JPS6388619A - Crystal resonator temperature control device and crystal resonator temperature control element - Google Patents

Crystal resonator temperature control device and crystal resonator temperature control element

Info

Publication number
JPS6388619A
JPS6388619A JP23371086A JP23371086A JPS6388619A JP S6388619 A JPS6388619 A JP S6388619A JP 23371086 A JP23371086 A JP 23371086A JP 23371086 A JP23371086 A JP 23371086A JP S6388619 A JPS6388619 A JP S6388619A
Authority
JP
Japan
Prior art keywords
temperature
crystal resonator
heat
signal
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23371086A
Other languages
Japanese (ja)
Inventor
Motohiro Sakai
基弘 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAAMOBONITSUKU KK
Thermovonics Co Ltd
Original Assignee
SAAMOBONITSUKU KK
Thermovonics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAAMOBONITSUKU KK, Thermovonics Co Ltd filed Critical SAAMOBONITSUKU KK
Priority to JP23371086A priority Critical patent/JPS6388619A/en
Publication of JPS6388619A publication Critical patent/JPS6388619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To stabilize an oscillation frequency and to attain the easily arrival at a constant temperature condition by supplying a current to a thermoelectric converting element so that a crystal resonator can be maintained to a prescribed temperature based on the signal obtained from a temperature detecting means. CONSTITUTION:The temperature of a crystal resonator 2 detected by a temperature detecting edge 3 is removed by a lead wire 4 as a signal and the signal is supplied to the input side of a comparator 13. The signal is compared with the resistance value of a reference resistor, and when the difference between these two resistance values is absent, a signal (OFF signal) to stop the current supplying from a power source to a thermoelectric converting element is sent from the output side of the comparator 13. On the other hand, when the difference between two resistance values is present, a signal (ON signal) to supply the current from the power source to the thermoelectric converting element is sent from the output side of the comparator 13. The sent ON signal is supplied to an ON-OFF switch 14, and then, the current is supplied from the power source to the thermoelectric converting element. When the signal is an ON signal, a power source changing-over switch 15 reversely rotates the direction of the current supplied to the thermoelectric converting element when the environment temperature of the thermoelectric converting element is higher and lower than the set temperature.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、熱電変換装置を用いて水晶振動子を所定の温
度に保つことにより水晶振動子の発振周波数を一定に保
持する装置及び該装置に用いられる温度a、II御素子
に関覆る。 [従来の技術] 従来、水晶振動子の発振周波数の安定化する方式として
、例えば水晶振動子が用いられる環境温度よりa温に保
持された恒温ケーシングに水晶振動子を収容する方法が
採用されて来ている。この方式では、ケーシングの温度
制御が、恒温ケーシングの温度変化、即ち水晶振動子の
温度変化に対する発振周波数の変化率の比較的大きな温
度領域で行われているために、周波数の安定化の点で必
ずしも満足しうるものではなく、また、ケーシングを環
境温度より高く設定された所定温度にまで昇温するのに
時間がかかる等の欠点がある。 [本発明が解決しようとする問題点] 本発明は、前記諸点に鑑みなされたものであり、その目
的とするところは、水晶振動子の発振周波数を更に安定
化させ得、かつ水晶振動子を恒温状態に早く到達させ得
る小型の水晶振動子温度制御装置を提供することにある
。 [問題点を解決するための手段] 本発明によれば、前記目的は、水晶振動子と、該水晶振
動子の温度を調節すべく、一方の吸熱・放熱板に前記水
晶振動子が取り付けられた熱電変換素子と、前記水晶振
動子の温度を検出すべく設けられた温度検出手段と、該
温度検出手段から得られる信号にもとづき、前記水晶振
動子を所定温度に維持すべく、前記熱電変換素子に電流
を供給する手段とからなる水晶振動子温度制御装置によ
って達成される。 本発明において用いられる水晶振動子は、使用上の目的
に適合するような形状・寸法及び方位に切断した水晶片
と、該水晶片に電界を印加すべくこの水晶片の面に密着
させた電極と、この電極に接続された端子とからなる。 本発明に用いられる水晶振動子には、発振子として用い
られる水晶振動子と、共振子として用いられる水晶撮動
子の双方が含まれるものとする。 本発明装置又は素子に用いられる熱電変換素子は、電気
エネルギーによって一方の吸熱・放熱板としての吸熱板
から他方の吸熱・放熱板としての放熱板への熱エネルギ
ーの流れを生じさせるいわゆるベルチェ効果を利用した
素子で、一方の吸熱・放熱板と他方の吸熱・放熱板との
間に配列されたP型半導体とN型半導体とを備える熱電
変換素子が好ましい。こ1で、P型半導体とN型半導体
とは所望に応じて適宜の数だけ電気的に直列に接続され
た構造である。 所望に応じて、いずれか一方の吸熱・放熱板に別の熱電
変換素子を1個、または、複数個の熱電変換素子を順次
取り付けて、いわゆるカスケード型の熱電変換素子を用
いることもできる。また、熱電変換素子の加熱速度又は
冷却速度を向上させるために、水晶振動子を取り付けた
吸熱・放熱板とは反対側に位置した吸熱・放熱板にフィ
ンを設けるのが好ましく、この際一体向に又は別体でフ
ィンを設けることができる。 本発明における温度検出手段は、本発明装置又は素子に
[Industrial Field of Application] The present invention relates to a device for keeping the oscillation frequency of a crystal resonator constant by keeping the crystal resonator at a predetermined temperature using a thermoelectric conversion device, and temperature a, II used in the device. Concerning Gomotoko. [Prior Art] Conventionally, as a method for stabilizing the oscillation frequency of a crystal resonator, a method has been adopted in which the crystal resonator is housed in a constant-temperature casing that is maintained at a temperature a higher than the environmental temperature in which the crystal resonator is used. It is coming. In this method, the temperature of the casing is controlled in a temperature range where the rate of change of the oscillation frequency relative to the temperature change of the constant-temperature casing, that is, the temperature change of the crystal resonator, is relatively large, so it is difficult to stabilize the frequency. This method is not always satisfactory, and has disadvantages such as the fact that it takes time to heat the casing to a predetermined temperature that is set higher than the environmental temperature. [Problems to be Solved by the Present Invention] The present invention has been made in view of the above-mentioned points, and its purpose is to further stabilize the oscillation frequency of a crystal resonator, and to An object of the present invention is to provide a small-sized crystal resonator temperature control device that can quickly reach a constant temperature state. [Means for Solving the Problems] According to the present invention, the object is to provide a crystal oscillator, and a structure in which the quartz crystal oscillator is attached to one of the heat absorbing/radiating plates in order to adjust the temperature of the crystal oscillator. a thermoelectric conversion element provided to detect the temperature of the crystal resonator; and a temperature detection means provided to detect the temperature of the crystal resonator; This is accomplished by a crystal oscillator temperature control device comprising means for supplying current to the element. The crystal resonator used in the present invention includes a crystal piece cut into a shape, size, and orientation suitable for the purpose of use, and an electrode closely attached to the surface of the crystal piece to apply an electric field to the crystal piece. and a terminal connected to this electrode. The crystal resonator used in the present invention includes both a crystal resonator used as an oscillator and a crystal camera element used as a resonator. The thermoelectric conversion element used in the device or element of the present invention has the so-called Bertier effect, which causes thermal energy to flow from one heat-absorbing/heat-radiating plate to the other heat-absorbing/heat-radiating plate by electrical energy. Among the elements utilized, a thermoelectric conversion element comprising a P-type semiconductor and an N-type semiconductor arranged between one heat-absorbing/heat-radiating plate and the other heat-absorbing/heat-radiating plate is preferable. In this case, an appropriate number of P-type semiconductors and N-type semiconductors are electrically connected in series as desired. If desired, it is also possible to use a so-called cascade type thermoelectric conversion element by sequentially attaching another thermoelectric conversion element or a plurality of thermoelectric conversion elements to either one of the heat absorption/heat dissipation plates. In addition, in order to improve the heating rate or cooling rate of the thermoelectric conversion element, it is preferable to provide fins on the heat absorbing/heat dissipating plate located on the opposite side of the heat absorbing/heat dissipating plate to which the crystal oscillator is attached. Fins can be provided separately or separately. The temperature detection means in the present invention is installed in the device or element of the present invention.

