム)を含む合金で、一体形に作られている。
FIG. 5 is a plan view showing the electrode structure of a conventional vacuum circuit breaker disclosed in JP-A-55-30174, in which (a) shows, for example, the fixed side electrode, and (2)) shows, for example, the movable side electrode. . When viewed from the opposing surface, the former is a cloth-wrapped electrode, and the latter is an overwhelmingly spiral-shaped electrode. nItl, (Im) are members that can be brought into and out of contact with each other and are called contact portions. +21, (2m) is the arc runner. Spiral groove f41, (4
8) has a contact part ix+, (us) j termination,
The arc runner, (:l, (2m)) is divided into 1,000 sections.Each arc runner has its tip +31,
(38) i It is in contact with the outer periphery of the iron electrode. Note that the number of arc runners is arbitrary. In the figure, the electrode is, for example, C
Alloys containing u-BM (copper-bismuth) and Cu-Cr
It is made of an alloy containing (copper-talom) and is made in one piece.

図示しな1./1が、短絡電流12.5kA以下の真空
遮吟器の電極にはスパイラル溝+41 、 (4M)の
無い単@な、いわゆる平板形構造が用いられる。平板形
構造においても1111こ相当な接触部、アークランナ
ーに相当するテーパ一部、および電極外周部を有し、こ
tlらは全て同一材料で一体形(こ作られている。
1. Not shown. /1, but a so-called flat plate structure without a spiral groove is used for the electrode of a vacuum interrupter with a short circuit current of 12.5 kA or less. Even in the flat plate structure, it has a contact portion equivalent to 1111, a taper portion equivalent to an arc runner, and an electrode outer peripheral portion, all of which are integrally made of the same material.

更に図示しないが、第5図の(101)および(10i
a)は電極棒夕・通じて、真空容器外部の電極端子に接
続される。
Although not shown, (101) and (10i) in FIG.
A) is connected to an electrode terminal outside the vacuum vessel through the electrode rod.

真空遮断器には竹絡M流の遮断・投入・通電。The vacuum circuit breaker has a bamboo mesh M flow for breaking, closing, and energizing.

通常電流の開閉や開閉に伴なうサージ電圧、閉極時の耐
電圧、更には遮断回数寿命などの基本性能が必要である
。これらの性能は王に電極の材質と構造によって支配さ
れる。成る一種類の1極材料(多元合金を含む)で上記
の性能を全て勇足させることは極めて困難であり、通電
は成る種の性能を犠牲にして実用化している。遮断器用
途の真空遮断器は短絡電流の遮断性能を最重視して電極
材質と構造が決められる。
Basic performance is required, such as switching of normal current, surge voltage associated with switching, withstand voltage when closing, and lifespan of interruptions. These performances are primarily governed by the electrode material and structure. It is extremely difficult to achieve all of the above performance with a single type of single-pole material (including multi-component alloys), and current-carrying has been put into practical use at the expense of some performance. The electrode material and structure of vacuum circuit breakers for circuit breaker applications are determined with the utmost emphasis on short-circuit current interrupting performance.

電流遮断の際の雷極間アークにつVlては、小電流域で
は拡散アークが、大電流域では集束アークが支配的とな
る。拡散アークとは、アークの足(陰極点)が細かく分
散して存在しうるモードで。
Regarding the arc between the lightning poles during current interruption, the diffused arc is dominant in a small current region, and the focused arc is dominant in a large current region. A diffused arc is a mode in which the legs of the arc (cathode spots) can exist in finely dispersed shapes.

電流密度が小さいため磁気駆切されζこく\、アーク電
圧は約50vと低い性質をもっている。これに対して集
束アーク・モートはアークの足が集束するため電流密度
が大で、磁気駆動を受は易いので、従来の真空遮断器用
電極には集束アーク特性の材料が用いられている。
Because the current density is small, the magnetic current is cut off and the arc voltage is low, about 50V. On the other hand, a focused arc moat has a large current density because the arc legs are focused, and is easily susceptible to magnetic drive, so materials with focused arc characteristics are used in conventional vacuum circuit breaker electrodes.

