JPH06150784A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JPH06150784A
JPH06150784A JP29467092A JP29467092A JPH06150784A JP H06150784 A JPH06150784 A JP H06150784A JP 29467092 A JP29467092 A JP 29467092A JP 29467092 A JP29467092 A JP 29467092A JP H06150784 A JPH06150784 A JP H06150784A
Authority
JP
Japan
Prior art keywords
electrode
current
shaft
contact
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29467092A
Other languages
Japanese (ja)
Inventor
Mitsutaka Honma
三孝 本間
Hiromichi Somei
宏通 染井
Takanari Sato
能也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29467092A priority Critical patent/JPH06150784A/en
Publication of JPH06150784A publication Critical patent/JPH06150784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6644Contacts; Arc-extinguishing means, e.g. arcing rings having coil-like electrical connections between contact rod and the proper contact

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To provide a vacuum breaker which can increase the breaking capacity without enlarging the size. CONSTITUTION:The minor diameter side of a current feed electrode 4 is brazed to the center of the tip of a movable side current feed shaft. A cylindrical part 5a of a coil electrode 5 is brazed to the tip of the movable side current feed shaft. The back face of the central part of a contacting piece 2 is brazed to the tip of the current feed electrode 4, and the periphery of the back face of the contacting piece is brazed to the connection part 5d at the tip of the coil part 5c of the coil electrode 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に電極の構造を改良
した真空バルブに関する。
BACKGROUND OF THE INVENTION The present invention relates to a vacuum valve having an improved electrode structure.

【0002】[0002]

【従来の技術】真空遮断器に用いられる従来の真空バル
ブの縦断面図を図3に示す。
2. Description of the Related Art A vertical sectional view of a conventional vacuum valve used in a vacuum circuit breaker is shown in FIG.

【0003】図3において、真空バルブ10は、絶縁円筒
11の両端を固定フランジ12と可動フランジ13で封止して
形成された真空容器の内部に、固定電極14と可動電極15
が接離可能に配設されて構成している。
In FIG. 3, a vacuum valve 10 is an insulating cylinder.
A fixed electrode 14 and a movable electrode 15 are placed inside a vacuum container formed by sealing both ends of 11 with a fixed flange 12 and a movable flange 13.
Are arranged so that they can be brought into and out of contact with each other.

【0004】このうち、固定電極14は、固定フランジ12
を気密に貫通した固定軸16の先端にろう付で固定されて
おり、真空容器の外部とはこの固定軸16の上端を介して
接続される。一方、可動電極15は、断面逆U字状のベロ
ーズカバー19を気密に貫通した可動軸17の先端にろう付
で固定されており、真空容器の外部とはこの可動軸17の
下端を介して接続される。
Of these, the fixed electrode 14 is the fixed flange 12
Is fixed to the tip of a fixed shaft 16 penetrating airtightly by brazing, and is connected to the outside of the vacuum container via the upper end of the fixed shaft 16. On the other hand, the movable electrode 15 is fixed by brazing to the tip of a movable shaft 17 that penetrates airtightly through a bellows cover 19 having an inverted U-shaped cross section, and is connected to the outside of the vacuum container via the lower end of the movable shaft 17. Connected.

【0005】また、この可動軸17は、可動フランジ13と
ベローズカバー19間にろう付されたベローズ18と、可動
フランジ13の中心に挿入された断面凸字状のガイド20を
介して可動フランジ13に支えられており、真空容器内の
真空を維持した状態で可動軸17の下端に連結される図示
しない操作機構部によって、矢印Bで示すように駆動さ
れることで、電極の接離を可能にしている。
The movable shaft 17 has a bellows 18 brazed between the movable flange 13 and a bellows cover 19, and a guide 20 having a convex cross-section inserted at the center of the movable flange 13 to allow the movable flange 13 to move. It is supported by and is driven by an operation mechanism portion (not shown) connected to the lower end of the movable shaft 17 while maintaining the vacuum in the vacuum container, so that the electrodes can be brought into and out of contact with each other. I have to.

【0006】ところで、真空バルブは、周知のように、
真空の優れた絶縁耐力を利用しているため、例えば、六
フッ化硫黄ガスなどの絶縁媒体を使ったガス遮断器に比
べて、電極間の間隙を狭くでき、外径を小形にすること
ができる。また、遮断容量も、電極の構造を改良するこ
とで増やすことができる。
By the way, as is well known, the vacuum valve is
Since the excellent dielectric strength of vacuum is used, the gap between the electrodes can be made smaller and the outer diameter can be made smaller than that of a gas circuit breaker that uses an insulating medium such as sulfur hexafluoride gas. it can. Also, the breaking capacity can be increased by improving the structure of the electrode.

【0007】真空バルブの遮断性能を上げるための一手
段としては、電極間に発生するアークによる電極の局部
加熱を抑える方法がある。つまり、局部加熱による異常
な荷電粒子の発生を抑えることにより、アークの発生を
抑えて遮断性能を向上させる。このための電極構造とし
ては、電極間に発生するアークに平行に磁界を印加する
方法と、アークに対して直交方向に磁界を印加する方法
がある。
As one means for improving the breaking performance of the vacuum valve, there is a method of suppressing local heating of the electrodes due to an arc generated between the electrodes. That is, by suppressing the generation of abnormal charged particles due to local heating, the generation of arcs is suppressed and the breaking performance is improved. As an electrode structure for this purpose, there are a method of applying a magnetic field parallel to the arc generated between the electrodes and a method of applying a magnetic field in a direction orthogonal to the arc.

【0008】このうち、アークに平行に磁界を印加する
方法を採用した電極には、いわゆる縦磁界電極構造があ
る。この方法は、電極間に発生するアークを、磁界の効
果により電極全体に分散させて、遮断性能を上げる方法
である。一方、アークに対して直交する磁界を印加する
方法を採用した電極には、いわゆるスパイラル電極があ
る。この方法は、大電流遮断時に電極面に集中したアー
クを、電極表面で回転させて遮断性能を上げる方法であ
る。つまり、集中したアークを移動させることにより、
電極の局部加熱による接点の部分的溶融を防いで、遮断
性能を上げる方法である。
Among them, an electrode adopting a method of applying a magnetic field parallel to an arc has a so-called longitudinal magnetic field electrode structure. In this method, the arc generated between the electrodes is dispersed over the entire electrode by the effect of the magnetic field to improve the breaking performance. On the other hand, there is a so-called spiral electrode as an electrode adopting a method of applying a magnetic field orthogonal to an arc. This method is a method in which an arc concentrated on the electrode surface when a large current is cut off is rotated on the electrode surface to improve the breaking performance. In other words, by moving the concentrated arc,
This is a method of improving the breaking performance by preventing partial melting of the contacts due to local heating of the electrodes.