【ブられる温度検出端と、該検出端で検出した温度に
対応する物理グを信号として伝達する伝達部(リード線
)とからなる。また、温度検出手段はゼー”ベック効果
を発現する熱電変換素子から構成される手段であっても
よい。 また、本発明の81又は素子に用いられる電流供給手段
は、前記温度検出手段から得られる信号にもとづいて、
水晶振動子の温度と基準温度く設定温度)とを比較して
その結果を比較結果信号として送出する比較手段と、こ
の比較結果信号にもとづいて、熱電変換素子へ流れる電
流を0N−OFFする手段、又は前記比較信号を受信し
て、温度差がないときは電源から熱電変換素子へ流れる
電流をゼロとし、温度差が増大するにつれて熱電変換素
子へ大きな電流を流1″電流制郊回路と、水晶振動子温
度制御素子が配置される環境温度に応じて、熱電変換素
子へ流れる電流の方向を切替える手段と、熱電変換素子
に電流を供給する電源とからなる。 本発明の水晶振動子温度制′a素子は水晶振動子と、温
度検出手段と、熱電変換素子とhXらなる。 [具体例] 以下本発明を、図面の示す好ましい具体例を用いより詳
細に説明する。 第1図において、熱電変換素子の一方の吸熱・放熱板6
に水晶振動子2が接合されている。また、水晶振動子2
の吸熱・放熱板6に対向する面には温度検出手段の温度
検出端3が取り付けられており、リード線4によって水
晶振動子の温度が信号として取り出され、この信号は比
較器13の入力側に供給されている。熱電変換素子の一
方の吸熱・放熱板6と他方の吸熱・放熱板7との間には
、熱電変換用のP型半導体8とN型半導体9とが交互に
配置されており、端子11及び端子12間で交互に配置
された半導体素子8及び9は電気的に直列に接続されて
いる。端子11及び端子12は電流供給手段16に電気
的に接続されている。電流供給手段16から熱電変換素
子に供給される電気エネルギーによる吸熱・発熱効果に
よって水晶振動子2を所定の設定温度に維持する際に水
晶振動子2への熱の供給速度又は水晶振動子2からの熱
の放出速度を向上させるために、熱電変換素子の他方の
吸熱・放熱板7にはフィンが設けられている。水晶撮動
子2と一方の吸熱・放熱板6との接合には、熱伝導性の
接着剤、例えば熱伝導性の良いエポキシ樹脂からなる接
着剤を用いることができ、この接着剤の熱伝尋を向上さ
せるためにアルミナ等のフィラーを混入してもよい。温
度検出端3を水晶撮動子2の表面に取り付ける場合には
、温度検出端3を水晶振動子2の表面に接触させた状態
で水晶撮動子2の表面と温度検出端3の表面に接着剤を
塗布して、吸熱・放熱板6に接着してもよい、、温度検
出端3としては抵抗形の検出端、例えばサーミスタを用
いることができる。また、本発明における熱電変換素子
のpt及びN型半導体素子の一部を、他のP型及びN型
半導体素子から絶縁して、ゼーベック効果を発現する熱
電変換素子を構成することにより、水晶振動子の温度を
検出する手段とすることもできる。 一方の吸熱・放熱板6、他方の吸熱・放熱板7、これら
2つの吸熱・放熱板間に配置さねるP望半導体素子8、
N望半導体素子9及びフィン10は熱電変換素子を構成
し、水晶振動子2、温度検出端3、この温度検出端3に
接続されたり−1−2線4及び熱電変換索子は水晶振動
子温度制御素子索子1を構成する。 水晶振動子2の温度を一定に随持づ゛べき目標温度、f
fJIiう設定温度を任怠V:選定りることかできるけ
れども、本発明においては水晶振動子2の温度による発
振周波数安動の最も少ない40℃に設定温度が設定され
る。 温度検出端3どしては、例えば抵抗形の検出端が用いら
れる場合には、設定温度40℃においで検出端3の示タ
ー抵抗値と比較できる基準抵抗体が比較器13内に内蔵
される。温度検出端3により検出された水晶振動子2の
湿度はリード線4によって信号どして取り出され、どの
信号は比較器13の入力側(二供給される。との信号は
り壁紙抗体の抵抗値と比較され、これら2つの抵抗値間
に差がなijれば、電源から熱電変換素子への電流供給
を阻+I−する信号(OF F信号)が比較器13の出
力側から送出され、2つの抵抗値間に差があれ13f:
、電源から熱電変換素子へ電流を供給さ1!る信号(O
N信号)が比較器13の出力側から送出されるように、
比較器13が構成されでいる。 比較器13から送出されるON信号が0N−0[−Fス
イッチ14に供給されると、図示されていない電源から
電流が熱電変換索子に供給される。 比較器13から送出される信号がON信号の場合、電源
切替スイッチ15は、熱電変換素子の環境温度が40℃
より高い場合と、熱電変換素子の環境温度が40℃より
低い場合とで、熱電変換素子へ供給される電流の方向を
逆転させるように構成されている。 上述の0N−OFFスイッチの代りに、電流制御回路1
4が用いられる場合には、M流制御回路14は比較器1
3からの比較結果信号としての差信号を受信すると、湿
度差がないときは、熱電変換素子へ流す電流をゼロとし
、温度差が増大するにつれ0N−OFFスイスイッチい
た場合と同様に作動する。 図に示される熱電変換素子における電気的接続において
は、電源の負極が端子11に、正極が端子12にそれぞ
れ接続されている場合には、吸熱・放熱板6が冷却され
、吸熱・放熱板7は発熱する。 即ら、電源から供給される電気エネルギーは、吸熱・放
熱板6に接合された水晶振動子2に対して冷却作用を行
う。これとは反対に電源の負極が端子12に、正極が端
子11に接続される場合には、吸熱・放熱板6゛は発熱
し、吸熱・放熱板1は冷却される。即ち、電源から供給
される電気エネルギーは吸熱・放熱板6に接合された水
晶振動子2に対して加熱作用を行う。 従って、電源切替えスイン3715は、環境温度から4
0℃より高い場合には、電源の正極が端子11に、負極
が端子12にそれぞれ接続され、環境温度が40℃より
低い場合には、電源の正極が端子12に、負極が端子1
1にそれぞれ接続されるように構成されている。 比較器13と、0N−OFFスイップ14又は電流制御
回路14と、電源切替スイッチ15及び図示されていな
いN源は電源供給手段16を構成する。 本発明の水晶振動子温度制tia装置及び水晶振動子温
度制御素子において、設定温度と環境温度との温度差が
何度であれば、本発明の装置又は素子が、水晶振動子を
所定温度に維持し折るかは、本発明の装置又llt木子
に用いられる熱電変換素子の加熱能力又G、を冷FA能
力「Jミって定まる。熱電変換素j″−の加熱能力又は
冷五1】能力は、一定の電流条件トでは、熱電変換素子
に用いられるP型及びN ’fuの半導体素子の内部抵
抗値ど、これらの半導体素子の形状・寸法及び熱電変換
素子の熱処理能力を向上させるフィンの有無等によって
決定される。 本発明の装置及び素子においては、Pへi!及びN型の
半導係累rの形状・寸法及び内部抵抗を適切に選定する
と共に、吸熱・放熱板にフィンを取り付ける等の手段を
採用することにより、温度差30℃−・40℃に一相当
する熱処理能力を光分保有]ノて113す、0℃〜・−
70℃の環境温度下では水晶振動子を常時40℃の設定
温度に維持1ノ得るように構成されている。 本発明装置は、上述のように構成されているため、例え
ば自動@等に取り付けられた場合、取り付は位置の環境
)U庇が例えば70℃であったどしても温度検出端3の
温度が40’C(、−ならt〆い限り、電源から電流i
J(熱電変換素子に供給され、熱電変換素子の冷却作用
(二重っT、水晶振動子は常時式9定温度40℃に維持
され、水晶振動子から発振される周波数は當峙一定に保
持される。また本発明装置の取り付は位置での環境温度
が、例えば0℃である場合、温度検出端3の温度が40
℃にならない限り、7を源から電流が熱電変換素子に供
給され、熱電変換素子の加熱作用に二よって、水晶振動
子は常に設定温度40℃に維持され、水晶振動子から発
振される周波数は常に一定に保たれる。 本発明の装置及び素子は、第1図に示される水晶振動子
温度制御装置及び水晶振動子温度制御素子を変形したも
のであってもよく、いわゆるカスケード形の熱電変換素
子を用いた水晶振動子温度制御装置又は水晶振動子温度
制御素子であり得る。 第2図にカスケード形熱電変換素子を用いた水晶振動子
温度制御免−fの一具体例を示す。 2枚の吸熱・放熱板24.25間と、吸熱・放熱板25
、28問にそれぞれP望半導体素子26とN型半導体素
子21とを交ム1に一配訝し、半導体素子26.27を
電気的に直列に接続しである。吸熱・放熱板28には熱
処理速度を白土させるフィン29を取り付けて熱電変換
素子を侶成し、吸熱・放熱板24に水晶振動子21ど温
度検出手段22.23を取り付けることによって水晶振
動了温度制all素子20が得られる。 第2図に示す、水晶振動子温度制御素子(,1,3枚の
吸熱・tfi、熱電を使用した熱電変換素子を用いたも
のであるが、吸熱・放熱板を4投置」−用いて相亙に対
向する2枚の吸熱・放熱板間に1)型半導体素子とN型
半導体素子を交互に配置し、これら2種の半導体素子を
電気的に直列に接続して構成されるカスケード形熱電変
換素子に水晶振動子と温度検出手段を取り付けたカスケ
ード形水晶振動子温度制t[l素子とづることもぐきる
。 [発明の効果コ 以上のように構成された水晶振動イ温度制6Il装置に
よれば、水晶振動子が、温度変化に対する周波数変化の
最も少ない40℃の設定温度に維持されるために、水晶
振¥A子の発振周波数を安定化させることができる。ま
た、水晶振動子が、従来技術におけるような比較的高温
に保持されないために、水晶振動−子の庁命を長くする
ごとができると共に雑音の発生を有効に防止し得る。従
来技術の如き間接加熱による水晶振動子の恒温化とは異
なり、熱電変換素子に水晶振動子が直接接合されている
ために、昇温の立ち、トがりがりく、短時間で40℃の
定常状態に到達させることがr:きる。
