JPS63882B2 - - Google Patents

Info

Publication number
JPS63882B2
JPS63882B2 JP54096847A JP9684779A JPS63882B2 JP S63882 B2 JPS63882 B2 JP S63882B2 JP 54096847 A JP54096847 A JP 54096847A JP 9684779 A JP9684779 A JP 9684779A JP S63882 B2 JPS63882 B2 JP S63882B2
Authority
JP
Japan
Prior art keywords
hard copper
wire
stranded wire
rotary swaging
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54096847A
Other languages
Japanese (ja)
Other versions
JPS5622008A (en
Inventor
Kazuya Abe
Yoshihiro Naganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP9684779A priority Critical patent/JPS5622008A/en
Publication of JPS5622008A publication Critical patent/JPS5622008A/en
Publication of JPS63882B2 publication Critical patent/JPS63882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Wire Processing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は架空配電線等に使用される被覆硬銅
撚線の製造方法に関し、特に応力腐食割れ防止対
策を施した被覆硬銅撚線に関するものである。 最近に至り架空配電線として第1図に示す如く
複数本の硬銅素線1を撚合せて硬銅撚線2を作
り、この硬銅撚線2の上にポリ塩化ビニル、ポリ
エチレン、架橋ポリエチレン等からなる絶縁被覆
層3を形成して耐食性を高めたものが使用される
ようになつているが、この種の被覆硬銅撚線を架
空配電線として使用した場合、応力腐食割れに起
因する断線事故が頻繁に発生する問題がある。こ
の応力腐食割れは一般的に加工時の残留応力と雰
囲気中のNH3やSO2とが相互に作用して生ずるも
のと考えられており、被覆硬銅撚線の場合、その
製造工程の素線伸線加工により各硬銅素線の表面
に引張残留応力すなわち+(プラス)の残留応力
が生じると共に、撚線加工により素線の撚線全体
の外側表面に同じく+の残留応力が生じ、このよ
うな+の残留応力を有する硬銅撚線を被覆した被
覆硬銅撚線を屋外で使用すれば接続部分や支持の
ため被覆層を切除した部分から被覆層3の内側に
NH3やSO2を含有する雨水が侵入して滞留し、そ
の結果応力腐食割れが生じるものと考えられてい
る。 従来、上述の如き応力腐食割れを防止する対策
を講じた被覆硬銅撚線としては、複数本の硬銅素
線1を撚り合わせた後、その撚線2の全体をダイ
ス引抜により圧縮して、第2図に示す如く撚線全
体としての断面がほぼ滑らかな真円状となるよう
に加工し、その後絶縁被覆層3を形成したものが
知られている。この被覆硬銅撚線は、第1図に示
す従来の一般的な被覆硬銅撚線においては撚線2
の外側の各硬銅素線2が絶縁被覆層3に対し断面
で見て点接触(軸線方向に見て線接触)となる個
所Pで応力腐食割れが生じることに着目してその
接触部分の面積を拡大することにより応力腐食割
れを防止し、併せてダイスによる圧縮加工によつ
て残留応力を緩和することにより応力腐食割れを
防止するようにしたものであるが、この被覆硬銅
撚線でも応力腐食割れによる断線事故を完全に防
止することは困難であり、かつまた製造上の新た
な問題が発生しているのが実情である。すなわち
硬銅撚線をダイス引抜により圧縮した場合、各硬
銅素線の伸線加工や撚線加工により残留している
応力はある程度緩和されるものの、ダイス引抜に
よる圧縮時に硬銅撚線の軸線方向の+の残留応力
が新たに生じるから、理想的な状態すなわち表面
の残留応力が零または−(マイナス;圧縮応力)
となるにはほど遠く、したがつて応力腐食割れを
完全に防止することは困難であり、しかもダイス
圧縮を行う際には相当大きな引取力を必要とする
から、従来一般に使用されている撚線機と直列に
ダイス圧縮装置を設けるには支障があり、そのた
め撚線工程とダイス圧縮工程とを非連続で行なわ
なければならないから、作業能率が著しく低くな
つて製造コストも上昇する問題が生じている。 また従来、特公昭54−17149号公報において提
案されているように、被覆硬銅撚線の製造にあた
つて、撚線加工前の段階で素線を矯正ロール装置
に通過させることにより素線の残留応力を緩和
し、その後撚線加工および絶縁被覆を施す方法も
知られている。この方法は素線の段階でのロール
矯正によつて、伸線加工で生じた残留応力は緩和
できるが、その後の撚線加工時において撚線の表
面側に引張残留応力が生じてしまい、その撚線加
工による残留引張応力によつて応力腐食割れが発
生してしまうことがあつた。またこの提案の方法
では撚合せ後はそのまま絶縁被覆を施して製品と
するため、第1図に示したものと同様に撚線外側
の各素線の表面は絶縁被覆層に線接触することか
らも、応力腐食割れが生じ易い状態となるという
問題もあつた。 この発明は以上の事情に鑑みてなされたもの
で、撚合せ後の硬銅撚線にロータリースエージン
グ加工を施すことによつて硬銅撚線の表面の残留
応力を零または−の状態となすとともに、撚線全
体の断面形状を真円形または真円形に近い形状と
し、これによつて応力腐食割れをほぼ完全に防止
するようにし、かつ大きな引取力を要さないロー
タリースエージング加工を応力対策工程として採
用することにより撚線工程と応力対策工程とを連
続的に行なえるようにし、しかもロータリースエ
ージング加工の適用が絶縁被覆などに対して悪影
響を及ぼさないようにしたものである。 すなわちこの発明の製造方法は、複数本の硬銅
撚線を撚合わせて硬銅撚線とし、かつハンマーと
ローラとの間にグリースを塗布したロータリース
エージングマシンを用いて前記硬銅撚線の外面に
ロータリースエージング加工を施した後、絶縁被
覆を施すことを特徴とするものである。 以下この発明の方法をより詳細に説明する。 この発明の方法を実施するに当つては、予め銅
荒引線を冷間伸線加工して、所要の径の硬銅素線
を用意しておく。そして複数本の硬銅素線を公知
の撚線機により同心状に撚合せて硬銅撚線を得、
この硬銅撚線にロータリースエージング加工を施
す。このロータリースエージング加工は、素材
(硬銅撚線)の周囲に配置された2個または4個
のダイスを回転させながらその回転円周の半径方
向に進退させて素材(硬銅撚線)の外周面を繰返
し叩き、これによつて冷間圧縮鍛造する加工法で
あつて、通常は第3図に示すようなロータリース
エージングマシンを用いて加工する。このスエー
ジングマシンは、複数個の硬質なローラ4を備え
た環状のケージ5の内側に2個または4個のハン
マ6を配設すると共に各ハンマ6の先端にダイス
7を形成し、かつ各ハンマ6をケージ5の半径方
向へ進退可能に支持すると共にハンマ6をケージ
5の周方向に沿つて移動するように構成したもの
であり、ダイス7の先端間の位置すなわちケージ
5の中心軸線位置に被加工材である硬銅撚線2を
挿通させた状態でハンマ6を回転させれば、ハン
マ6が各ローラ4の間を移動する状態では遠心力
によつてハンマ6およびダイス7が半径方向外方
へ移動してダイス7の先端が硬銅撚線2から離
れ、ハンマ6がローラ4に当接すればローラ4に
