JPS6388196A - Purifying method for glutathione - Google Patents

Purifying method for glutathione

Info

Publication number
JPS6388196A
JPS6388196A JP23407386A JP23407386A JPS6388196A JP S6388196 A JPS6388196 A JP S6388196A JP 23407386 A JP23407386 A JP 23407386A JP 23407386 A JP23407386 A JP 23407386A JP S6388196 A JPS6388196 A JP S6388196A
Authority
JP
Japan
Prior art keywords
glutathione
bed
liquid
solution
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23407386A
Other languages
Japanese (ja)
Other versions
JPH0662669B2 (en
Inventor
Haruhiko Maki
春彦 牧
Hideki Fukuda
秀樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP23407386A priority Critical patent/JPH0662669B2/en
Publication of JPS6388196A publication Critical patent/JPS6388196A/en
Publication of JPH0662669B2 publication Critical patent/JPH0662669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To industrially and advantageously obtain the titled compound having detoxifying action, by intermittently and successively moving inlet ports and taking outlets for each solution in passing an amino acid-containing glutathione solution through a bed filled with a porous strong acidic ion exchange resin and eliminating the glutathione. CONSTITUTION:A pseudo-moving bed, having an inlet port 19 for a glutathione- containing solution containing an amino acid, taking outlet 23 for an aqueous solution of glutathione, water inlet port 11 for an eliminating solution and taking outlet 15 for the aqueous solution of the amino acid arranged in the order mentioned in a packed bed of a structure for circulating a liquid in one direction in which a porous strong acidic ion exchange resin is contained therein and the front and back ends are connected with a fluid passage to form an endless shape in the flow direction of a fluid and capable intermittently and successively moving the positions of the inlets and taking outlets is used to separate and purify the aimed glutathione from a glutathione-containing solution containing the coexisting amino acid.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はグルタチオンとともにグルタミン酸等のアミノ
酸を含有する、例えば酵母菌体抽出液、植物細胞抽出液
、合成法により取得されろグルタチオン含有液等から、
グルタチオンを分離する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to extracts containing amino acids such as glutamic acid together with glutathione, such as yeast cell extracts, plant cell extracts, glutathione-containing liquids obtained by synthetic methods, etc. ,
The present invention relates to a method for separating glutathione.

[従来技術〕 グルタチオンは、酵母および動物の肝臓等に広く分布し
ており、生体内の酸化還元系に関与し、諸酵素の賦活作
用および解毒作用等の重要な役割を果たす生理活性トリ
ペプチドで、医薬上きわめて重要な物質である。
[Prior art] Glutathione is a physiologically active tripeptide that is widely distributed in yeast and animal livers, and is involved in the redox system in living organisms and plays important roles such as activation of various enzymes and detoxification. , is an extremely important substance in medicine.

酵母抽出液等、不純物を含むグルタチオン含有液からグ
ルタチオンを単離する場合、一般的に晶析操作等によっ
て回収されているが、グルタミン酸等のアミノ酸はグル
タチオンの結晶純度および収率を大きく低下させる要因
となっている。従っアー暑炊的な、蔦粧撞炸レノ前にゲ
ルクミン酸等のアミノ酸を除去しておくことがグルタチ
オンの高純度製品を得るためには不可欠であるが、グル
タチオンはグルタミン酸等のアミノ酸と同じく分子内に
アミノ基並びにカルボキシル基を有し、その物理化学的
性質が類似しているという点から、グルタチオンとアミ
ノ酸との相互分離は極めて困難である。
When glutathione is isolated from a glutathione-containing liquid containing impurities, such as a yeast extract, it is generally recovered by crystallization, but amino acids such as glutamic acid are a factor that greatly reduces the crystal purity and yield of glutathione. It becomes. Therefore, it is essential to remove amino acids such as gelcumic acid before hot cooking to obtain a highly purified glutathione product, but glutathione, like amino acids such as glutamic acid, is a molecule. It is extremely difficult to separate glutathione and amino acids from each other because they have amino groups and carboxyl groups and their physicochemical properties are similar.