次に第5図のスパイラル形電極で交流回路の短絡7!t
/112.5〜5QkAを遮断する場合の動作を峠明す
る。才で、一対の電極が開極を始めるさ、接触部i11
 、 (11)から発弧する。この開極点からの経過時
間と井にM極間アークは接触部fx! 、 (xa)か
らアークランナー+21 、 (2m)を経てアークラ
ンナー先端部(31、(3m)へと#仙してい(。この
際、スパイラル形M極構造の特性から、1を糎空間ζこ
半径方向の磁界が形成され、この磁界の向きはアークの
向〜C!−万角であるから、この磁界は横磁界と呼ばれ
る。横磁界による駆切効果によって電極上のアークの格
納が促進される。
Next, use the spiral electrode in Figure 5 to short circuit the AC circuit 7! t
/112.5 to 5 QkA will be clearly explained. At this point, the pair of electrodes begins to open, at the contact point i11.
, is fired from (11). The arc between the M poles is the contact point fx! , (xa) through the arc runner +21, (2 m) to the tip of the arc runner (31, (3 m). At this time, due to the characteristics of the spiral M-pole structure, 1 is A radial magnetic field is formed, and since the direction of this magnetic field is in the direction of the arc ~C!-many angles, this magnetic field is called a transverse magnetic field.The cutting effect of the transverse magnetic field promotes the storage of the arc on the electrode. Ru.

従来のスパイラル形電極では、アーク電流が数kA以上
シこなると、アークモードは集束アークとなり、アーク
の足(陰極点)が複数個、集束されて局部的(こ?It
流密ずが増大し、アーク電圧も100V以上に上昇し、
構凪界による磁気駆動効果が大きくなる。従って、真空
遮断器の定格短絡電流を2断する上で、スパイラル形電
極は優れた遮断性能を示す。
In conventional spiral electrodes, when the arc current drops to several kA or more, the arc mode becomes a focused arc, and multiple legs of the arc (cathode spots) are focused and localized.
The current density increases, the arc voltage also rises to over 100V,
The magnetic drive effect due to the calm field increases. Therefore, the spiral electrode exhibits excellent breaking performance in breaking the rated short-circuit current of the vacuum circuit breaker.

しかし、過大な短絡電流を連断する場合は1m1述の磁
気駆動効果が効き過ぎて、短絡常流が電流零点を迎える
以前(こアークの亀がアークランナー先端部(3)Iた
は(3−)に到達してし才っており、そこで停滞する結
果、アークの足の対向側電極((湯桶側)のアークラン
ナー先端部(3m)または(3)への熱入力が過大とな
って、遂には陽極部の異牌皓融を虫じる。これが短絡遮
断失敗の現象である。
However, when connecting an excessive short-circuit current, the magnetic drive effect mentioned above becomes too effective, and the short-circuit current reaches the current zero point (the tortoise of this arc is at the tip of the arc runner (3) or (3). -) and stagnates there, resulting in excessive heat input to the arc runner tip (3m) or (3) of the opposite electrode ((trough side)) of the arc foot. In the end, the abnormality of the anode part is detected.This is the phenomenon of short-circuit breakage failure.

この後で〒極消耗状況を観察すると、消耗・溶ぺの程度
はアークランナー先端部(3−)または(3)が最も著
しく、次にアークランナー(21)t−たは(2)の、
特1こスパイラル溝(4J) 、 +4)に沿った部分
がひど<、−t−の次1こ電極接触部(C) 、 il
lの順になっている場合が多い。アークランナー(2s
)または(2)において、スパイラル溝(4m)7たは
(4)から距離的(こ離れた部分は、余り消耗・溶融が
生じてい、ないか、または全く消耗・溶催していない部
分すら存在する。すなわち、この実験観察の結果から、
従来のスパイラル電極では相対向する電極の全面積の全
てを100%有効に利用できない才\、短絡遮断失敗す
る場合がしばしば生じていた。
After this, when observing the state of polar wear, the degree of wear and melting was most significant at the tip of the arc runner (3-) or (3), followed by the tip of the arc runner (21) or (2).
Particularly, the part along the spiral groove (4J), +4) is very bad.
In many cases, the order is l. Arc runner (2s
) or (2), the distance from the spiral groove (4 m) 7 or (4) is that there is not much wear and melting, or there is no wear or melting, or there are even parts that are not worn or melted at all. In other words, from the results of this experimental observation,
With conventional spiral electrodes, the entire area of opposing electrodes cannot be used 100% effectively, and short-circuit breakage often fails.