よりハンマ6およびダイス7が半径方向内方へ衝
撃的に移動してダイス7の先端が硬銅撚線2を叩
いて冷間圧縮鍛造を行う。 上述のようにして硬銅撚線にロータリースエー
ジング加工を施せば、硬銅撚線の外側表面が鍛造
圧縮されて、第2図に示す如く引抜ダイス圧縮を
行つた場合とほぼ同様に外周面が真円に近い比較
的滑らかな面となる。この際、加工応力は圧縮力
であるから、その前の撚線工程や伸線工程で発生
した+の残留応力が緩和され、ほぼ零に近い値と
なるかまたは積極的に−の残留応力(圧縮残留応
力)に変化する。なおこのロータリースエージン
グ加工は、そのスエージングマシンを撚線機の撚
合せダイス(集合ダイス)と撚合せられた硬銅撚
線を巻取る巻取ドラムとの間に配設して、硬銅素
線を撚合せつつその撚合せに連続して行つても良
いし、あるいは一旦巻取ドラムに巻取られた硬銅
撚線を別の工程で加工するようにしても良い。但
し、後者の場合にはロータリースエージング加工
と後述する絶縁被覆工程とを連続して行うことが
望ましい。なおまた、従来の通常のロータリース
エージング加工においては潤滑液を被加工材やダ
イス、ハンマ、ローラ等に注ぎかけながら加工を
行つているが、この発明のロータリースエージン
グ工程においては潤滑液が硬銅撚線の間に侵入す
れば後工程で悪影響が出るおそれがあるから、潤
滑液を使用せずにローラーとハンマの間にグリー
スを塗布して摩耗を防止する。すなわち従来の通
常のスエージング加工を適用した場合、潤滑液が
硬銅撚線の素線間に侵入してこの潤滑液がそのの
残留すれば、硬銅撚線に絶縁被覆を施す際や被覆
後に絶縁被覆層の膨潤やふくれが生じ、不良品と
なるおそれがある。これに対し潤滑液を使用する
代りにスエージングマシンのハンマーとローラと
の間にグリースを塗布しておけば、前述のような
潤滑液の侵入に起因する絶縁被覆層の膨潤やふく
れの発生を確実かつ有効に防止できる。 前述のようにしてロータリースエージング加工
が施された硬銅撚線には絶縁被覆を施す。この絶
縁被覆は公知の押出被覆機によつて行えば良く、
また被覆する絶縁材は、例えばポリ塩化ビニル、
ポリエチレン、架橋ポリエチレン等であれば良
い。 次にこの発明の実施例を記す。 実施例 1 8.0mm〓の銅荒引線を冷間伸線して、2.0mm〓およ
び2.3mm〓の硬銅素線を得、これを所要本数ずつ同
心状に撚合せつつ、この撚合せに連続してロータ
リースエージング加工を行い、断面積22mm2、38
mm2、60mm2および80mm2の各硬銅撚線を得、さらに、
この硬銅撚線の表面にポリ塩化ビニルの絶縁被覆
を施した。 実施例 2 8.0mm〓の銅荒引線を冷間伸線して、2.0mm〓およ
び2.3mm〓の硬銅素線を得、これを所要本数ずつ同
心状に撚合せて、断面積22mm2、38mm2、60mm2および
80mm2の硬銅撚線を得、さらにこの硬銅撚線にロー
タリースエージング加工を施しつつポリ塩化ビニ
ルの絶縁被覆を施した。 比較例 前記各実施例と同様に硬銅素線を得、これを所
要本数ずつ同心状に撚合せて前記同様な断面積の
硬銅撚線を得た。そして各硬銅撚線をダイス引抜
により圧縮加工した後、前記同様な絶縁被覆を施
した。 これらの各実施例および比較例により得られた
各被覆硬銅撚線の絶縁被覆内に腐食液として1.4
重量%アンモニア水溶液を注入し、1ケ月および
3ケ月経過後にそれぞれ引張試験を施して、その
引張破断までの荷重(引張荷重)を測定した。そ
して前述のような腐食液を注入する以前の引張破
断までの荷重に対する低下率を算出した。その結
果を次表に示す。
The present invention relates to a method of manufacturing a coated hard copper stranded wire used for overhead power distribution lines, and more particularly to a coated hard copper stranded wire that is provided with measures to prevent stress corrosion cracking. Recently, as shown in Fig. 1, a plurality of hard copper strands 1 are twisted together to form a hard copper stranded wire 2 as an overhead distribution line, and polyvinyl chloride, polyethylene, cross-linked polyethylene, etc. However, when this type of coated hard copper stranded wire is used as an overhead distribution line, stress corrosion cracking may occur. There is a problem that disconnection accidents frequently occur. This stress corrosion cracking is generally thought to be caused by the interaction between residual stress during processing and NH 3 and SO 2 in the atmosphere. The wire drawing process produces a tensile residual stress, that is, a + (plus) residual stress on the surface of each hard copper strand, and the stranding process also produces a positive residual stress on the outer surface of the entire strand of the strands. If a coated hard copper stranded wire coated with a hard copper stranded wire having such positive residual stress is used outdoors, the inner side of the covering layer 3 will be exposed from the connection part or the part where the covering layer is removed for support.
It is thought that rainwater containing NH 3 and SO 2 enters and stagnates, resulting in stress corrosion cracking. Conventionally, coated hard copper stranded wires that take measures to prevent stress corrosion cracking as described above have been produced by twisting a plurality of hard copper strands 1 together, and then compressing the entire stranded wire 2 by drawing with a die. As shown in FIG. 2, it is known that the stranded wire as a whole is processed to have a substantially smooth perfect circular cross section, and then an insulating coating layer 3 is formed. This coated hard copper stranded wire is different from the conventional coated hard copper stranded wire shown in FIG.