従来、グルタチオン含有液からグルタチオンを ゛単離
精製する方法としては銅塩法が広く知られているが、銅
塩法の一般的なプロセスは銅塩生成反応、銅塩洗浄、銅
塩分解反応の3段階からなり、操作が繁雑であり、しか
も、グルタチオンの回収率も低いという欠点を有してい
る。
Conventionally, the copper salt method is widely known as a method for isolating and purifying glutathione from glutathione-containing solutions, but the general process of the copper salt method involves a copper salt production reaction, copper salt washing, and a copper salt decomposition reaction. It has the disadvantage that it consists of three steps, the operation is complicated, and the recovery rate of glutathione is low.

また、イオン交換樹脂を用いて、酵母菌体抽出液から高
濃度グルタチオン含有液を得る方法が、特公昭44−2
39、同46−4755、同46−2838等に開示さ
れているが、これらの方法では高濃度の塩類、酸、水酸
化アルカリ水溶液を用いてグルタチオンとグルタミン酸
等のアミノ酸を同時に脱離させるため、グルタチオンと
アミノ酸との分離は不完全で、高純度のグルタチオン水
溶液を得ることは不可能となり、さらに他の工程を要す
る。しかも、これらの方法では、溶出液中に脱離に用い
た塩類、酸、水酸化アルカリが混入するため、晶析操作
以前にこれらを除去する必要がある。また、低濃度の酸
、塩類、アルカリ水溶液を脱離液として用いれば精製液
の純度は向上するが、精製液の濃度が極端に低下するた
め実用には適していないとされていた。従って、高純度
かつ高濃度のグルタチオン精製液が容易に得られるプロ
セスの開発が工業化を企てる上で強く望まれていた。
In addition, a method for obtaining a liquid containing high concentration of glutathione from a yeast cell extract using an ion exchange resin was published in Japanese Patent Publication No. 44-2.
39, 46-4755, 46-2838, etc., these methods use highly concentrated salts, acids, and aqueous alkali hydroxide solutions to simultaneously eliminate glutathione and amino acids such as glutamic acid. Separation of glutathione and amino acids is incomplete, making it impossible to obtain a highly pure aqueous glutathione solution and requiring additional steps. In addition, in these methods, salts, acids, and alkali hydroxides used for desorption are mixed into the eluate, so it is necessary to remove these before the crystallization operation. Furthermore, if a low concentration acid, salt, or alkaline aqueous solution is used as the desorption liquid, the purity of the purified liquid can be improved, but the concentration of the purified liquid is extremely reduced, so it was considered not to be suitable for practical use. Therefore, the development of a process by which a purified glutathione solution with high purity and high concentration can be easily obtained is strongly desired for industrialization.

[発明の構成] 本発明者らは、グルタミン酸等の不純物の共存するゲル
タデオン含有液から高純度、高濃度のグルタチオンを高
収率で単離する方法について種々研究を重ねた結果、擬
似移動床を用いれば、多孔型強酸性イオン交換樹脂を吸
着剤として、水を脱離液として用いることにより、グル
タチオンと不純物質の分離が可能であり、かつ高濃度の
グルタチオン水溶液が得られることを見出し本発明の完
成に至った。
[Structure of the Invention] As a result of various studies conducted by the present inventors on a method for isolating high-purity, high-concentration glutathione in high yield from geltadeone-containing liquids in which impurities such as glutamic acid coexist, the present inventors have developed a pseudo-moving bed. The inventors have discovered that, by using a porous strongly acidic ion exchange resin as an adsorbent and water as a desorption liquid, it is possible to separate glutathione from impurities, and a highly concentrated aqueous glutathione solution can be obtained. has been completed.