[It consists of a temperature detection end that can be opened, and a transmission section (lead wire) that transmits the physical signal corresponding to the temperature detected by the detection end as a signal. Further, the temperature detection means may be a means constituted by a thermoelectric conversion element that exhibits the See"Beck effect. Furthermore, the current supply means used in the element 81 of the present invention may be obtained from the temperature detection means. Based on the signal
Comparing means for comparing the temperature of the crystal resonator with a reference temperature (preset temperature) and sending the result as a comparison result signal, and means for turning on and off the current flowing to the thermoelectric conversion element based on this comparison result signal. or a 1″ current limiting circuit that receives the comparison signal and sets the current flowing from the power source to the thermoelectric conversion element to zero when there is no temperature difference, and flows a large current to the thermoelectric conversion element as the temperature difference increases; The crystal resonator temperature control element of the present invention is comprised of means for switching the direction of current flowing to the thermoelectric conversion element according to the environmental temperature in which the crystal resonator temperature control element is arranged, and a power supply that supplies current to the thermoelectric conversion element. The 'a element consists of a crystal resonator, a temperature detection means, a thermoelectric conversion element, and an hX. [Specific Examples] The present invention will be explained in more detail below using preferred specific examples shown in the drawings. In Fig. 1, One heat absorption/heat dissipation plate 6 of the thermoelectric conversion element
A crystal resonator 2 is bonded to the quartz crystal resonator 2 . In addition, crystal oscillator 2
The temperature detection end 3 of the temperature detection means is attached to the surface facing the heat absorption/heat dissipation plate 6, and the temperature of the crystal resonator is taken out as a signal by the lead wire 4, and this signal is sent to the input side of the comparator 13. is supplied to. P-type semiconductors 8 and N-type semiconductors 9 for thermoelectric conversion are alternately arranged between one heat absorption/heat dissipation plate 6 and the other heat absorption/heat dissipation plate 7 of the thermoelectric conversion element, and terminals 11 and Semiconductor elements 8 and 9 alternately arranged between terminals 12 are electrically connected in series. Terminal 11 and terminal 12 are electrically connected to current supply means 16 . When maintaining the crystal oscillator 2 at a predetermined set temperature by the heat absorption/exothermic effect of the electric energy supplied from the current supply means 16 to the thermoelectric conversion element, the rate of heat supply to the crystal oscillator 2 or from the crystal oscillator 2 In order to improve the rate of heat release, the other heat absorbing/radiating plate 7 of the thermoelectric conversion element is provided with fins. A thermally conductive adhesive, such as an adhesive made of epoxy resin with good thermal conductivity, can be used to bond the crystal camera 2 and one of the heat absorbing/radiating plates 6. Fillers such as alumina may be mixed in to improve the thickness. When attaching the temperature detection end 3 to the surface of the crystal sensor 2, attach the temperature detection end 3 to the surface of the crystal sensor 2 and the surface of the temperature detection end 3 with the temperature detection end 3 in contact with the surface of the crystal resonator 2. It may be bonded to the heat absorbing/heat dissipating plate 6 by applying an adhesive. As the temperature detecting end 3, a resistance type detecting end such as a thermistor can be used. In addition, by insulating a part of the PT and N-type semiconductor elements of the thermoelectric conversion element of the present invention from other P-type and N-type semiconductor elements to configure a thermoelectric conversion element that exhibits the Seebeck effect, crystal oscillation can be achieved. It can also be used as a means to detect the child's temperature. One heat absorbing/heat dissipating plate 6, the other heat absorbing/heat dissipating plate 7, a P-type semiconductor element 8 disposed between these two heat absorbing/heat dissipating plates,