【0009】ところで、真空バルブを高電圧の回路に適
用するためには、電極間の間隙を増やして電極間の耐電
圧を上げる必要がある。ところが、この間隙の広い電極
間に発生するアークに対して直交する磁界を印加する
と、アークが電極の表面を回転するときに、アークが円
周方向から外側に伸ばされ、電極から外側に飛び出すお
それがある。すると、電極間に発生しているアークが、
電極周囲に取り付けられている図3で示すアークシール
ド20へ点弧するおそれがある。もし、アークがアークシ
ールド20に点弧すると、アークはその位置に停滞し、局
部的な温度上昇によって電極とアークシールド20が部分
的に溶融し、遮断性能が低下するだけでなく、さらに、
接触子の消耗も増えるので、開閉寿命が低下する。
By the way, in order to apply the vacuum valve to a high voltage circuit, it is necessary to increase the gap between the electrodes to increase the withstand voltage between the electrodes. However, if a magnetic field orthogonal to the arc generated between the electrodes with this wide gap is applied, the arc may be extended outward from the circumferential direction when the arc rotates on the surface of the electrode, and may fly out from the electrode. There is. Then, the arc generated between the electrodes
There is a risk of ignition to the arc shield 20 shown in FIG. 3 mounted around the electrodes. If the arc is ignited on the arc shield 20, the arc stays at that position, the electrode and the arc shield 20 are partially melted due to a local temperature rise, and not only the breaking performance is deteriorated, but further,
The contact wear is also increased, which shortens the switching life.

【0010】一方、アークに対して平行な軸方向の磁界
を印加する電極構造を採用した縦磁界電極の電極間に発
生したアークは、電極全体に均一に広がり、電極の局部
的な過大な熱入力を防ぎ、遮断性能を上げることができ
る。また、高電圧に対して電極間の間隙の広い場合で
も、磁界の強度を適正に設定することにより、電極間だ
けにアークを限定することができ、遮断性能を上げるこ
とができる。さらに、アークの形態が分散アークである
ため、大電流遮断時においても、接触子の消耗が少な
く、開閉寿命を延ばすことができる。
On the other hand, the arc generated between the electrodes of the longitudinal magnetic field electrode adopting the electrode structure for applying a magnetic field in the axial direction parallel to the arc spreads uniformly over the entire electrode, and the local excessive heat of the electrode is generated. It can prevent input and improve blocking performance. Further, even when the gap between the electrodes is wide with respect to the high voltage, by appropriately setting the strength of the magnetic field, the arc can be limited only between the electrodes, and the breaking performance can be improved. Further, since the arc form is a distributed arc, the contact wear is small even when a large current is interrupted, and the switching life can be extended.

【0011】軸方向の磁界を発生させる従来の代表的な
電極を図4の平面図で説明する。この電極は、背面にコ
イル電極20を設け、このコイル電極20に流れる電流によ
り、電極間に軸方向の磁界を発生させる。コイル電極20
に流れる電流は、中心部から放射状に伸びる4本の腕部
20aに分流し、各腕部20aの先端から弧状のコイル部20
bに流れ、コイル部20bの先端20cから接触子に流れ
る。このコイル電極20を可動電極と固定電極に取り付
け、コイル部20bに流れる電流で軸方向の磁界を電極間
に発生させる。また、図4では腕部20aが4本の場合を
示しているが、腕部20aの数を変えることで、軸方向の
磁界の強さを変えることができる。
A conventional representative electrode for generating a magnetic field in the axial direction will be described with reference to the plan view of FIG. This electrode is provided with a coil electrode 20 on its back surface, and an electric field flowing in the coil electrode 20 generates an axial magnetic field between the electrodes. Coil electrode 20
The current that flows in the four arms is radially extending from the center.
20a, and the arc-shaped coil portion 20 from the tip of each arm portion 20a.
b, and flows from the tip 20c of the coil portion 20b to the contactor. This coil electrode 20 is attached to a movable electrode and a fixed electrode, and a magnetic field in the axial direction is generated between the electrodes by the current flowing in the coil portion 20b. Further, although FIG. 4 shows the case where the number of the arm portions 20a is four, the strength of the magnetic field in the axial direction can be changed by changing the number of the arm portions 20a.

【0012】さらに、軸方向の磁界を発生させる他の電
極構造としては、特公平3-22007 号公報に示されるよう
に、カップ状の電極の円筒部に螺旋状の溝を形成し、軸
方向の磁界を発生させる真空バルブがある。この場合、
円筒部の電流経路を螺旋状とすることで、この円筒部を
螺旋状に流れる電流によって電極間に軸方向の磁界を発
生させる。なお、この軸方向の磁界の強度は、円筒部の
溝の傾きを変えることにより、変えることができる。
Further, as another electrode structure for generating a magnetic field in the axial direction, as shown in Japanese Patent Publication No. 32007/1990, a spiral groove is formed in the cylindrical portion of a cup-shaped electrode to form an axial direction. There is a vacuum valve that generates a magnetic field. in this case,
By making the current path of the cylindrical portion spiral, a magnetic field in the axial direction is generated between the electrodes by the current flowing spirally through the cylindrical portion. The strength of the magnetic field in the axial direction can be changed by changing the inclination of the groove of the cylindrical portion.

【0013】一方、真空バルブにおいては、真空遮断器
が接続された系統の信頼性向上のためにも、開閉サージ
の低減を図る必要がある。さらに、一般需要家の設備容
量の増大に伴い、系統の短絡容量も増加してきている。
On the other hand, in the vacuum valve, it is necessary to reduce the switching surge in order to improve the reliability of the system to which the vacuum circuit breaker is connected. Furthermore, the short-circuit capacity of the grid is increasing with the increase in the installed capacity of general consumers.