即ち、本発明では、内部に多孔型強酸性イオン交換樹脂
が収容されており、かつ前端と後端とが液体通路で結合
されて無端状になっていて液体が一方向に循環している
充填床に、アミノ酸の共存するグルタチオン含有液およ
び脱離液として水を導入し、同時に充填床からグルタチ
オン水溶液およびアミノ酸水溶液を抜出すことからなり
、充填床には、アミノ酸を含むグルタチオン含有液導入
口、グルタチオン水溶液抜出し口、水導入口およびアミ
ノ酸水溶液抜出し口を流体の流れの方向に沿ってこの順
序で配置し、かつこれらを床内の流体の流れの方向にそ
れらの位置を間欠的に逐次移動させることによりなる擬
似移動床を用いることを特徴とするグルタチオンの精製
方法を内容とするものである。
That is, in the present invention, a porous strongly acidic ion exchange resin is housed inside, and the front end and the rear end are connected by a liquid passage to form an endless structure, and the liquid circulates in one direction. The method consists of introducing a glutathione-containing liquid in which amino acids coexist and water as a desorption liquid into the bed, and simultaneously extracting a glutathione aqueous solution and an amino acid aqueous solution from the packed bed. A glutathione aqueous solution outlet, a water inlet, and an amino acid aqueous solution outlet are arranged in this order along the direction of fluid flow, and their positions are intermittently moved one after another in the direction of fluid flow within the bed. The subject matter is a method for purifying glutathione, which is characterized by using a simulated moving bed.

即ち、本発明は酵母菌体抽出液、植物細胞抽出液、合成
法により得られるグルタチオン含有液かり、 翼7’l
刑冶峠什Iすン卒漁尉暎本西若翔1と1−。
That is, the present invention uses a yeast cell extract, a plant cell extract, and a glutathione-containing liquid obtained by a synthetic method.
Keiji Pass Isun Graduated Fisherman Enomoto Nishi Wakasho 1 and 1-.

水を脱離液として用いる擬似移動床により、高純度かつ
高濃度のグルタチオン含有液を取得する方法に関するも
のである。
The present invention relates to a method for obtaining a highly pure and highly concentrated glutathione-containing liquid using a simulated moving bed using water as a desorption liquid.

固体吸着剤が収容されており、かつ前端と後端の間が流
体通路で結合されていて、床内を流体が循環し得るよう
になっている充填床に、床内の流体の流れに沿って脱離
液流体導入口、吸着質流体抜出し口、原料流体導入口、
非吸着質流体抜出し口を設け、各導入口および抜出し口
からそれぞれの流体を連続的に導入または抜出し、一定
時間苺に各導入口および抜出し口を順次下流のそれと切
り替えることにより、原料流体を固定吸着剤に相対的に
吸着されやすい成分(吸着質成分)および相対的に吸着
されがたい成分(非吸着質成分)に分離する、いわゆる
擬似移動床は公知であり (特公昭42−15681)
、このような技術を利用した例としては、果糖の製造法
(特開昭53−88335)やマルトースの分離法(特
開昭60−67000)等が挙げられる。しかしながら
、擬似移動床を用いてグルタチオンやアミノ酸類を含む
系から高純度グルタチオンを分離する方法に関する応用
例は未だ全く報告されておらず、適用が困難とされてい
た。
A packed bed containing a solid adsorbent and connected between the leading and trailing ends by a fluid passageway to allow fluid to circulate through the bed, along the flow of fluid within the bed. Desorption liquid fluid inlet, adsorbate fluid outlet, raw material fluid inlet,
A non-adsorbent fluid outlet is provided, each fluid is continuously introduced or extracted from each inlet and outlet, and the raw material fluid is fixed by sequentially switching each inlet and outlet to the downstream one for a certain period of time. A so-called pseudo moving bed that separates components into components that are relatively easily adsorbed by an adsorbent (adsorbate components) and components that are relatively difficult to adsorb (non-adsorbate components) is known (Japanese Patent Publication No. 15681/1973).
Examples of the use of such techniques include a method for producing fructose (Japanese Unexamined Patent Publication No. 53-88335) and a method for separating maltose (Japanese Unexamined Patent Publication No. 60-67000). However, no application example has yet been reported regarding a method for separating high-purity glutathione from a system containing glutathione and amino acids using a simulated moving bed, and it has been considered difficult to apply this method.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において使用される多孔型イオン交換樹脂には、
SO1基を交換基としてもちスチレンとりビニルベンゼ
ンの共重合体を骨格とする、例えばローム&ハース(株
)製アンバーライトIR2・00C1三菱化成(株)製
ダイヤイオンpk228等の他、各種の製品があるが、
これらに限定されない。中でも、H+型の多孔性イオン
交換樹脂が、好ましい。イオン交換樹脂の粒径は特に限
定されないが、床内の偏流を防止するためには300〜
600μ次のものが望ましい。さらにイオン交換樹脂の
細孔径についても50〜150人のものが選択性の点で
望ましいが、特にこれに限定されない。
The porous ion exchange resin used in the present invention includes:
Various products including SO1 group as an exchange group and a copolymer of styrene and vinylbenzene as a backbone, such as Amberlite IR2.00C manufactured by Rohm & Haas Co., Ltd. and Diaion pk228 manufactured by Mitsubishi Kasei Co., Ltd. Yes, but
Not limited to these. Among these, H+ type porous ion exchange resins are preferred. The particle size of the ion exchange resin is not particularly limited, but in order to prevent uneven flow within the bed, the particle size is 300~
600 μm order is desirable. Further, the pore diameter of the ion exchange resin is preferably 50 to 150 pores from the viewpoint of selectivity, but is not particularly limited to this.