The semiconductor element 9 and the fin 10 constitute a thermoelectric conversion element, and the crystal oscillator 2, the temperature detection terminal 3, and the -1-2 wire 4 and the thermoelectric conversion cord connected to the temperature detection terminal 3 are connected to the crystal oscillator 2, the temperature detection terminal 3, and the thermoelectric conversion element. A temperature control element cord 1 is configured. Target temperature to keep the temperature of the crystal oscillator 2 constant, f
Although it is possible to arbitrarily select the set temperature, in the present invention, the set temperature is set to 40° C., where the oscillation frequency fluctuation due to the temperature of the crystal resonator 2 is the least. For example, if a resistance type detection terminal is used as the temperature detection terminal 3, a reference resistor is built in the comparator 13, which can be compared with the resistance value indicated by the detection terminal 3 at a set temperature of 40°C. Ru. The humidity of the crystal oscillator 2 detected by the temperature detection end 3 is taken out as a signal by the lead wire 4, which signal is supplied to the input side (2) of the comparator 13. If there is no difference between these two resistance values, a signal (OF signal) that blocks the current supply from the power supply to the thermoelectric conversion element is sent from the output side of the comparator 13. If there is a difference between the two resistance values, 13f:
, current is supplied from the power supply to the thermoelectric conversion element 1! signal (O
N signal) is sent out from the output side of the comparator 13.
A comparator 13 is configured. When the ON signal sent from the comparator 13 is supplied to the 0N-0[-F switch 14, a current is supplied from a power source (not shown) to the thermoelectric conversion rope. When the signal sent from the comparator 13 is an ON signal, the power selector switch 15 indicates that the ambient temperature of the thermoelectric conversion element is 40°C.
The direction of the current supplied to the thermoelectric conversion element is configured to be reversed depending on whether the environmental temperature of the thermoelectric conversion element is higher than 40°C or lower than 40°C. Instead of the above-mentioned 0N-OFF switch, the current control circuit 1
4 is used, the M flow control circuit 14
When a difference signal as a comparison result signal from No. 3 is received, when there is no humidity difference, the current flowing to the thermoelectric conversion element is set to zero, and as the temperature difference increases, it operates in the same way as an ON-OFF switch. In the electrical connection in the thermoelectric conversion element shown in the figure, when the negative electrode of the power source is connected to the terminal 11 and the positive electrode is connected to the terminal 12, the heat absorption/heat dissipation plate 6 is cooled, and the heat absorption/heat dissipation plate 7 is cooled. generates fever. That is, the electrical energy supplied from the power supply has a cooling effect on the crystal resonator 2 joined to the heat absorbing/radiating plate 6. On the contrary, when the negative terminal of the power source is connected to the terminal 12 and the positive terminal to the terminal 11, the heat absorbing/heat dissipating plate 6' generates heat and the heat absorbing/heat dissipating plate 1 is cooled. That is, the electrical energy supplied from the power supply has a heating effect on the crystal resonator 2 joined to the heat absorbing/radiating plate 6. Therefore, the power switching switch 3715 is
When the temperature is higher than 0°C, the positive pole of the power supply is connected to terminal 11 and the negative pole is connected to terminal 12, and when the environmental temperature is lower than 40°C, the positive pole of the power supply is connected to terminal 12, and the negative pole is connected to terminal 1.