【0014】このような要求に対して、電極構造と接触
子材料が改良され、開閉サージを減らす接触子材料とし
て、銀タングステンカーバイト(以下、Ag−WCと表
わす)合金等の特殊な合金が使われている。
To meet such demands, a special alloy such as a silver tungsten carbide (hereinafter referred to as Ag-WC) alloy is used as a contact material for improving the electrode structure and the contact material to reduce the switching surge. It is used.

【0015】一方、接触子間に発生するアークと平行に
磁界を発生させる縦磁界電極を採用した真空バルブで
は、磁界の強度とアーク電圧の関係を調査した結果、あ
る磁界の強度においてアーク電圧が最小値を示すことが
明らかになっている。このアーク電圧が最小値を示す磁
界の強度を印加することにより、電流遮断時に電極間で
消費されるエネルギーを抑え、遮断性能の向上が図られ
ている。
On the other hand, in a vacuum valve employing a longitudinal magnetic field electrode for generating a magnetic field parallel to the arc generated between the contacts, the relationship between the magnetic field strength and the arc voltage was investigated, and as a result, the arc voltage was It has been shown to show a minimum value. By applying the strength of the magnetic field in which the arc voltage exhibits the minimum value, the energy consumed between the electrodes when the current is cut off is suppressed, and the breaking performance is improved.

【0016】このアーク電圧が最小になる磁界の強度
は、接触子材料によっても異なり、汎用真空バルブで広
く用いられている銅クロム(Cu−Cr)合金に比べ
て、前述したAg−WC合金の接触子では、磁界の強度
を上げる必要がある。図4に示すコイル電極を使用した
真空バルブでは、前述したように、腕部20aの本数を減
らすことによって、磁界の強度を上げることができる。
例えば、腕部の本数を4本から、3本、2本と減らすこ
とにより、磁界の強度は、約 1.3倍、約2倍と段階的に
増える。
The strength of the magnetic field that minimizes the arc voltage differs depending on the contact material, and is higher than that of the above-mentioned Ag-WC alloy compared to the copper-chromium (Cu-Cr) alloy widely used in general-purpose vacuum valves. With the contactor, it is necessary to increase the strength of the magnetic field. In the vacuum valve using the coil electrode shown in FIG. 4, as described above, the strength of the magnetic field can be increased by reducing the number of arms 20a.
For example, by reducing the number of arms from four to three and two, the strength of the magnetic field increases stepwise by about 1.3 times and about twice.

【0017】[0017]

【発明が解決しようとする課題】ところがこのような従
来の真空バルブにおいては、電極間の磁界の強度は、段
階的にしか変えられないので、前述したアーク電圧が最
小値を示す磁界の強度にできなくて、その場合には磁界
の強度を強めにするときがある。そのときには、電極を
大きくしなければならないので、真空バルブの外形が大
きくなる。
However, in such a conventional vacuum valve, the strength of the magnetic field between the electrodes can be changed only in a stepwise manner. If this is not possible, the strength of the magnetic field may be increased in that case. At that time, since the electrodes must be made large, the outer shape of the vacuum valve becomes large.

【0018】一方、図4に示すコイル電極の腕部20aの
本数を減らして磁界の強度を増やすと、各腕部20aに流
れる電流も増え、遮断容量を増やすと、短時間電流容量
も増えるので、この短時間電流による電磁力に耐えるた
めに、各腕部20aとコイル部20bの断面積を増やさなけ
ればならなくなって、電極の外形が大きくなる。そこ
で、本発明の目的は、外形を増やすことなく、遮断容量
を上げることのできる真空バルブを得ることである。
On the other hand, if the number of arm portions 20a of the coil electrode shown in FIG. 4 is reduced to increase the strength of the magnetic field, the current flowing through each arm portion 20a also increases, and if the breaking capacity is increased, the short-time current capacity also increases. In order to withstand the electromagnetic force due to this short-time current, the cross-sectional area of each arm portion 20a and coil portion 20b must be increased, and the outer shape of the electrode becomes large. Therefore, an object of the present invention is to obtain a vacuum valve capable of increasing the breaking capacity without increasing the outer shape.

【0019】[0019]

【課題を解決するための手段】請求項1に記載の発明
は、通電軸を介して外部と接続される固定電極と可動電
極が真空容器内に接離可能に収納され、これらの固定電
極と可動電極の先端にコイル電極を介して接触子が設け
られた真空バルブにおいて、通電軸の先端と接触子の間
の軸心に、前記コイル電極と並列に第2の通電軸を設け
たことを特徴とする。
According to a first aspect of the present invention, a fixed electrode and a movable electrode, which are connected to the outside via a current-carrying shaft, are housed in a vacuum container so that they can come into contact with and separate from each other. In a vacuum valve in which a contact is provided at the tip of a movable electrode via a coil electrode, a second energizing shaft is provided in parallel with the coil electrode at the axial center between the tip of the energizing shaft and the contact. Characterize.

【0020】また、請求項2に記載の発明は、通電軸を
介して外部と接続される固定電極と可動電極が真空容器
内に接離可能に収納され、これらの固定電極と可動電極
の先端にコイル電極を介して接触子が設けられた真空バ
ルブにおいて、通電軸の先端と接触子の間の軸心に、前
記コイル電極と並列に第2の通電軸を設けるとともに、
第2の通電軸に流れる電流値を、通電軸に流れる電流値
の5〜30%としたことを特徴とする。
According to a second aspect of the present invention, a fixed electrode and a movable electrode, which are connected to the outside via a current-carrying shaft, are housed in a vacuum container so that they can come into contact with and separate from each other. In the vacuum valve in which the contact is provided via the coil electrode, a second energizing shaft is provided in parallel with the coil electrode at the axial center between the tip of the energizing shaft and the contact,
The value of the current flowing through the second current-carrying shaft is set to 5 to 30% of the value of the current flowing through the current-carrying shaft.