通夜時の温度は高いほど高い分離能が得られるが、50
℃以上ではグルタチオンの分解が顕著になるので10〜
40℃が望ましい。又、本発明で脱離液として用いられ
る水には、一般の水道水、工業用水、イオン交換水、蒸
留水等が適用できるが、カルシウム等のイオンか含まれ
るとイオン交換樹脂の能力低下の原因となるので、イオ
ン交換水或いは蒸留水を用いるのが望ましい。
The higher the temperature during the wake, the higher the separation power can be obtained, but at 50
At temperatures above 10°C, the decomposition of glutathione becomes significant.
40°C is desirable. In addition, the water used as the desorption liquid in the present invention can be general tap water, industrial water, ion exchange water, distilled water, etc. However, if ions such as calcium are contained, the ability of the ion exchange resin may be reduced. It is desirable to use ion-exchanged water or distilled water.

以下、図面に基づいて、本発明の方法をより詳細に説明
する。
Hereinafter, the method of the present invention will be explained in more detail based on the drawings.

第1図は本発明で使用する擬似移動床の一例の模式図で
ある。第1図においては、擬似移動床の主要部である充
填床の内部は16個の単位充填床に区分されているが、
その数は、グルタチオン含有液の組成、濃度および装置
の大きさ等の要因に従って適切に決定できる。第1図に
おいて、各単位充填床には、多孔型強酸性イオン交換樹
脂が充填されており、各単位充填床間には空間部が設け
られている。各空間部には充填床へのグルタミン酸等の
アミノ酸を含むグルタチオン含有液の導入口および水の
導入口並びに充填床からのグルタチオン精製液抜出し口
およびグルタミン酸等のアミノ酸含有液抜出し口の4種
類が開口している(fこだし、第1図ではその大部分は
省略されている。)。
FIG. 1 is a schematic diagram of an example of a pseudo moving bed used in the present invention. In Figure 1, the inside of the packed bed, which is the main part of the pseudo moving bed, is divided into 16 unit packed beds.
The number can be appropriately determined according to factors such as the composition of the glutathione-containing liquid, the concentration and the size of the device. In FIG. 1, each unit packed bed is filled with a porous strongly acidic ion exchange resin, and a space is provided between each unit packed bed. Each space has four types of openings: an inlet for introducing a glutathione-containing liquid containing amino acids such as glutamic acid into the packed bed, an inlet for water, an outlet for extracting purified glutathione liquid from the packed bed, and an outlet for extracting a liquid containing amino acids such as glutamic acid. (This is mostly omitted in Figure 1.)