Focusing on the fact that stress corrosion cracking occurs at a point P where each hard copper strand 2 on the outside makes point contact (line contact when viewed in the axial direction) with the insulating coating layer 3 when viewed in cross section, the contact portion was Stress corrosion cracking is prevented by expanding the area, and stress corrosion cracking is also prevented by relieving residual stress through compression processing using dies, but even with this coated hard copper stranded wire, stress corrosion cracking is prevented. The reality is that it is difficult to completely prevent wire breakage accidents due to stress corrosion cracking, and new manufacturing problems are occurring. In other words, when a hard copper strand is compressed by die drawing, the residual stress is alleviated to some extent by the wire drawing and stranding of each hard copper strand, but when compressed by die drawing, the axis of the hard copper strand Since a new positive residual stress in the direction is generated, the ideal state, that is, the residual stress on the surface is zero or - (minus; compressive stress)
Therefore, it is difficult to completely prevent stress corrosion cracking, and a considerable pulling force is required when performing die compression, so it is difficult to completely prevent stress corrosion cracking. There is a problem in providing a die compression device to the wire, and as a result, the wire twisting process and the die compression process must be performed discontinuously, resulting in a problem of extremely low work efficiency and increased manufacturing costs. Furthermore, as previously proposed in Japanese Patent Publication No. 54-17149, in the production of coated hard copper stranded wires, the strands are passed through a straightening roll device before the stranding process. A method is also known in which the residual stress of the wire is relaxed, and then the wire is twisted and an insulating coating is applied. In this method, the residual stress generated during wire drawing can be alleviated by roll straightening at the strand stage, but tensile residual stress is generated on the surface side of the stranded wire during the subsequent stranding process. Residual tensile stress caused by the stranding process sometimes caused stress corrosion cracking. In addition, in this proposed method, after the stranding, the insulation coating is directly applied to produce the product, so the surface of each strand on the outside of the stranded wire comes into line contact with the insulation coating layer, similar to the one shown in Figure 1. However, there was also the problem that stress corrosion cracking was likely to occur. This invention has been made in view of the above circumstances, and the residual stress on the surface of the hard copper strands can be reduced to zero or - by subjecting the hard copper strands to a rotary swaging process after twisting. At the same time, the cross-sectional shape of the entire stranded wire is made into a perfect circle or a shape close to a perfect circle, thereby almost completely preventing stress corrosion cracking, and making rotary swaging processing that does not require a large pulling force