1, respectively. The comparator 13, the ON-OFF switch 14 or the current control circuit 14, the power changeover switch 15, and the N source (not shown) constitute a power supply means 16. In the crystal resonator temperature control device and crystal resonator temperature control element of the present invention, if the temperature difference between the set temperature and the environmental temperature is Whether to maintain or break is determined by the heating capacity or G of the thermoelectric conversion element used in the device of the present invention or the cold FA capacity "J". The ability to improve the internal resistance of P-type and N'fu semiconductor elements used in thermoelectric conversion elements, the shape and dimensions of these semiconductor elements, and the heat treatment ability of thermoelectric conversion elements under certain current conditions. Determined by the presence or absence of etc. In the device and element of the present invention, i! By appropriately selecting the shape, dimensions, and internal resistance of the N-type semiconductive coupling r, and by adopting means such as attaching fins to the heat absorption/radiation plate, the temperature difference equivalent to 30°C to 40°C can be reduced. Possesses the heat treatment ability of light to
The crystal resonator is always maintained at a set temperature of 40°C under an environmental temperature of 70°C. Since the device of the present invention is configured as described above, when it is installed, for example, in an automatic @, etc., even if the temperature of the U eaves is 70°C, the temperature detection end 3 If the temperature is 40'C (, -, then the current i from the power supply is
J (supplied to the thermoelectric conversion element, cooling effect of the thermoelectric conversion element (double T), the crystal oscillator is always maintained at a constant temperature of 40°C, and the frequency oscillated from the crystal oscillator is kept constant. In addition, when the environmental temperature at the location is 0°C, the temperature of the temperature detection end 3 is 40°C.
℃, current is supplied from the source 7 to the thermoelectric conversion element, and due to the heating action of the thermoelectric conversion element, the crystal resonator is always maintained at the set temperature of 40℃, and the frequency oscillated from the crystal resonator is always kept constant. The device and element of the present invention may be a modified version of the crystal resonator temperature control device and crystal resonator temperature control element shown in FIG. It can be a temperature control device or a quartz crystal temperature control element. FIG. 2 shows a specific example of a crystal resonator temperature control module using cascade type thermoelectric conversion elements. Between the two heat absorption/heat dissipation plates 24 and 25, and between the heat absorption/heat dissipation plates 25
, 28, respectively, a P-type semiconductor element 26 and an N-type semiconductor element 21 are arranged in the cross section 1, and the semiconductor elements 26 and 27 are electrically connected in series. A fin 29 is attached to the heat absorption/heat dissipation plate 28 to increase the heat treatment rate to form a thermoelectric conversion element, and a temperature detection means 22, 23 such as a crystal oscillator 21 is attached to the heat absorption/heat dissipation plate 24 to adjust the crystal vibration end temperature. A control element 20 is obtained. As shown in Figure 2, a crystal oscillator temperature control element (using one or three heat absorption/TFI and a thermoelectric conversion element using thermoelectricity, with four heat absorption/heat dissipation plates placed) was used. A cascade type in which 1) type semiconductor elements and N type semiconductor elements are arranged alternately between two opposing heat absorbing/heat dissipating plates, and these two types of semiconductor elements are electrically connected in series. A cascade type crystal oscillator temperature control element is a thermoelectric conversion element equipped with a crystal oscillator and temperature detection means. [Effects of the Invention] According to the crystal oscillation temperature control device configured as described above, the crystal oscillator is maintained at the set temperature of 40°C, which has the least frequency change with respect to temperature changes. The oscillation frequency of the ¥A element can be stabilized. Furthermore, since the crystal oscillator is not held at a relatively high temperature as in the prior art, the life of the crystal oscillator can be extended and the generation of noise can be effectively prevented. Unlike conventional technology, which maintains the temperature of the crystal oscillator by indirect heating, because the crystal oscillator is directly bonded to the thermoelectric conversion element, the temperature rises rapidly, the temperature rises sharply, and the steady state of 40°C is achieved in a short period of time. It is possible to reach r:.