以上は過大の短絡電流を遮断失敗した例を述べたが、定
格短絡電流を多数回遮断試験した場合についても、寿命
末期になると遮断失敗するに至る。
The above is an example of failure to interrupt an excessive short-circuit current, but even if the rated short-circuit current is tested multiple times, the failure will occur at the end of the life.

この場合の電極調査においても、上述の過大短絡電流の
辿断失敗後の電極観察結果と類似しており、やはり、ア
ークランナー(2a)または(2)のスパイラルm (
4g) 、 +4+から離れた部分の消耗・溶依が軽微
な場合がしばしば観察される。
The electrode investigation in this case is similar to the electrode observation result after the failure to trace the excessive short-circuit current described above, and again the spiral m (
4g), it is often observed that the parts far from +4+ have slight wear and dissolution.

一般に、全開極時に電極外周部の電位傾度が最も強いが
、アークランナー先端部が異常溶融した後は凹凸がひど
くなるため、−@電位傾度が強才り、短絡電流が電流零
点を迎えた直後の動的な耐電圧に耐えないためGこ遮断
失敗に至るものである。
Generally, the potential gradient at the outer circumference of the electrode is the strongest when the electrode is fully opened, but after the tip of the arc runner abnormally melts, the unevenness becomes severe, so the -@ potential gradient becomes strong and the short-circuit current reaches the current zero point. Because it cannot withstand the dynamic withstand voltage of

なお、平板形電極の場合は、電極面積の有効利用率はス
パイラル形電極よりも悪く、やはり電極外周部の異常溶
融によって短絡遮断失敗が起っている。
In the case of a flat plate electrode, the effective utilization rate of the electrode area is lower than that of a spiral electrode, and short-circuit breaking failures also occur due to abnormal melting of the outer circumference of the electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の真空遮断器の電極は集束アーク特性の電極材料だ
けで構成されて1/するので、対向する電極の全面積を
有効利用することができず、このため所定の定格短絡電
流遮断に対して、1!橋を小形化(従って真空容器も)
することが難しかった。才だ、アーク電圧が高いので、
電極の消耗も犬で、電極の接触部の表面荒れが大きく、
接触抵抗の増大、溶着力の増大、耐電圧の劣化等を招来
する結果、真空遮断器の遮断回数寿命を長寿命化する上
で問題となっていた。
Since the electrodes of conventional vacuum circuit breakers are composed only of electrode materials with focused arc characteristics, it is not possible to effectively utilize the entire area of the opposing electrodes. , 1! Miniaturize the bridge (and therefore the vacuum container)
It was difficult to do. The arc voltage is high, so
The wear and tear of the electrodes is also severe, and the surface of the contact area of the electrodes is very rough.
This results in an increase in contact resistance, an increase in welding force, a deterioration in withstand voltage, etc., which poses a problem in extending the trip life of a vacuum circuit breaker.

この発明は上記のような従来電極の問題点を解消するた
めになされたもので、短絡電流遮断の際にアークランナ
ー先端部のように最大電位傾度を有する電極外周部の異
常溶融を防止すると共に、アーク電圧を低くして電極の
不均一消耗をなくし、対向するtiの全面積を有効利用
すること(こよって、動的耐電圧が安定し、短絡1断回
数寿命が長い真空遮断器を得ることを目的とする。
This invention was made to solve the above-mentioned problems with conventional electrodes, and it prevents abnormal melting of the outer circumference of the electrode, which has the maximum potential gradient, such as the tip of the arc runner, when short-circuit current is interrupted. , to lower the arc voltage to eliminate uneven consumption of the electrodes, and to effectively utilize the entire area of the facing ti (thus, to obtain a vacuum circuit breaker with stable dynamic withstand voltage and long short-circuit/break frequency life). The purpose is to