a stress countermeasure. By employing this as a process, the wire twisting process and the stress countermeasure process can be performed continuously, and furthermore, the application of the rotary swaging process does not have an adverse effect on the insulation coating, etc. That is, in the manufacturing method of the present invention, a plurality of stranded hard copper wires are twisted together to form a stranded hard copper wire, and the stranded hard copper wire is manufactured using a rotary swaging machine in which grease is applied between a hammer and a roller. The feature is that the outer surface is subjected to rotary swaging processing and then an insulating coating is applied. The method of this invention will be explained in more detail below. In carrying out the method of the present invention, a copper rough drawn wire is cold-drawn in advance to prepare a hard copper wire of a required diameter. Then, a plurality of hard copper strands are concentrically twisted together using a known twisting machine to obtain a hard copper stranded wire.
Rotary swaging is applied to this hard copper stranded wire. This rotary swaging process involves rotating two or four dies placed around the material (stranded hard copper wire) and moving them back and forth in the radial direction of the rotating circumference. This is a processing method in which the outer circumferential surface is repeatedly struck and thereby cold compression forged, and is usually processed using a rotary swaging machine as shown in FIG. This swaging machine has two or four hammers 6 arranged inside an annular cage 5 equipped with a plurality of hard rollers 4, and a die 7 formed at the tip of each hammer 6. The hammer 6 is supported so as to be movable in the radial direction of the cage 5, and the hammer 6 is moved along the circumferential direction of the cage 5. If the hammer 6 is rotated with the hard copper stranded wire 2 inserted therethrough, the hammer 6 and the die 7 will change the radius due to the centrifugal force while the hammer 6 moves between the rollers 4. When the tip of the die 7 moves outward in the direction and separates from the hard copper stranded wire 2, and the hammer 6 comes into contact with the roller 4, the roller 4 causes the hammer 6 and the die 7 to impulsively move inward in the radial direction, thereby removing the die. The tip of 7 strikes the hard copper stranded wire 2 to perform cold compression forging. When the hard copper strands are subjected to rotary swaging as described above, the outer surface of the hard copper strands is compressed by forging, and the outer peripheral surface becomes almost the same as when compression is performed with a drawing die as shown in Fig. 2. is a relatively smooth surface that is close to a perfect circle. At this time, since the processing stress is a compressive force, the + residual stress generated in the previous wire twisting process and wire drawing process is relaxed, and becomes a value close to zero, or the - residual stress ( compressive residual stress). In this rotary swaging process, the swaging machine is installed between the stranding die (collecting die) of the stranding machine and the winding drum that winds the stranded hard copper strands. The twisting may be performed continuously while the strands are being twisted together, or the hard copper stranded wire once wound on the winding drum may be processed in a