この空間部の設置は不可欠ではないが、充填床に導入さ
れるグルタミン酸等のアミノ酸を含むグルタチオン含有
液および脱離液をこの空間部に導入すると、床内を流下
循環している流体中に速やかに拡散混合させることがで
きるので好ましい。
Although the installation of this space is not essential, when the glutathione-containing liquid containing amino acids such as glutamic acid and the desorbed liquid are introduced into this space, they are quickly added to the fluid flowing down and circulating in the bed. This is preferable because it allows for diffusion mixing.

第1図では空間部19にグルタミン酸等のアミノ酸を含
むグルタチオン含有液が導入され、空間部11に脱離液
として水が導入されている。また、空間部15からグル
タミン酸等のアミノ酸含有液が抜出され、空間部23か
らグルタチオン精製液が抜出されている。従って、充填
床は109〜II2の4個の単位充填床からなる吸着帯
域、113〜116の4側の単位充填床からなる一次精
製帯域、101−104の4個の単位充填床からなる脱
離帯域および105〜108の4個の単位充填床からな
る二次精製帯域の4個の帯域よりなっている。各帯域の
作用は、グルタミン酸等のアミノ酸を吸着質成分とし、
グルタチオンを非吸着質充填床内の液中には、グルタチ
オンおよびグルタミン酸等のアミノ酸の濃度分布が形成
されており、この濃度分布はその形状を保持しつつ下流
方向に移動する。この移動に追随するように充填床への
グルタミン酸等のアミノ酸を含むグルタチオン含有液あ
るいは水の導入口並びに充填床からのグルタチオン精製
液およびグルタミン酸等のアミノ酸含有液の抜出し口が
順次下方のそれに切り替えられる。切替えは4種類の開
口について同時に行っても良く、また各開口毎に時間的
にずらして行ってもよい。同一の開口からの液の導入ま
たは抜出しを継続する時間は、単位充填床の大きさ、床
内を流下する流速等により異なるが、通常、数分ないし
数十分である。この切替えにより、上述の4個の帯域は
逐次その充填床に占める位置を移動する。しかし、各帯
域の長さは常にほぼ一定であり、その大きさおよび相対
的位置を保持し1こまま充填床を循環する。
In FIG. 1, a glutathione-containing liquid containing an amino acid such as glutamic acid is introduced into the space 19, and water is introduced into the space 11 as a desorption liquid. Further, a liquid containing amino acids such as glutamic acid is extracted from the space 15, and a purified glutathione liquid is extracted from the space 23. Therefore, the packed beds include an adsorption zone consisting of four unit packed beds 109 to II2, a primary purification zone consisting of four unit packed beds 113 to 116, and a desorption zone consisting of four unit packed beds 101 to 104. It consists of four zones: a zone and a secondary purification zone consisting of four unit packed beds of 105 to 108 units. The action of each zone is based on amino acids such as glutamic acid as adsorbent components.
A concentration distribution of amino acids such as glutathione and glutamic acid is formed in the liquid in the packed bed that does not adsorb glutathione, and this concentration distribution moves downstream while maintaining its shape. Following this movement, the inlet for the glutathione-containing liquid or water containing amino acids such as glutamic acid to the packed bed and the outlet for the purified glutathione liquid and the amino acid-containing liquid such as glutamic acid from the packed bed are sequentially switched to the lower one. . The switching may be performed simultaneously for the four types of openings, or may be performed at different times for each opening. The time for which liquid is continued to be introduced or withdrawn from the same opening varies depending on the size of the unit packed bed, the flow rate within the bed, etc., but is usually several minutes to several tens of minutes. By this switching, the four zones described above sequentially move their positions in the packed bed. However, the length of each zone is always approximately constant, maintaining its size and relative position as it circulates through the packed bed.