【図面の簡単な説明】[Brief explanation of the drawing]

第゛1図は本発明装置の好ましい−・具体例の説明図、
第2図は本発明索−子の一員体例の説明図である。 1,20・・・・・・水晶振動子温度制御素子、?、2
1・・・・・・水晶振動子、3,22・・・・・・温度
検出端、4,23・・・・・・リード線、6.7,24
,25.28・・・・・・吸熱・放熱板、8,2G・・
・・・・P型半導体素子、9.21・・・・・・N型半
導体素子、10、29・・・・・・フィン、13・・・
・・・比較器、14・・・・・・0N−OFFスイスイ
ッチは温度制御回路)、15・・・・・・電源切替スイ
ッチ、16・・・・・・・・・電流供給手段。 酵人 4メメ8防7−tネ゛−・7ノ 間人fP理上月1 口 義 雄
FIG. 1 is an explanatory diagram of a preferred specific example of the device of the present invention;
FIG. 2 is an explanatory diagram of an example of a member of the cable according to the present invention. 1,20...Crystal resonator temperature control element, ? ,2
1... Crystal resonator, 3, 22... Temperature detection end, 4, 23... Lead wire, 6.7, 24
, 25.28... Heat absorption/radiation plate, 8,2G...
...P-type semiconductor element, 9.21...N-type semiconductor element, 10, 29...Fin, 13...
... Comparator, 14 ... 0N-OFF switch is a temperature control circuit), 15 ... Power supply changeover switch, 16 ... Current supply means. Fermented person 4 meme 8 defense 7-tne-7 human fP Rijotsuki 1 Yoshio Kuchi