この発明により、電極直径(外径)を従来より小形(こ
できるので、xiを収容する真空容器も小形になり、径
済的に安価な真空遮断器を得ることを第2の目的とする
According to this invention, since the electrode diameter (outer diameter) can be made smaller than before, the vacuum container that houses the xi can also be made smaller, and a second object is to obtain a vacuum circuit breaker that is economically inexpensive.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る真空遮断器の電極材質と電極構造は、従
来の集束アーク特性の材料からなる第1構体と、第1構
体よりもアーク電圧が低く拡散アーク特性の材料からな
る第2構体とを併設したものである。必要に応じて平板
形またはスパイラル形電極の接触部や外周部の一部分ま
たは全部を第2構体で構成することもできる。才た、ス
パイラル形電極ではアークランナーの一部分を第2構体
で構成することができ、アークランナーを区分するスパ
イラル溝とはソ平行に、かつスパイラル溝から離して第
2構体を併設したり、電極外周部の近傍で外周円とはソ
平行に2かつアークランナー先端部から離して第2構体
を併設してもよい。
The electrode material and electrode structure of the vacuum circuit breaker according to the present invention include a first body made of a conventional material with focused arc characteristics, and a second body made of a material with diffused arc characteristics and whose arc voltage is lower than that of the first body. It is attached. If necessary, a part or all of the contact portion or the outer peripheral portion of the flat or spiral electrode may be constituted by the second structure. In the case of a spiral-shaped electrode, a part of the arc runner can be composed of a second structure, and the second structure can be installed parallel to and apart from the spiral groove that divides the arc runner. Two second structures may be provided near the outer circumferential portion, parallel to the outer circumferential circle, and spaced apart from the tip of the arc runner.

〔作用〕[Effect]

この発明における真空遮断器の電極(こは、従来よりも
アーク電圧が低く拡散アーク特性の材料からなる第2構
体を併設したので、従来のアーク電圧が高く集束アーク
特性の材料からなる第1構体のなかで短絡アークをほと
んど受持っていなかった部分が除去されて、相対向する
電極のはソ全面が短絡遮断に寄与することになった。そ
の結果、従来よりも短絡遮断における平均アーク電圧が
低下し、1!極消耗が少な(、特にスパイラル形電極の
アークランナー先端部の異常溶融が解消され。
The electrode of the vacuum circuit breaker according to the present invention (in this case, since the second structure made of a material with a diffused arc characteristic and a lower arc voltage than the conventional one is also provided, the first structure made of a material with a higher arc voltage and a focused arc characteristic than the conventional one) The part that had little responsibility for short-circuit arcs has been removed, and the entire surface of the opposing electrodes now contributes to short-circuit breaking.As a result, the average arc voltage at short-circuit breaking is lower than before. 1! Extremely low wear (particularly abnormal melting at the tip of the arc runner of the spiral electrode is eliminated).

短絡遮断回数寿命の長い真空遮断器が提供できるように
なった。
It is now possible to provide a vacuum circuit breaker with a long short-circuit breakage life.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について峠、明する。第
1図は一対の電極のうち、一方のiF極の平面図9)と
断面図(ロ)を示す。図中、fil 、 i2) 、 
+31 、 (41は前述の第5図のill 、 +2
1 、 +31 、(4)と同じく集束アーク特性を有
する材料で作られた電gI第1構体で、それぞれ接触部
、アークランナー部、アークランナー先端部およびスパ
イラル溝である。inは第5図には存在しないもので、
拡散アーク特性を有する電極第2構体である。電極第2
構体はアークランナーの中央部から電極周辺部にかけて
電極第1構体の中に埋設されており、電極第1構体のう
ちで、アーク集中の起りにくい部分に設置されている。
An embodiment of the present invention will be explained below with reference to the drawings. FIG. 1 shows a plan view 9) and a cross-sectional view (b) of one iF pole of a pair of electrodes. In the figure, fil, i2),
+31, (41 is ill in the above-mentioned figure 5, +2
1, +31, and (4), the electric gI first structure is made of a material having focused arc characteristics, and has a contact part, an arc runner part, an arc runner tip, and a spiral groove, respectively. in does not exist in Figure 5,
This is a second electrode structure having diffused arc characteristics. Electrode 2nd
The structure is embedded in the first electrode structure from the center of the arc runner to the electrode periphery, and is installed in a portion of the first electrode structure where arc concentration is less likely to occur.