多孔型強酸性イオン交換樹脂を吸着剤とする擬偏移動床
におけるグルタチオンとグルタミン酸等のアミノ酸の分
離の程度は、種々の要因により影響されるが、特に大き
な要因は床内の液の流下速度、同一の開口からの液の導
入または抜出しを継続する時間である。このことは、液
の導入口および抜出し口の下流の開口への切替えは、見
方を替えれば導入口および抜出し口の位置を一定にして
多孔型強酸性樹脂を上流方向に移動させることに等しい
ものであり、床内の各成分の濃度分布は、この上流方向
に移動する液との相互作用により形成されることからも
推測される。また、この移動速度は各単位充填床の長さ
くのを同一の開口から液の導入または抜出しを継続する
時間(T)で除したちのCQ/ T )に相当する。周
知のように2成分以上の成分を擬似移動床により分離す
るには、非吸着質成分の充填床内の移動速度V、を吸着
帯域においてはv + > Q / T −1次精製帯
域においてはv + < Q/ ’r s脱離帯域にお
いてはv + > Q / T 。
The degree of separation of amino acids such as glutathione and glutamic acid in a pseudo-polarized bed using a porous strongly acidic ion exchange resin as an adsorbent is influenced by various factors, but the most important factors are the flow rate of the liquid in the bed, This is the time during which liquid is continued to be introduced or withdrawn from the same opening. This means that switching to the downstream openings of the liquid inlet and outlet is equivalent to moving the porous strong acidic resin upstream while keeping the positions of the inlet and outlet constant. It is also inferred from the fact that the concentration distribution of each component in the bed is formed by interaction with the liquid moving in the upstream direction. Further, this moving speed corresponds to the length of each unit packed bed divided by the time (T) for which liquid is continuously introduced or withdrawn from the same opening (CQ/T). As is well known, in order to separate two or more components using a simulated moving bed, the moving velocity of the non-adsorbate component in the packed bed, V, in the adsorption zone is v + > Q / T - in the primary purification zone. v + <Q/'rs In the desorption band, v + > Q/T.

2次精製帯域においてはv+>c/’rとし、吸着質成
分の充填床内の移動速度V、を吸着帯域においてはv 
t < Q / T、1次精製帯域においてはVz <
 Q/ T、脱離帯域においてはVv>Q/T、2次精
製帯域においてはv t < Q / T 、とすれば
よい。従って、液の流下および同一の開口から液の導入
または抜出しを継続する時間は、これらの関係から必然
的に求められる。一方、非吸着質成分の移動速度■1お
よび吸着質成分の充填床内の移動速度V、は、充填床内
の液流速により決定されるが、これらは回分式の充填床
を用いて容易に実測できるのはいうまでもない。
In the secondary purification zone, v+>c/'r, and the moving speed of the adsorbate component in the packed bed, V, is v in the adsorption zone.
t < Q/T, in the primary purification zone Vz <
Q/T, Vv>Q/T in the desorption zone, and v t <Q/T in the secondary purification zone. Therefore, the time for continuous flow of liquid and introduction or withdrawal of liquid from the same opening is necessarily determined from these relationships. On the other hand, the movement speed 1 of the non-adsorbate component and the movement speed V of the adsorbate component in the packed bed are determined by the liquid flow rate in the packed bed, but these can be easily determined using a batch-type packed bed. Needless to say, it can be measured.

次に、実施例を用いて本発明を具体的に説明するが、本
発明はこれらに限定されない。
Next, the present invention will be specifically explained using Examples, but the present invention is not limited thereto.

[実施例] 内径1 cm、長さ20cmのカラム16本からなる擬
似移動床を用いてグルタミンを含むグルタチオン含有液
からのグルタチオンの単離を行った。
[Example] Glutathione was isolated from a glutathione-containing liquid containing glutamine using a simulated moving bed consisting of 16 columns with an inner diameter of 1 cm and a length of 20 cm.