separate process. However, in the latter case, it is desirable to perform the rotary swaging process and the insulation coating process described later in succession. Furthermore, in the conventional rotary swaging process, lubricating liquid is poured onto the workpiece, die, hammer, roller, etc., but in the rotary swaging process of this invention, the lubricating liquid is hardened. If it gets between the copper strands, it could have an adverse effect on later processes, so instead of using lubricating fluid, grease is applied between the roller and hammer to prevent wear. In other words, when conventional swaging processing is applied, lubricating liquid enters between the strands of hard copper stranded wire and if this lubricating liquid remains, it may cause damage when applying insulation coating to hard copper stranded wire or coating. Swelling or blistering of the insulating coating layer may occur later, resulting in a defective product. On the other hand, if grease is applied between the hammer and roller of the swaging machine instead of using a lubricant, the swelling and blistering of the insulation coating layer caused by the intrusion of the lubricant as mentioned above can be avoided. Can be reliably and effectively prevented. An insulating coating is applied to the hard copper stranded wire that has been subjected to the rotary swaging process as described above. This insulation coating may be performed using a known extrusion coating machine.
The insulating material to be coated is, for example, polyvinyl chloride,
Any material such as polyethylene or crosslinked polyethylene may be used. Next, examples of this invention will be described. Example 1 8.0mm〓 roughly drawn copper wire is cold drawn to obtain 2.0mm〓 and 2.3mm〓 hard copper wires, and while concentrically twisting the required number of wires, Rotary swaging process was performed to obtain a cross-sectional area of 22 mm 2 , 38
mm 2 , 60mm 2 and 80mm 2 hard copper stranded wires, and
An insulating coating of polyvinyl chloride was applied to the surface of this hard copper stranded wire. Example 2 8.0 mm rough drawn copper wire was cold drawn to obtain 2.0 mm and 2.3 mm hard copper wires, and the required number of these wires were concentrically twisted to give a cross-sectional area of 22 mm 2 . 38mm 2 , 60mm 2 and
A stranded hard copper wire of 80 mm 2 was obtained, and the stranded hard copper wire was subjected to a rotary swaging process and an insulating coating of polyvinyl chloride was applied to the stranded hard copper wire. Comparative Example Hard copper wires were obtained in the same manner as in each of the above Examples, and the required number of wires were concentrically twisted to obtain hard copper strands having the same cross-sectional area as described above. After each hard copper stranded wire was compressed by die drawing, an insulating coating similar to that described above was applied. 1.4 as a corrosive liquid in the insulation coating of each coated hard copper stranded wire obtained in each of these Examples and Comparative Examples.
A wt % ammonia aqueous solution was injected, and a tensile test was conducted after one month and three months, respectively, and the load (tensile load) until tensile breakage was measured. Then, the rate of decrease in load to tensile failure before injecting the corrosive liquid as described above was calculated. The results are shown in the table below.