すなわち、電極第1構体のうちでアーク集中の起り易い
スパイラル溝(4)に沿った部分やアークランナー先端
部(3)からは離して設置されている。
That is, it is installed away from the portion of the first electrode structure along the spiral groove (4) and the tip of the arc runner (3) where arc concentration is likely to occur.

第1図の実施例では、電極第1構体はCuB1 ′Iた
はCt+Cr材料を用いN極第2構体にはCuTsu料
を用いた。Cu丁丁付材料短絡電流12.5〜5QkA
の範囲ではアーク電圧は60V以下と低(、短絡it流
避断後の電極消耗は軽微であり、第5図に示したスパイ
ラル′に極においては磁気駆動が起りにくい性質があり
、第型的な拡散アーク特性を示す電極材料である。
In the embodiment shown in FIG. 1, the first electrode structure is made of CuB1'I or Ct+Cr material, and the second N electrode structure is made of CuTsu material. Cu cutting material short circuit current 12.5~5QkA
In the range of This is an electrode material that exhibits diffused arc characteristics.

比較検討のために1.従来形の第5図の電橋と、この発
明の第1図のN極で真空遮断器f−製作した。
For comparative study 1. A vacuum circuit breaker f- was manufactured using the conventional electric bridge shown in FIG. 5 and the N pole of the present invention shown in FIG.

電極直径は40と60mollとの2種類を用いてJE
C−第4号の短絡連断試験を行ない、七の前後の接触抵
抗、11電圧試験を実施し、最後に真空容器を分解して
電極の消耗状況を観察した。
JE using two types of electrode diameters, 40 and 60 mol.
A short-circuit connection test of C-No. 4 was carried out, a contact resistance before and after 7 and a voltage test of 11 were carried out, and finally, the vacuum container was disassembled and the state of wear of the electrodes was observed.

次に第1図の発明実施例の作用・動作について貌明する
。上述の比較R験の結果を整理するさ第1表の通りであ
る。従来形真空遮断器よりもて−ク雷圧が低くスパイラ
ル電極による磁気、駆蛸も効果的に働らき、かつ全電極
の表面が、はマ均一に消耗している。短絡電流の遮断可
能な回数も従来形よりも多く、かつ接触抵抗、耐電圧特
性が安定していることが検証された。
Next, the function and operation of the embodiment of the invention shown in FIG. 1 will be explained in detail. Table 1 summarizes the results of the comparative R experiment mentioned above. The lightning pressure is lower than that of conventional vacuum circuit breakers, the magnetism and repulsion by the spiral electrodes work effectively, and the surfaces of all electrodes are worn out evenly. It has been verified that the number of times the short circuit current can be interrupted is greater than that of the conventional type, and that the contact resistance and withstand voltage characteristics are stable.

第1表fこは一対の電極の双方にこの発明をiM用した
場合を示したが、一対の電極のうちの片方4ここの発明
を施した場合1発明効果はや\減するものの、従来より
も優れた性能を示した。
Table 1 shows the case where this invention is applied to both of a pair of electrodes, but when one of the pair of electrodes is applied with this invention, the effect of the invention is slightly reduced, but compared to the conventional method. showed superior performance.