【0021】さらに、請求項3に記載の発明は、通電軸
を介して外部と接続される固定電極と可動電極が真空容
器内に接離可能に収納され、これらの固定電極と可動電
極の先端にコイル電極を介して接触子が設けられた真空
バルブにおいて、通電軸の先端と接触子の間の軸心に、
前記コイル電極と並列に第2の通電軸を設けるととも
に、第2の通電軸は、中空部を形成し、接触子側の外径
を通電軸側の外径よりも大としたことを特徴とする。
Further, according to a third aspect of the invention, a fixed electrode and a movable electrode which are connected to the outside through a current-carrying shaft are housed in a vacuum container so that they can come into contact with and separate from each other, and the tips of the fixed electrode and the movable electrode. In a vacuum valve in which a contactor is provided via a coil electrode, at the axial center between the tip of the energizing shaft and the contactor,
A second current-carrying shaft is provided in parallel with the coil electrode, and a hollow portion is formed in the second current-carrying shaft so that the outer diameter of the contactor side is larger than the outer diameter of the current-carrying shaft side. To do.

【0022】さらに、請求項4に記載の発明は、通電軸
を介して外部と接続される固定電極と可動電極が真空容
器内に接離可能に収納され、これらの固定電極と可動電
極の先端にコイル電極を介して接触子が設けられた真空
バルブにおいて、通電軸の先端と接触子の間の軸心に、
前記コイル電極と並列に第2の通電軸を設けるととも
に、接触子の表面の中央部に、第2の通電軸の接触子側
の外径よりも小なる凹部を形成したことを特徴とする。
Further, according to a fourth aspect of the present invention, a fixed electrode and a movable electrode which are connected to the outside via a current-carrying shaft are housed in a vacuum container so that they can come into contact with and separate from each other, and the tips of the fixed electrode and the movable electrode. In a vacuum valve in which a contactor is provided via a coil electrode, at the axial center between the tip of the energizing shaft and the contactor,
A second current-carrying shaft is provided in parallel with the coil electrode, and a recess smaller than the outer diameter of the contactor side of the second current-carrying shaft is formed in the center of the surface of the contactor.

【0023】[0023]

【作用】請求項1に記載の発明においては、第2の通電
軸の材料と形状を変えることにより、コイル電極に分流
される遮断電流は可変可能となる。また、請求項2に記
載の発明においては、第2の通電軸に分流する遮断電流
を全遮断電流の5〜30%とすることにより、コイル電極
の温度上昇は抑制される。
According to the first aspect of the invention, the cut-off current shunted to the coil electrode can be varied by changing the material and shape of the second current-carrying shaft. Further, in the invention according to the second aspect, the temperature rise of the coil electrode is suppressed by setting the breaking current shunting the second energizing shaft to 5 to 30% of the total breaking current.

【0024】さらに、請求項3に記載の発明において
は、中空部の肉厚によって第2の通電軸の抵抗値は可変
可能で、接触子の中央部は、第2の通電軸に強固に接続
されることになる。さらに、請求項4に記載の発明にお
いては、両端接触子間にかかる加圧力は、両接触子の凹
部の外側の環状部に均等に印加されることになる。
Further, in the invention according to claim 3, the resistance value of the second current-carrying shaft can be varied by the thickness of the hollow portion, and the central portion of the contact is firmly connected to the second current-carrying shaft. Will be done. Further, in the invention according to claim 4, the pressing force applied between the contact elements at both ends is evenly applied to the annular portion outside the concave portions of both contact elements.

【0025】[0025]

【実施例】以下、本発明の真空バルブの一実施例を図面
を参照して説明する。なお、真空バルブ全体の構造は、
図3と同一のため、電極の構造について、図1の平面図
(注;右半分は、後述する接触子2を除いた状態を示
す)とこの図1のA−A断面図を示す図2で説明する。
また、図1及び図2は、可動側電極1の場合を示してい
るが、固定側電極も構造は全く同一である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the vacuum valve of the present invention will be described below with reference to the drawings. The structure of the entire vacuum valve is
Since it is the same as FIG. 3, the electrode structure is shown in a plan view of FIG. 1 (note: the right half shows a state in which a contactor 2 which will be described later is removed) and a sectional view taken along the line AA of FIG. Described in.
1 and 2 show the case of the movable side electrode 1, the structure of the fixed side electrode is exactly the same.

【0026】図1及び図2において、可動側通電軸3の
先端には、座ぐり穴3aが形成され、この座ぐり穴3a
には、この座ぐり穴3aよりも小径の座ぐり穴3bが更
に形成されている。
1 and 2, a counterbore hole 3a is formed at the tip of the movable side current-carrying shaft 3, and this counterbore hole 3a is formed.
Further, a counterbored hole 3b having a smaller diameter than the counterbored hole 3a is further formed in the.

【0027】このうち、座ぐり穴3bには、外形が略凸
字状で上端にフランジ部4bを形成し、燐青銅棒から製
作された筒状の通電電極4の円筒部4aの下端が挿入さ
れ、座ぐり穴3bの底面と側面にろう付されている。ま
た、可動側通電軸3の先端には、コイル電極5の中心に
形成された円筒部5aの下端が図示しない治具で可動側
通電軸3と同軸にろう付されている。
Of these, the counterbore 3b has a substantially convex outer shape and a flange 4b formed at the upper end, and the lower end of the cylindrical portion 4a of the tubular current-carrying electrode 4 made of a phosphor bronze rod is inserted. And is brazed to the bottom surface and the side surface of the spot facing hole 3b. Further, the lower end of the cylindrical portion 5a formed at the center of the coil electrode 5 is brazed to the tip of the movable-side energizing shaft 3 coaxially with the movable-side energizing shaft 3 by a jig (not shown).

【0028】コイル電極5は、銅材で製作され、図1に
示すように、円筒部5aの外周に一対の腕部5bが180
°間隔で形成され、これらの腕部5bの先端には、弧状
のコイル部5cが形成され、このコイル部5cの先端に
は、上方に突き出た接続部5dが形成されている。これ
らの通電電極4とコイル電極5の抵抗値は、可動側通電
軸3とのろう付部から上端までの抵抗値が、コイル電極
5の抵抗値をRとし、通電電極4の抵抗値をrとする
と、19R>r>2.33Rとなっている。
The coil electrode 5 is made of a copper material, and as shown in FIG. 1, a pair of arm portions 5b is provided on the outer periphery of the cylindrical portion 5a.
Arc-shaped coil portions 5c are formed at the tips of the arm portions 5b, and the connection portions 5d projecting upward are formed at the tips of the coil portions 5c. Regarding the resistance values of the energization electrode 4 and the coil electrode 5, the resistance value from the brazed portion to the movable side energization shaft 3 to the upper end is the resistance value of the coil electrode 5 as R, and the resistance value of the energization electrode 4 as r. Then, 19R>r> 2.33R.