【表】 表から明らかなようにロータリースエージング
加工を施した各実施例の被覆硬銅撚線は、ダイス
引抜圧縮加工を施した比較例のものと比較して3
ケ月経過後の引張荷重の低下率が格段に少なく、
このことから各実施例の硬銅撚線は応力腐食割れ
が比較例のものと比較して格段に生じにくいこと
が明らかである。 以上の説明で明らかなようにこの発明の製造方
法によれば、撚合せ後の硬銅撚線にロータリース
エージング加工を施すことにより、素線の伸線加
工時および撚線加工時の応力による硬銅撚線外側
の残留応力が零に近い値または負の値(圧縮応
力)となり、しかも撚線全体の断面外形形状が真
円または真円に近い形状となるから、応力腐食割
れが発生し難くしたがつて応力腐食割れによる断
線事故を有効に防止し得る被覆硬銅撚線を製造す
ることができ、かつまたこの発明の製造方法で採
用しているロータリースエージング加工は大きな
引取力を必要としないから、撚線工程とロータリ
ースエージング加工とを連続的に行うことがで
き、したがつて作業能率を従来よりも高めること
ができ、しかもロータリースエージングマシン
は、ハンマーとローラとの間にグリースを塗布し
て用いるようにしたから、スエージング加工時に
潤滑液を注ぎかける必要がなく、そのため潤滑液
が硬銅撚線の素線間に侵入してこの潤滑液が絶縁
被覆層の膨潤やふくれをひきおこすおそれがない
等の効果が得られる。
[Table] As is clear from the table, the coated hard copper stranded wire of each example subjected to the rotary swaging process was 3.
The rate of decrease in tensile load after several months has been significantly reduced.
From this, it is clear that stress corrosion cracking is much less likely to occur in the hard copper stranded wires of each example than in the comparative examples. As is clear from the above explanation, according to the manufacturing method of the present invention, by subjecting the hard copper stranded wires to the rotary swaging process after twisting, the Stress corrosion cracking occurs because the residual stress on the outside of the hard copper stranded wire becomes close to zero or negative (compressive stress), and the cross-sectional shape of the entire stranded wire becomes a perfect circle or a shape close to a perfect circle. Therefore, it is possible to manufacture coated hard copper stranded wires that can effectively prevent wire breakage accidents due to stress corrosion cracking, and the rotary swaging process employed in the manufacturing method of the present invention requires a large pulling force. Since the wire twisting process and the rotary swaging process can be performed continuously, the work efficiency can be increased compared to conventional methods. Because it is used after applying grease, there is no need to pour lubricant during the swaging process.As a result, the lubricant enters between the strands of the hard copper stranded wire, causing swelling of the insulation coating layer. Effects such as no risk of causing blisters can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は応力腐食割れ対策を講じていない従来
の被覆硬銅撚線の一例を示す断面図、第2図は応
力腐食割れ対策を講じた従来の被覆硬銅撚線の一
例を示す断面図、第3図はこの発明で使用するロ
ータリースエージングマシンの一例を示す略解断
面図である。 1……硬銅素線、2……硬銅撚線、3……絶縁
被覆層。
Figure 1 is a cross-sectional view showing an example of a conventional coated hard copper stranded wire with no measures taken against stress corrosion cracking, and Figure 2 is a cross-sectional view showing an example of a conventional coated hard copper stranded wire with measures taken against stress corrosion cracking. , FIG. 3 is a schematic cross-sectional view showing an example of a rotary swaging machine used in the present invention. 1... Hard copper wire, 2... Hard copper stranded wire, 3... Insulating coating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 複数本の硬銅素線を撚合わせて硬銅撚線と
し、かつハンマーとローラとの間にグリースを塗
布したロータリースエージングマシンを用いて前
記硬銅撚線の外面にロータリースエージング加工
を施した後、絶縁被覆を施すことを特徴とする被
覆硬銅撚線の製造方法。
1 A plurality of hard copper strands are twisted together to form a hard copper strand, and a rotary swaging process is applied to the outer surface of the hard copper strand using a rotary swaging machine in which grease is applied between a hammer and a roller. A method for producing a coated hard copper stranded wire, the method comprising: applying an insulation coating after the coating is applied.
JP9684779A 1979-07-31 1979-07-31 Method of manufacturing coated hard copper twisted wire Granted JPS5622008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9684779A JPS5622008A (en) 1979-07-31 1979-07-31 Method of manufacturing coated hard copper twisted wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9684779A JPS5622008A (en) 1979-07-31 1979-07-31 Method of manufacturing coated hard copper twisted wire