第  1 表 なお、上記実施例では、集束アーク特性を有する材料か
らなる電極第2構体昂を拡散アーク特性を有する材料か
らなる電極第2構体昂のアークランナー(2)だけ1こ
設けたが、第2図に示すように、電橋第2構体器を電極
接触f’A ix+からアークランナー部(2)にかけ
て設置してもよい。
Table 1 Note that in the above embodiment, only one arc runner (2) of the second electrode structure made of a material having diffused arc properties was provided as the second electrode structure made of a material having focused arc properties. As shown in FIG. 2, the second electric bridge structure may be installed from the electrode contact f'A ix+ to the arc runner part (2).

第2図の実施例の試験結果は、詳細を省略するが、定格
短絡遮断電流29に、A以上の真空遮断器にお(/%て
所望の発明効果が得られた。第2図(イ)は平面図、(
ロ)はB−B’線(こ沿った断面図である。
Although the details of the test results of the embodiment shown in FIG. 2 are omitted, the desired effect of the invention was obtained in the rated short-circuit breaking current 29 and the vacuum circuit breaker of A or more (/%). ) is a plan view, (
B) is a sectional view taken along line BB'.

Iた、別の実施例を第3図に示す。第39信)は平面図
、(ロ)はt、cr緑に沿った断面図である。この場合
は電極第2構体としてリング状構体(Ili 、 t3
31を設けたもので、製作が容易になる。すなわち、電
橋接触部の全部とアークランナーの一部にリング状構体
(Iliを、電極外周部にリング構体a31)f−設置
している。スパイラル溝による磁気駆動効果の強烈な電
極直径5Q+nm以上の大形真空遮断器において所望の
発明効果が得られた。
Another embodiment is shown in FIG. 39th letter) is a plan view, and (b) is a sectional view along the t and cr green lines. In this case, a ring-shaped structure (Ili, t3
31 is provided, making manufacturing easier. That is, a ring-shaped structure (Ili) is installed on the entire electric bridge contact part and a part of the arc runner, and a ring-shaped structure (a31) f- is installed on the outer peripheral part of the electrode. The desired effects of the invention were obtained in a large vacuum circuit breaker with an electrode diameter of 5Q+nm or more, which has a strong magnetic drive effect due to the spiral groove.

更に、第4図はこの発明による他の実施例を示すもので
、直線状の電極第2構体(nとリング状電極第2構体謔
とを配設した本ので、定格短絡遮断i!E流20 kA
以上の真空1断器においてr8yr望の発明効果が得ら
れた。第4図り)は平面図、(ロ)は0)のD−1)’
線に沿った断面図である。
Furthermore, FIG. 4 shows another embodiment according to the present invention, in which a linear second electrode structure (n) and a ring-shaped second electrode structure are arranged, so that the rated short-circuit breaking i! 20 kA
In the above-mentioned vacuum breaker, the desired effects of the invention were obtained. 4th diagram) is a plan view, (b) is 0) D-1)'
It is a sectional view along the line.

第3図と第4図に示した実施例のよう1こ、1極外周部
に拡散アーク特性を有する電極第2構体を設けたものは
、短絡電流を遮断した際、電極第1構体のアークランナ
ー先端部(3)の異常溶融が完全に除去された。七の結
果、短絡電流遮断後の耐電圧特性の劣化がほとんど起ら
ない。特に開極距離12rnm以上の場合に七の効果が
高く、12kV以上の高電圧用真空遮断器に適している
ことが判った。
In the embodiment shown in FIGS. 3 and 4, in which a second electrode structure having a diffusion arc characteristic is provided on the outer periphery of one pole, when the short circuit current is interrupted, the arc of the first electrode structure is Abnormal melting at the runner tip (3) was completely eliminated. As a result of (7), there is almost no deterioration of the withstand voltage characteristics after the short-circuit current is cut off. It was found that the effect of 7 is particularly high when the contact opening distance is 12 rnm or more, and it is suitable for a high voltage vacuum circuit breaker of 12 kV or more.

なお、第1図〜第4図の実施例は電極第1構体ζこCu
B 1またはCuCrを電極第2構体にCuTmを用い
た例を示したが、電極第1構体と第2構体の組合せは、
これらに限定されるものではない。
In the embodiments shown in FIGS. 1 to 4, the first electrode structure ζCu
Although the example in which CuTm is used for the second electrode structure using B1 or CuCr is shown, the combination of the first electrode structure and the second electrode structure is as follows.
It is not limited to these.