【0029】一方、通電電極4の上面には、円板状の接
触子2の裏面の接触子母材2bが図示しない治具によっ
て同一軸心上に載置され、下面が通電電極4の上部のフ
ランジ部4bの上面にろう付されている。接触子母材2
bには、90°間隔で放射状に溝2d1が形成され、これ
らの溝2d1の間には、この溝2d1よりも短い溝2d
2が同じく放射状に90°間隔で形成されている。
On the other hand, on the upper surface of the current-carrying electrode 4, the contactor base material 2b on the back surface of the disk-shaped contactor 2 is placed on the same axis by a jig (not shown), and the lower surface is the upper part of the current-carrying electrode 4. Is brazed to the upper surface of the flange portion 4b. Contact base material 2
Grooves 2d1 are radially formed at intervals of 90 ° in b, and a groove 2d1 shorter than the groove 2d1 is formed between the grooves 2d1.
2 are also formed radially at intervals of 90 °.

【0030】接触子2には、接触子母材2bの上面に、
この接触子母材2bと外径が同一でAg−WC材の接点
2aが載置され、接触子母材2bにあらかじめろう付さ
れている。接点2aの上面の中心部には、直径dが通電
電極4のフランジ部4bの外径Dよりも小径の座ぐり穴
2cがあらかじめ形成されている。次に、このように構
成された真空バルブの作用を説明する。
The contactor 2 has an upper surface of the contactor base material 2b.
The contact 2a of Ag-WC material having the same outer diameter as that of the contact base material 2b is placed and brazed to the contact base material 2b in advance. A counterbore 2c having a diameter d smaller than the outer diameter D of the flange 4b of the current-carrying electrode 4 is formed in the center of the upper surface of the contact 2a in advance. Next, the operation of the vacuum valve thus constructed will be described.

【0031】通電および遮断時に電極間を流れる電流
は、可動側通電軸3からこの可動側通電軸3の先端にろ
う付されているコイル電極5および通電電極4を通じ
て、接触子2の接触子母材2bに流れ、接点2aから、
対向する固定側の図示しない接点に流れる。ここで、コ
イル電極5に流れる電流、特に、弧状のコイル部5cに
流れる電流により、接触子間に発生するアークと平行な
縦磁界が発生する。また、可動側通電軸3と接触子2と
の間は、コイル電極5の抵抗値Rと通電電極4の抵抗値
rが並列に接続されている状態となる。
The current flowing between the electrodes at the time of energization and interruption is supplied from the movable side energizing shaft 3 through the coil electrode 5 and the energizing electrode 4 brazed to the tip of the movable side energizing shaft 3 to the contact mother of the contactor 2. It flows to the material 2b, and from the contact 2a,
It flows to the contact (not shown) on the fixed side which is opposed. Here, a vertical magnetic field parallel to the arc generated between the contacts is generated by the current flowing through the coil electrode 5, particularly the current flowing through the arc-shaped coil portion 5c. Further, the resistance value R of the coil electrode 5 and the resistance value r of the current-carrying electrode 4 are connected in parallel between the movable-side energizing shaft 3 and the contact 2.

【0032】そこで、各々の抵抗値の関係が前述した19
R>r>2.33Rを満足する場合には、可動側通電軸3に
流れる全電流の5〜30%が通電電極4に流れ、残りがコ
イル電極5に流れる。通電電極4に流れる電流値を5%
未満にするには、円筒部5aの断面積を狭くする必要が
あり、加工および強度上の問題で、製造が難しくなる。
また、接点2aの表面に座ぐり穴2cを設けることによ
り、対向する接触子と接触する部分は、座ぐり穴2cよ
りも外周部分となる。以上述べた本発明の一実施例によ
る効果を以下に述べる。
Therefore, the relationship between the resistance values is as described above.
When R>r> 2.33R is satisfied, 5 to 30% of the total current flowing through the movable side current-carrying shaft 3 flows to the current-carrying electrode 4, and the rest flows to the coil electrode 5. 5% of the current value flowing in the current-carrying electrode 4
In order to make it less than the above, it is necessary to narrow the cross-sectional area of the cylindrical portion 5a, which is difficult to manufacture due to problems in processing and strength.
Further, by providing the counterbore 2c on the surface of the contact 2a, the portion contacting the facing contact becomes the outer peripheral portion than the counterbore 2c. The effects of the above-described embodiment of the present invention will be described below.

【0033】接触子間に発生するアークと平行な縦磁界
の強度は、前述したように、コイル電極5のコイル部5
bに流れる電流値に比例する。つまり、コイル電極5の
腕部5aの本数に逆比例して磁界の強度は増える。した
がって、コイル電極5の腕部5aの本数が2本の場合の
磁界の強度を 100とすると、腕部5aの本数が3,4と
増加するに従い、磁界の強度は、67,50と段階的に低下
する。このように、磁界の強度は、段階的に変化するた
め、従来の真空バルブにおいては、コイル電極5の腕部
5aの本数の変化のみでは、前述した接触子材料固有の
最適な磁界の強度、つまり、アーク電圧が最小になる磁
界の強度は得られない。
As described above, the strength of the longitudinal magnetic field parallel to the arc generated between the contacts is the coil portion 5 of the coil electrode 5.
It is proportional to the value of the current flowing in b. That is, the strength of the magnetic field increases in inverse proportion to the number of arm portions 5a of the coil electrode 5. Therefore, when the strength of the magnetic field is 100 when the number of the arm portions 5a of the coil electrode 5 is 2, the strength of the magnetic field gradually increases to 67,50 as the number of the arm portions 5a increases to 3,4. Fall to. As described above, since the strength of the magnetic field changes stepwise, in the conventional vacuum valve, only the change in the number of the arm portions 5a of the coil electrode 5 causes the optimum magnetic field strength peculiar to the above-mentioned contact material, That is, the strength of the magnetic field that minimizes the arc voltage cannot be obtained.