Claims (6)

【特許請求の範囲】[Claims] (1)水晶振動子と、該水晶振動子の温度を調節すべく
、一方の吸熱・放熱板に前記水晶振動子が取り付けられ
た熱電変換素子と、前記水晶振動子の温度を検出すべく
設けられた温度検出手段と、該温度検出手段から得られ
る信号にもとづき、前記水晶振動子を所定温度に維持す
べく、前記熱電変換素子に電流を供給する手段とからな
る水晶振動子温度制御装置。
(1) A crystal resonator, a thermoelectric conversion element to which the crystal resonator is attached to one of the heat absorbing/radiating plates in order to adjust the temperature of the crystal resonator, and a thermoelectric conversion element installed to detect the temperature of the crystal resonator. A crystal resonator temperature control device comprising a temperature detecting means obtained from the temperature detecting means, and means for supplying current to the thermoelectric conversion element in order to maintain the crystal resonator at a predetermined temperature based on the signal obtained from the temperature detecting means.
(2)前記熱電変換素子が、一方の吸熱・放熱板と、こ
れと対向して配置された他方の吸熱・放熱板と、これら
2つの吸熱・放熱板との間に交互に配置されたP型半導
体素子及びN型半導体素子とからなることを特徴とする
特許請求の範囲第1項に記載の水晶振動子温度制御装置
(2) The thermoelectric conversion elements are arranged alternately between one heat absorbing/heat dissipating plate, the other heat absorbing/heat dissipating plate disposed opposite to this, and these two heat absorbing/heat dissipating plates. 2. The crystal resonator temperature control device according to claim 1, comprising a type semiconductor element and an N type semiconductor element.
(3)前記熱電変換素子が、第1の吸熱・放熱板と、こ
れと対向して配置された第2の吸熱・放熱板と、これら
2つの吸熱・放熱板との間に交互に配置されたP型半導
体素子及びN型半導体素子とからなる部材に、第3の吸
熱・放熱板にP型半導体素子とN型半導体素子を交互に
取り付けた部材を少なくとも1個積重して構成されるこ
とを特徴とする特許請求の範囲第1項に記載の水晶振動
子温度制御装置。
(3) The thermoelectric conversion element is arranged alternately between a first heat absorption/heat dissipation plate, a second heat absorption/heat dissipation plate disposed opposite thereto, and these two heat absorption/heat dissipation plates. A member consisting of a P-type semiconductor element and an N-type semiconductor element is stacked with at least one member in which a P-type semiconductor element and an N-type semiconductor element are alternately attached to a third heat absorption/heat dissipation plate. A crystal resonator temperature control device according to claim 1, characterized in that:
(4)水晶振動子と、該水晶振動子の温度を調節すべく
、一方の吸熱・放熱板に前記水晶振動子が取り付けられ
た熱電変換素子と、前記水晶振動子の温度を検出すべく
設けられた温度検出手段とからなる水晶振動子温度制御
素子。
(4) A crystal resonator, a thermoelectric conversion element to which the crystal resonator is attached to one of the heat absorbing/radiating plates in order to adjust the temperature of the crystal resonator, and a thermoelectric conversion element installed to detect the temperature of the crystal resonator. A crystal oscillator temperature control element comprising a temperature detecting means.
(5)前記熱電変換素子が、一方の吸熱・放熱板と、こ
れと対向して配置された他方の吸熱・放熱板と、これら
2つの吸熱・放熱板との間に交互に配置されたP型半導
体素子及びN型半導体素子とからなることを特徴とする
特許請求の範囲第4項に記載の水晶振動子温度制御素子
(5) The thermoelectric conversion elements are arranged alternately between one heat absorbing/heat dissipating plate, the other heat absorbing/heat dissipating plate disposed opposite to this, and these two heat absorbing/heat dissipating plates. The crystal resonator temperature control element according to claim 4, characterized in that it comprises a type semiconductor element and an N type semiconductor element.
(6)前記熱電変換素子が、第1の吸熱・放熱板と、こ
れと対向して配置された第2の吸熱・放熱板と、これら
2つの吸熱・放熱板との間に交互に配置されたP型半導
体素子及びN型半導体素子とからなる部材に、第3の吸
熱・放熱板にP型半導体素子とN型半導体素子を交互に
取り付けた部材を少なくとも1個積重して構成されるこ
とを特徴とする特許請求の範囲第4項に記載の水晶振動
子温度制御素子。
(6) The thermoelectric conversion elements are arranged alternately between a first heat absorption/heat dissipation plate, a second heat absorption/heat dissipation plate disposed opposite thereto, and these two heat absorption/heat dissipation plates. A member consisting of a P-type semiconductor element and an N-type semiconductor element is stacked with at least one member in which a P-type semiconductor element and an N-type semiconductor element are alternately attached to a third heat absorption/heat dissipation plate. A crystal resonator temperature control element according to claim 4, characterized in that:
JP23371086A 1986-10-01 1986-10-01 Crystal resonator temperature control device and crystal resonator temperature control element Pending JPS6388619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23371086A JPS6388619A (en) 1986-10-01 1986-10-01 Crystal resonator temperature control device and crystal resonator temperature control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23371086A JPS6388619A (en) 1986-10-01 1986-10-01 Crystal resonator temperature control device and crystal resonator temperature control element