原料液中のグルタチオンおよびグルタミン酸濃度はそれ
ぞれ109/Q、59/Qであった。吸着剤としてはH
″″型の多孔型強酸性イオン交換樹脂(ローム・アンド
・ハース(株)製lR200C)を用い、脱離液として
は水を使用した。
The concentrations of glutathione and glutamic acid in the raw material liquid were 109/Q and 59/Q, respectively. H as an adsorbent
A porous strongly acidic ion exchange resin of ``'' type (lR200C, manufactured by Rohm and Haas Co., Ltd.) was used, and water was used as the desorption liquid.

原料液供給速度は2.8:Lo2/分、脱離液供給速度
は12.25mN!/分、さらにグルタチオン精製液の
抜出しは3.30if2/分、グルタミン酸含有液の抜
出しは11.78+C/分の流量で行い、原料液および
脱離液供給口ならびにグルタチオン精製液およびグルタ
ミン酸含有液抜出し口の移動は60分毎に行った。
The raw material liquid supply rate is 2.8:Lo2/min, and the desorption liquid supply rate is 12.25mN! Furthermore, the glutathione purified liquid is extracted at a flow rate of 3.30if2/min, and the glutamic acid-containing liquid is extracted at a flow rate of 11.78+C/min. Movements were made every 60 minutes.

第2図にグルタチオン精製液中に含まれるグルタチオン
ならびにグルタミン酸の濃度の時間的変化を示す。第2
図に示されるように、グルタチオン精製液中にはグルタ
ミン酸は全く含まれず、約300分で定常状態となり、
定常状態では原料液中ら含まれるグルタチオンの99%
が回収された。
FIG. 2 shows temporal changes in the concentrations of glutathione and glutamic acid contained in the purified glutathione solution. Second
As shown in the figure, the glutathione purified solution does not contain any glutamic acid and reaches a steady state in about 300 minutes.
At steady state, 99% of the glutathione contained in the raw material solution
was recovered.

[発明の効果] 本発明によれば、グルタチオンの濃度を低下させること
なく高純度のグルタチオン精製液が得られ、しかも脱離
液が水であるのでそのまま晶析操作を行いグルクチオン
結晶を得ることができる。
[Effects of the Invention] According to the present invention, a highly purified glutathione purified liquid can be obtained without reducing the concentration of glutathione, and since the desorbed liquid is water, it is possible to directly perform the crystallization operation to obtain glucthione crystals. can.

又、本発明の方法は連続操作であ不ので一白釉(Pを容
易に行うことが可能である。さらに、擬似移動床の利点
として吸着剤及び脱離液である水の量を節約できること
が本発明の効果として挙げられる。
In addition, since the method of the present invention does not require continuous operation, it is possible to easily perform Ippaku glaze (P).Furthermore, an advantage of the simulated moving bed is that the amount of water, which is the adsorbent and the desorbing liquid, can be saved. are cited as effects of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法で使用する擬似移動床の一例の模
式図、および 第2図は、実施例における、グルタチオン精製液中に含
まれるグルタチオン並びにグルタミン酸の濃度の時間的
変化を示すグラフである。 特許出願人 鐘淵化学工業株式会社 代 理 人 弁理士 前出 葆 ほか2名第1図 第2図 埼聞(分)
FIG. 1 is a schematic diagram of an example of a simulated moving bed used in the method of the present invention, and FIG. 2 is a graph showing temporal changes in the concentrations of glutathione and glutamic acid contained in the purified glutathione solution in Examples. be. Patent applicant Kanebuchi Chemical Industry Co., Ltd. Agent Patent attorney Maeda Ao and two others Figure 1 Figure 2 Saimon (Min)

Claims (2)