【0034】ところが、本発明の真空バルブによれば、
通電電極4に分流する電流により、コイル電極5に流れ
る電流値を任意の値に変えることができる。通電電極4
に分流する電流は、例えば、通電電極4に使用した燐青
銅の種別(すなわち、燐の含有率)により、任意に選択
することができる。コイル電極5の腕部5aの本数が2
本の場合に、通電電極4に流れる電流値を、全体の電流
値の5〜30%とすることにより、磁界の強度を95〜70%
の範囲に変えることができる。したがって、コイル電極
5の本数を2〜4の間で変え、通電電極4に流れる電流
値を全電流値の5〜30%とすることにより、磁界の強度
をほぼ任意の値に設定することができる。これにより、
前述した接触子材料固有の最適な磁界強度、つまり、ア
ーク電圧が最小になる磁界の強度を得ることができ、遮
断性能を上げることができる。
However, according to the vacuum valve of the present invention,
The value of the current flowing in the coil electrode 5 can be changed to an arbitrary value by the current diverted to the current-carrying electrode 4. Energizing electrode 4
The current shunted into can be arbitrarily selected depending on, for example, the type of phosphor bronze used for the current-carrying electrode 4 (that is, the phosphorus content). The number of arms 5a of the coil electrode 5 is 2
In the case of a book, by setting the value of the current flowing through the current-carrying electrode 4 to 5 to 30% of the total current value, the strength of the magnetic field is 95 to 70%.
The range can be changed. Therefore, the strength of the magnetic field can be set to an almost arbitrary value by changing the number of coil electrodes 5 between 2 and 4 and setting the value of the current flowing through the energizing electrode 4 to 5 to 30% of the total current value. it can. This allows
The optimum magnetic field strength peculiar to the contact material described above, that is, the magnetic field strength that minimizes the arc voltage can be obtained, and the breaking performance can be improved.

【0035】一方、電流通電時の損失は、電流の2乗に
比例するので、コイル電極5に流れる電流を減らすこと
により、電流通電時の損失を減らすことができる。例え
ば、通電電極4に全体の電流値の30%を流し、コイル電
極5に70%の電流を流すことで、通電電極4がない真空
バルブに比べてコイル電極5での損失は49%に減少す
る。このように損失を減らすことができるので、外形を
増やすことなく、真空バルブの通電容量を増やすことが
できる。
On the other hand, since the loss when the current is applied is proportional to the square of the current, the loss when the current is applied can be reduced by reducing the current flowing through the coil electrode 5. For example, by passing 30% of the total current value to the current-carrying electrode 4 and passing 70% of the current to the coil electrode 5, the loss at the coil electrode 5 is reduced to 49% compared to a vacuum valve without the current-carrying electrode 4. To do. Since the loss can be reduced in this way, the current-carrying capacity of the vacuum valve can be increased without increasing the outer shape.

【0036】また、接点2aの表面に座ぐり穴2cを形
成することにより、座ぐり穴2cの外周部の接触圧力を
上げることができ、両電極間の接触面積が増える。ま
た、通電電極4の接点2a側の端部の外径を、座ぐり穴
2cの直径よりも大きくすることにより、通電電極4か
ら接点2cに流れる電路を確保できる。これにより、電
極部分で流れる電流経路で発生する磁界、つまり、コイ
ル電極5のコイル部5bで発生する磁界を乱す要因とな
る磁界、を減らすことができる。したがって、両電極間
の磁界の分布を均一化でき、真空バルブの遮断性能を上
げることができる。
Further, by forming the counterbore 2c on the surface of the contact 2a, the contact pressure of the outer peripheral portion of the counterbore 2c can be increased and the contact area between both electrodes is increased. Further, by making the outer diameter of the end of the energizing electrode 4 on the contact 2a side larger than the diameter of the counterbore 2c, an electric path flowing from the energizing electrode 4 to the contact 2c can be secured. Thereby, the magnetic field generated in the current path flowing in the electrode portion, that is, the magnetic field that disturbs the magnetic field generated in the coil portion 5b of the coil electrode 5 can be reduced. Therefore, the distribution of the magnetic field between both electrodes can be made uniform, and the blocking performance of the vacuum valve can be improved.

【0037】従来のコイル電極を設けた真空バルブにお
いても、コイル電極の中心部分に補強部材を配置した電
極構造が特開昭54-20373号公報などで開示されている。
ところが、従来の真空バルブでは、補強部材に高抵抗部
材を使用しており、補強部材にはほとんど通電しないこ
とを前提としている。
Also in a conventional vacuum valve provided with a coil electrode, an electrode structure in which a reinforcing member is arranged at the center of the coil electrode is disclosed in Japanese Patent Application Laid-Open No. 54-20373.
However, in the conventional vacuum valve, a high resistance member is used as the reinforcing member, and it is premised that the reinforcing member is hardly energized.

【0038】したがって、コイル電極に流れる電流の制
御は、前述したコイル電極の腕部の数だけでしかできな
かった。特に、接触子の遮断性能が優れ、アーク電圧が
最小になる磁界の強度が比較的低いCu−Cr等の接点
の場合には、コイル電極の腕部が3本以上でよいので、
従来技術でもほぼ最適磁界に近い値が得られた。
Therefore, the current flowing through the coil electrode can be controlled only by the number of arms of the coil electrode described above. In particular, in the case of a contact such as Cu-Cr having excellent contact breaking performance and a relatively low magnetic field strength that minimizes the arc voltage, three or more arm portions of the coil electrode are sufficient.
Even in the conventional technique, a value close to the optimum magnetic field was obtained.

【0039】しかしながら、接触子材料にAg−WC系
の合金を使用した場合、アーク電圧が最小になる磁界の
強度が強い。このような場合では、コイル電極の腕部の
本数を3本から2本に変更することにより、磁界強度は
前述したように、約 1.5倍に増加してしまうため、最適
な磁界強度にすることができなかった。このように、従
来の補強部材では不可能であった磁界の強度を、前述し
た通電電極4に流れる電流値を制御することにより容易
に可能となる。
However, when an Ag-WC type alloy is used as the contact material, the strength of the magnetic field at which the arc voltage is minimized is strong. In such a case, changing the number of arm portions of the coil electrode from 3 to 2 causes the magnetic field strength to increase by about 1.5 times as described above. I couldn't. In this way, the strength of the magnetic field, which is not possible with the conventional reinforcing member, can be easily achieved by controlling the value of the current flowing through the current-carrying electrode 4.