Publications (2)

Publication Number Publication Date
JPS5622008A JPS5622008A (en) 1981-03-02
JPS63882B2 true JPS63882B2 (en) 1988-01-09

Family

ID=14175887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9684779A Granted JPS5622008A (en) 1979-07-31 1979-07-31 Method of manufacturing coated hard copper twisted wire

Country Status (1)

Country Link
JP (1) JPS5622008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039563A (en) 2018-10-05 2020-04-16 가부시키가이샤 소딕 Injection device of light metal injection molding machine and injection control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655230U (en) * 1991-07-15 1994-07-26 三菱電機株式会社 Circuit breaker current transformer
DE102014214461A1 (en) * 2014-07-23 2016-01-28 Leoni Kabel Holding Gmbh Method for producing an electrical line, electrical line and motor vehicle electrical system with a corresponding electrical line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516305A (en) * 1978-07-20 1980-02-05 Furukawa Electric Co Ltd Method of manufacturing aerial insulated wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516305A (en) * 1978-07-20 1980-02-05 Furukawa Electric Co Ltd Method of manufacturing aerial insulated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039563A (en) 2018-10-05 2020-04-16 가부시키가이샤 소딕 Injection device of light metal injection molding machine and injection control method thereof

Also Published As

Publication number Publication date
JPS5622008A (en) 1981-03-02

Similar Documents

Publication Publication Date Title
US3130536A (en) Method of manufacturing wire rope
US3778993A (en) Method of manufacturing twisted wire products
US20150096781A1 (en) Method for producing a stranded inner conductor for coaxial cable, and coaxial cable
KR101482405B1 (en) Apparatus and Method for manufacturing steel wire
US2071709A (en) Wire strand
US3954001A (en) Dies for cross rolling machines
JPS63882B2 (en)
US4210012A (en) Roll compacting of stranded conductor
US6311394B1 (en) Combination 37-wire unilay stranded conductor and method and apparatus for forming the same
US3838488A (en) Apparatus for manufacturing fine metallic filaments
JPS5837924B2 (en) overhead power lines
JPH0127802B2 (en)
RU2090292C1 (en) Apparatus for preliminarily deforming shaped wire at making closed-construction ropes
JPS61286033A (en) Working method for difficult workability material by rotary swaging
JPS6241840B2 (en)
JPS62259612A (en) Production of stainless steel fiber
KR100478284B1 (en) Roller device for manufacturing of welding rod
SU650381A1 (en) Method for making spun wire products
JPS581238B2 (en) Method for manufacturing a bundle made of plated deformed steel wire
JPH0275431A (en) Working method for pc steel stranded wire rolled threads
JPS609987A (en) Wire rope and production thereof
JPS5910414A (en) Continuous extrusion device of steel material
JPH01248407A (en) Manufacture of stranded wire capable of preventing twist restoration
JP3328524B2 (en) Open pipe manufacturing method
JP5740139B2 (en) Winding grip manufacturing method