Publications (1)

Publication Number Publication Date
JPS6388619A true JPS6388619A (en) 1988-04-19

Family

ID=16959337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23371086A Pending JPS6388619A (en) 1986-10-01 1986-10-01 Crystal resonator temperature control device and crystal resonator temperature control element

Country Status (1)

Country Link
JP (1) JPS6388619A (en)

Similar Documents

Publication Publication Date Title
US5367890A (en) Integrated thermoelectric system with full/half wave rectifier control
JP4255691B2 (en) Electronic component cooling device using thermoelectric conversion material
US4467611A (en) Thermoelectric power generating device
US3444399A (en) Temperature controlled electronic devices
JP2004079883A (en) Thermoelement
WO2002021609A1 (en) Thermoelectric cooling module with temperature sensor
JP2924369B2 (en) Heat pump device
JPH0539966A (en) Heat pump device
WO1993008600A1 (en) Intrinsically controlled cooling container
JP3087813B2 (en) Temperature control device and method
JPS6388619A (en) Crystal resonator temperature control device and crystal resonator temperature control element
JPH0430586A (en) Thermoelectric device
US3017522A (en) Electrical semiconductor cooling by use of peltier effect
JP2004221409A (en) Peltier module device
JP7313660B2 (en) Thermoelectric conversion module
JPH01105582A (en) Solar light generating element
KR102122153B1 (en) Thermoelectric module separated between heating part and cooling part
CN217849369U (en) Terminal box
KR940008886B1 (en) Soft starter
JPH0235761A (en) Thermoelectric converting module
JPH02170582A (en) Thermoelectric conversion module
JPH07176797A (en) Thermoelectric converter
JPH08186296A (en) Peltier element
JPS63110680A (en) Thermal power generating device
WO1999040632A1 (en) Thermoelectric generator and module for use therein