【0040】また、本実施例では、接触子母材2bを用
いているが、この接触子母材2bを省いて、コイル電極
5の先端部と通電電極4を直接接点2aにろう付しても
同様な効果を得ることができる。
Although the contact base material 2b is used in this embodiment, the contact base material 2b is omitted and the tip end of the coil electrode 5 and the current-carrying electrode 4 are directly brazed to the contact 2a. Can also obtain the same effect.

【0041】[0041]

【発明の効果】以上、請求項1に記載の発明によれば、
通電軸を介して外部と接続される固定電極と可動電極が
真空容器内に接離可能に収納され、これらの固定電極と
可動電極の先端にコイル電極を介して接触子が設けられ
た真空バルブにおいて、通電軸の先端と接触子の間の軸
心に、前記コイル電極と並列に第2の通電軸を設けるこ
とで、第2の通電軸の材料と形状を変えることにより、
コイル電極に分流される遮断電流は可変可能としたの
で、外形を増やすことなく、遮断容量を上げることので
きる真空バルブを得ることができる。
As described above, according to the invention of claim 1,
A vacuum valve in which a fixed electrode and a movable electrode, which are connected to the outside via a current-carrying shaft, are housed in a vacuum container so that they can come into contact with and separate from each other, and a contact is provided at the tip of these fixed electrode and movable electrode via a coil electrode. In, in the axial center between the tip of the current-carrying shaft and the contactor, by providing a second current-carrying shaft in parallel with the coil electrode, by changing the material and shape of the second current-carrying shaft,
Since the breaking current shunted to the coil electrode is variable, it is possible to obtain a vacuum valve capable of increasing the breaking capacity without increasing the outer shape.

【0042】また、請求項2に記載の発明によれば、通
電軸を介して外部と接続される固定電極と可動電極が真
空容器内に接離可能に収納され、これらの固定電極と可
動電極の先端にコイル電極を介して接触子が設けられた
真空バルブにおいて、通電軸の先端と接触子の間の軸心
に、前記コイル電極と並列に第2の通電軸を設けるとと
もに第2の通電軸に流れる電流値を、通電軸に流れる電
流値の5〜30%とすることでコイル電極の温度上昇を抑
制したので、外形を増やすことなく、遮断容量を上げる
ことのできる真空バルブを得ることができる。
According to the second aspect of the invention, the fixed electrode and the movable electrode, which are connected to the outside through the current-carrying shaft, are housed in the vacuum container so that they can come into contact with and separate from each other. In a vacuum valve in which a contactor is provided at the tip of a coil electrode via a coil electrode, a second current-carrying shaft is provided in parallel with the coil electrode at the axial center between the tip of the current-carrying shaft and the contactor, and a second current-carrying device is provided. Since the temperature value of the coil electrode was suppressed by setting the value of the current flowing through the shaft to 5-30% of the value of the current flowing through the energizing shaft, it is possible to obtain a vacuum valve that can increase the breaking capacity without increasing the external shape. You can

【0043】さらに、請求項3に記載の発明によれば、
通電軸を介して外部と接続される固定電極と可動電極が
真空容器内に接離可能に収納され、これらの固定電極と
可動電極の先端にコイル電極を介して接触子が設けられ
た真空バルブにおいて、通電軸の先端と接触子の間の軸
心に、前記コイル電極と並列に第2の通電軸を設けると
ともに、第2の通電軸に、中空部を形成し、接触子側の
外径を通電軸側の外径よりも大とすることで、中空部の
肉厚によって第2の通電軸の抵抗値を可変可能とし、接
触子の中央部を、第2の通電軸に強固に接続したので、
外形を増やすことなく、遮断容量を上げることのできる
真空バルブを得ることができる。
Further, according to the invention of claim 3,
A vacuum valve in which a fixed electrode and a movable electrode, which are connected to the outside via a current-carrying shaft, are housed in a vacuum container so that they can come into contact with and separate from each other, and a contact is provided at the tip of these fixed electrode and movable electrode via a coil electrode. A second energizing shaft is provided in parallel with the coil electrode at the axial center between the tip of the energizing shaft and the contactor, and a hollow portion is formed in the second energizing shaft to provide an outer diameter on the contactor side. Is larger than the outer diameter of the current-carrying shaft side, the resistance value of the second current-carrying shaft can be varied by the thickness of the hollow portion, and the central part of the contact is firmly connected to the second current-carrying shaft. Because I did
It is possible to obtain a vacuum valve capable of increasing the breaking capacity without increasing the outer shape.

【0044】さらに、請求項4に記載の発明によれば、
通電軸を介して外部と接続される固定電極と可動電極が
真空容器内に接離可能に収納され、これらの固定電極と
可動電極の先端にコイル電極を介して接触子が設けられ
た真空バルブにおいて、通電軸の先端と接触子の間の軸
心に、前記コイル電極と並列に第2の通電軸を設けると
ともに、接触子の表面の中央部に、第2の通電軸の接触
子側の外径よりも小なる凹部を形成することで両端接触
子間にかかる加圧力を、両接触子の凹部の外側の環状部
に印加させたので、外形を増やすことなく、遮断容量を
上げることのできる真空バルブを得ることができる。
Further, according to the invention described in claim 4,
A vacuum valve in which a fixed electrode and a movable electrode, which are connected to the outside via a current-carrying shaft, are housed in a vacuum container so that they can come into contact with and separate from each other, and a contact is provided at the tip of these fixed electrode and movable electrode via a coil electrode. In the above, a second current-carrying shaft is provided in parallel with the coil electrode at the axial center between the tip of the current-carrying shaft and the contactor, and the contactor side of the second current-carrying shaft is provided at the center of the surface of the contactor. By forming a recess that is smaller than the outer diameter, the pressing force applied between the contacts at both ends was applied to the annular portion outside the recess of both contacts, so that the breaking capacity can be increased without increasing the outer shape. A vacuum valve that can be obtained can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空バルブの一実施例を示す平面図。FIG. 1 is a plan view showing an embodiment of a vacuum valve of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】従来の真空バルブの一例を示す縦断面図。FIG. 3 is a vertical sectional view showing an example of a conventional vacuum valve.