【特許請求の範囲】[Claims] (1)内部に多孔型強酸性イオン交換樹脂が収容されて
おり、かつ前端と後端とが液体通路で結合されて無端状
になっていて液体が一方向に循環している充填床に、ア
ミノ酸の共存するグルタチオン含有液および脱離液とし
て水を導入し、同時に充填床からグルタチオン水溶液お
よびアミノ酸水溶液を抜出すことからなり、充填床には
、アミノ酸を含むグルタチオン含有液導入口、グルタチ
オン水溶液抜出し口、水導入口およびアミノ酸水溶液抜
出し口を流体の流れの方向に沿ってこの順序で配置し、
かつこれらを床内の流体の流れの方向にそれらの位置を
間欠的に逐次移動させることによりなる擬似移動床を用
いることを特徴とするグルタチオンの精製方法。
(1) A packed bed in which a porous strong acidic ion exchange resin is housed, the front end and the rear end are connected by a liquid passage to form an endless structure, and the liquid circulates in one direction. Water is introduced as a glutathione-containing solution in which amino acids coexist and water is removed as a desorption solution, and at the same time, the glutathione aqueous solution and the amino acid aqueous solution are extracted from the packed bed. The port, water inlet, and amino acid aqueous solution outlet are arranged in this order along the direction of fluid flow,
A method for purifying glutathione, which comprises using a pseudo-moving bed in which the positions of the glutathione are successively moved intermittently in the direction of fluid flow within the bed.
(2)イオン交換樹脂としてH^+型の多孔型強酸性イ
オン交換樹脂を用いる特許請求の範囲第1項記載の方法
(2) The method according to claim 1, in which an H^+ type porous strongly acidic ion exchange resin is used as the ion exchange resin.
JP23407386A 1986-09-30 1986-09-30 Method for purifying glutathione Expired - Lifetime JPH0662669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23407386A JPH0662669B2 (en) 1986-09-30 1986-09-30 Method for purifying glutathione

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23407386A JPH0662669B2 (en) 1986-09-30 1986-09-30 Method for purifying glutathione

Publications (2)

Publication Number Publication Date
JPS6388196A true JPS6388196A (en) 1988-04-19
JPH0662669B2 JPH0662669B2 (en) 1994-08-17

Family

ID=16965169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23407386A Expired - Lifetime JPH0662669B2 (en) 1986-09-30 1986-09-30 Method for purifying glutathione

Country Status (1)

Country Link
JP (1) JPH0662669B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109021066A (en) * 2018-08-23 2018-12-18 上海青平药业有限公司 A kind of method of broth extraction glutathione

Also Published As

Publication number Publication date
JPH0662669B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
EP3901134B1 (en) Method and system for preparing high-purity taurine and salt
US5630923A (en) Separation system for preparing high α-glycosyl-L-ascorbic acid
JPS60199390A (en) Obtaining of citric acid
CN101268036B (en) Process for producing 5-aminolevulinic acid hydrochloride
CN101367844A (en) Method for extracting pectinos from gum arabic hydrolysate
RU2124496C1 (en) Method of preparing alkali metal citrate
JPS55132633A (en) Adsorbent for arsenic
US20070029259A1 (en) Method of reducing impurity content in aqueous salt solution
JPS6388196A (en) Purifying method for glutathione
EP0132509A1 (en) Process for purifying lactulose syrup
JP3315158B2 (en) Glutathione purification method
JPS62123021A (en) Production of ammonium perrhenate
JPS62246594A (en) Purification of glutathione
CN102516340A (en) Method for separating and purifying hydroxycobalamin by using D150 macroporous resin
JPS6041005B2 (en) Recovery method of ammonium thiocyanate
JPS62246575A (en) Method for purifying pyrroloquinolinequinone
JPS6127999A (en) Method for purifying glutathione
JP3840672B2 (en) Method for producing ascorbic acid derivative
JPS6328061B2 (en)
JPS57128663A (en) Preparation of purified sodium glutamate crystal
CN109400606B (en) Method for refining apixaban from apixaban crude product
SU437750A1 (en) The way to release a mixture of amino acids from phenylaniline
ES2076076A1 (en) Process for the preparation of high-purity deferoxamine salts
CN1094153C (en) Process of preparation for galactosyl sucrose
JPS61249961A (en) Purification of triptophane