さらに、図例は示さないが、平板形電極において、接触
部のみを拡散アーク特性の第21!極構体とした実施例
、および電極外周部のみを電極第2構体とした実施例に
ついても定格短絡逗Ffr1!流12.5kA以上にお
いて顕著な′発明効果が認められた。
Furthermore, although an example is not shown, in a flat plate electrode, only the contact portion has a diffusion arc characteristic of 21! For the embodiments in which the pole structure is used and the embodiments in which only the outer periphery of the electrode is used as the second electrode structure, the rated short circuit Ffr1! A remarkable 'invention effect' was observed at a flow rate of 12.5 kA or more.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、真空遮断器の電極構
体を、従来の集束アーク特性を有する電極第1構体の他
に、新規に拡散アーク特性を有する電極第2構体を設け
たので、短絡電流ぎ断時のアーク電圧が低減され、電極
構体の局部的異常浴融が起らず、対向する電極全表面を
はソ均一に利用して短絡遮断を成功させることができる
ようになった。
As described above, according to the present invention, in addition to the conventional first electrode structure having focused arc characteristics, the electrode structure of the vacuum circuit breaker is newly provided with a second electrode structure having diffused arc characteristics. The arc voltage when the short circuit current is broken is reduced, local abnormal melting of the electrode structure does not occur, and the entire surface of the opposing electrodes can be used uniformly to successfully break the short circuit. .

この結果、短絡遮断後の接触抵抗、耐雷圧が安定で長寿
命の真空遮断器が得られると共に、所要の定格短絡電流
に対して従来の電極直径よりも小形にできるので、真空
容器も小形化され、非常に経追的に安価な真空遮断器が
構成できるようになった。
As a result, a long-life vacuum circuit breaker with stable contact resistance and lightning resistance after short-circuit interruption is obtained, and the vacuum vessel can also be made smaller because the electrode diameter can be made smaller than the conventional electrode diameter for the required rated short-circuit current. As a result, it became possible to construct a vacuum circuit breaker at a very low cost over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による真空遮断器の電極構
体を示す平面図と断面側面図、第2図〜第4図はこの発
明の他の実施例を示す真空遮断器の電極構体の平面図と
断面側面図、第5図は従来の真空遮断器の一対の電極を
接触面から見た平面図を示す。 図において、fi+は接触部、(2)はアークランナー
部、(3)はアークランナー先端部、(4)はスパイラ
ル溝、圀は電極第2構体である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a plan view and a sectional side view showing an electrode assembly of a vacuum circuit breaker according to an embodiment of the present invention, and FIGS. A plan view and a sectional side view. FIG. 5 shows a plan view of a pair of electrodes of a conventional vacuum circuit breaker viewed from the contact surface. In the figure, fi+ is the contact part, (2) is the arc runner part, (3) is the tip of the arc runner, (4) is the spiral groove, and ``circle'' is the second electrode structure. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (6)