【図4】従来の真空バルブに組み込まれた縦磁界形電極
の一例を示す平面図。
FIG. 4 is a plan view showing an example of a vertical magnetic field type electrode incorporated in a conventional vacuum valve.

【符号の説明】[Explanation of symbols]

1…可動側電極、2…接触子、2a…接点、2b…接触
子母材、2c…座ぐり穴、3…可動側通電軸、4…通電
電極、4a…円筒部、4b…フランジ部、5…コイル電
極、10…真空バルブ。
1 ... Movable side electrode, 2 ... Contactor, 2a ... Contact point, 2b ... Contactor base material, 2c ... Counterbore hole, 3 ... Movable side energizing shaft, 4 ... Energizing electrode, 4a ... Cylindrical part, 4b ... Flange part, 5 ... Coil electrode, 10 ... Vacuum valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 通電軸を介して外部と接続される固定電
極と可動電極が真空容器内に接離可能に収納され、これ
らの固定電極と可動電極の先端にコイル電極を介して接
触子が設けられた真空バルブにおいて、前記通電軸の先
端と前記接触子の間の軸心に、前記コイル電極と並列に
第2の通電軸を設けたことを特徴とする真空バルブ。
1. A fixed electrode and a movable electrode, which are connected to the outside via an energizing shaft, are housed in a vacuum container so as to be able to come into contact with and separate from each other, and a contactor is provided at the tip of these fixed electrode and the movable electrode via a coil electrode. A vacuum valve provided, wherein a second current-carrying shaft is provided in parallel with the coil electrode at a shaft center between a tip of the current-carrying shaft and the contactor.
【請求項2】 第2の通電軸に流れる電流値を、通電軸
に流れる電流値の5〜30%としたことを特徴とする請求
項1記載の真空バルブ。
2. The vacuum valve according to claim 1, wherein the value of the current flowing through the second energizing shaft is set to 5 to 30% of the value of the current flowing through the energizing shaft.
【請求項3】 第2の通電軸は、中空部を形成し、接触
子側の外径を通電軸側の外径よりも大としたことを特徴
とする請求項1又は請求項2記載の真空バルブ。
3. The second current-carrying shaft has a hollow portion, and the outer diameter on the contact side is larger than the outer diameter on the current-carrying shaft side. Vacuum valve.
【請求項4】 接触子の表面の中央部に、第2の通電軸
の接触子側の外径よりも小なる凹部を形成したことを特
徴とする請求項1記載の真空バルブ。
4. The vacuum valve according to claim 1, wherein a concave portion having a diameter smaller than the outer diameter of the second energizing shaft on the contact side is formed in the center of the surface of the contact.
JP29467092A 1992-11-04 1992-11-04 Vacuum valve Pending JPH06150784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29467092A JPH06150784A (en) 1992-11-04 1992-11-04 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29467092A JPH06150784A (en) 1992-11-04 1992-11-04 Vacuum valve

Publications (1)

Publication Number Publication Date
JPH06150784A true JPH06150784A (en) 1994-05-31

Family

ID=17810789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29467092A Pending JPH06150784A (en) 1992-11-04 1992-11-04 Vacuum valve

Country Status (1)

Country Link
JP (1) JPH06150784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359548B1 (en) * 1995-06-07 2003-01-24 이턴 코포레이션 A vacuum circuit breaker having a single internal assembly for generating an axial magnetic field
JP2013149545A (en) * 2012-01-23 2013-08-01 Mitsubishi Electric Corp Vacuum valve
WO2014200662A1 (en) * 2013-06-14 2014-12-18 Eaton Corporation A high current vacuum interrupter with sectional electrode and multi heat pipes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359548B1 (en) * 1995-06-07 2003-01-24 이턴 코포레이션 A vacuum circuit breaker having a single internal assembly for generating an axial magnetic field
JP2013149545A (en) * 2012-01-23 2013-08-01 Mitsubishi Electric Corp Vacuum valve
WO2014200662A1 (en) * 2013-06-14 2014-12-18 Eaton Corporation A high current vacuum interrupter with sectional electrode and multi heat pipes
US9006600B2 (en) 2013-06-14 2015-04-14 Eaton Corporation High current vacuum interrupter with sectional electrode and multi heat pipes
CN105308702A (en) * 2013-06-14 2016-02-03 伊顿公司 A high current vacuum interrupter with sectional electrode and multi heat pipes
KR20160021114A (en) * 2013-06-14 2016-02-24 이턴 코포레이션 A high current vacuum interrupter with sectional electrode and multi heat pipes
JP2016522559A (en) * 2013-06-14 2016-07-28 イートン コーポレーションEaton Corporation High current vacuum circuit breaker with prefabricated electrode and multiple heat pipes
CN105308702B (en) * 2013-06-14 2019-10-11 伊顿智能动力有限公司 Large-current vacuum arc extinguishing chamber with combined electrode and multiple heat pipes

Similar Documents

Publication Publication Date Title
US5793008A (en) Vacuum interrupter with arc diffusing contact design
KR100685507B1 (en) Vacuum valve
EP0329410B1 (en) Vacuum interrupter
US6479779B1 (en) Vacuum switching device
US4553002A (en) Axial magnetic field vacuum-type circuit interrupter
US6740838B2 (en) Contact for vacuum interrupter and vacuum interrupter using the contact
JPH06267378A (en) Vacuum circuit breaker, electrode therefor, and manufacture thereof
JPH06150784A (en) Vacuum valve
JPH11162302A (en) Vacuum bulb
JPH06150785A (en) Vacuum valve
JPH09147699A (en) Vacuum valve
JPH087723A (en) Vacuum valve
JP3441224B2 (en) Vacuum valve and method of manufacturing the same
JPH01315914A (en) Vacuum bulb
JPH06103859A (en) Vacuum valve
JPH02270233A (en) Vacuum valve
JP3231573B2 (en) Vacuum valve
JPH11120873A (en) Vacuum valve
JPH0822751A (en) Vacuum valve
JPH07220587A (en) Vacuum valve
JPH05282972A (en) Vacuum valve
JPH08111148A (en) Electrode of vacuum valve
JPH08180775A (en) Vacuum valve
JPS6166324A (en) Vacuum interrupter
JPH0393120A (en) Vacuum valve