【特許請求の範囲】[Claims] (1)真空容器内部で相対的に接離可能な一対の電極を
備えた真空遮断器において、集束アーク特性の材料から
なる第1構体と、この第1構体よりもアーク電圧が低く
拡散アーク特性からなる第2構体とを併設したことを特
徴とする真空遮断器の電極構造。
(1) In a vacuum circuit breaker equipped with a pair of electrodes that can be relatively connected to and separated from each other inside a vacuum vessel, the first structure is made of a material with focused arc characteristics, and the first structure has a lower arc voltage than the first structure and has diffused arc characteristics. An electrode structure for a vacuum circuit breaker, characterized in that a second structure consisting of:
(2)平板形またはスパイラル形電極の接触部の一部分
または全部を第2構体で構成することを特徴とする特許
請求の範囲第1項に記載の真空遮断器の電極構造。
(2) The electrode structure of a vacuum circuit breaker according to claim 1, wherein a part or all of the contact portion of the flat or spiral electrode is constituted by the second structure.
(3)スパイラル形電極のアークランナー部の一部分を
第2構体で構成することを特徴とする特許請求の範囲第
1項に記載の真空遮断器の電極構造。
(3) The electrode structure of a vacuum circuit breaker according to claim 1, wherein a part of the arc runner portion of the spiral electrode is constituted by a second structure.
(4)平板形またはスパイラル形電極の外周部の一部分
または全部を第2構体で構成する特許請求の範囲第1項
に記載の真空遮断器の電極構造。
(4) The electrode structure of a vacuum circuit breaker according to claim 1, wherein a part or all of the outer peripheral portion of the flat or spiral electrode is constituted by the second structure.
(5)第2構体をアークランナーを区分するスパイラル
溝とほゞ平行にかつスパイラル溝から離して設けたこと
を特徴とする特許請求の範囲第3項に記載の真空遮断器
の電極構造。
(5) The electrode structure of a vacuum circuit breaker according to claim 3, characterized in that the second structure is provided substantially parallel to and spaced apart from the spiral grooves that divide the arc runner.
(6)第2構体を電極外周部の近傍で外周円とほぼ平行
にかつアークランナー先端部から離して設けたことを特
徴とする特許請求の範囲第3項に記載の真空遮断器の電
極構造。
(6) The electrode structure of the vacuum circuit breaker according to claim 3, characterized in that the second structure is provided near the outer circumference of the electrode, substantially parallel to the outer circumferential circle, and away from the tip of the arc runner. .
JP23357686A 1986-09-30 1986-09-30 Electrode structure for vacuum breaker Pending JPS6388720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23357686A JPS6388720A (en) 1986-09-30 1986-09-30 Electrode structure for vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23357686A JPS6388720A (en) 1986-09-30 1986-09-30 Electrode structure for vacuum breaker

Publications (1)

Publication Number Publication Date
JPS6388720A true JPS6388720A (en) 1988-04-19

Family

ID=16957233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23357686A Pending JPS6388720A (en) 1986-09-30 1986-09-30 Electrode structure for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS6388720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277962A (en) * 2009-06-01 2010-12-09 Japan Ae Power Systems Corp Electrode contact member for vacuum breaker, and manufacturing method of the electrode contact member of vacuum breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277962A (en) * 2009-06-01 2010-12-09 Japan Ae Power Systems Corp Electrode contact member for vacuum breaker, and manufacturing method of the electrode contact member of vacuum breaker

Similar Documents

Publication Publication Date Title
JPS6388721A (en) Electrode structure for vacuum breaker
WO2010052992A1 (en) Electrode structure for vacuum circuit breaker
KR920006060B1 (en) Vacuum switch tube
EP0076659B1 (en) A vacuum interrupter
JPS6059620A (en) High current switch contact and electric switch unit using same contact
JPS6388720A (en) Electrode structure for vacuum breaker
EP1466338B1 (en) Non-linear magnetic field distribution in vacuum interrupter contacts
EP0316118B2 (en) Electrode for a vacuum breaker
KR910001370B1 (en) Vacuum circuit interrupter
JPH11162302A (en) Vacuum bulb
EP4276864A1 (en) Vacuum interrupter
JP4284033B2 (en) Vacuum valve
US4695688A (en) Electrical contact construction
JPH0134832Y2 (en)
JP3724977B2 (en) Gas circuit breaker
JPH01315914A (en) Vacuum bulb
JPH10255602A (en) Vacuum switching device
CN115206726A (en) Multi-pole longitudinal magnetic field vacuum arc extinguish chamber contact structure
JPH10321092A (en) Bias electrode for vacuum valve and vacuum valve using the bias electrode and vacuum circuit breaker using the vacuum valve
JPH06150784A (en) Vacuum valve
JPS60185320A (en) Vacuum breaker
JPS6065413A (en) Vacuum breaker
JPS63175308A (en) Vacuum valve
JPS6065412A (en) Vacuum breaker
JPS63174232A (en) Vacuum valve