JPS62246594A - Purification of glutathione - Google Patents

Purification of glutathione

Info

Publication number
JPS62246594A
JPS62246594A JP8849586A JP8849586A JPS62246594A JP S62246594 A JPS62246594 A JP S62246594A JP 8849586 A JP8849586 A JP 8849586A JP 8849586 A JP8849586 A JP 8849586A JP S62246594 A JPS62246594 A JP S62246594A
Authority
JP
Japan
Prior art keywords
glutathione
liquid
aqueous solution
acid
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8849586A
Other languages
Japanese (ja)
Other versions
JPH0662667B2 (en
Inventor
Haruhiko Maki
春彦 牧
Hideki Fukuda
秀樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP8849586A priority Critical patent/JPH0662667B2/en
Publication of JPS62246594A publication Critical patent/JPS62246594A/en
Publication of JPH0662667B2 publication Critical patent/JPH0662667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain high-purity glutathione useful as a raw material for pharmaceuticals in high yield, by purifying a glutathione-containing liquid with a pseudo-moving bed using a porous strong acid-type ion-exchange resin as an adsorbent and using a low concentration acid aqueous solution s a desorbing liquid. CONSTITUTION:A front end of a packed bed receiving a porous strong acid-type ion-exchange resin therein is first connected to a rear end thereof with a liquid passage to constitute endless pass so that the liquid may recycle in one direction. Then an inlet of an amino acid-coexisting, glutathione-containing liquid as a raw material, an outlet of the glutathione aqueous solution, an inlet of a desorbing liquid and an outlet of the amino acid aqueous solution are equipped successively along the direction of the stream of liquid, and these positions are gradually moved intermittently along the direction of the stream. Into the pseudo-moving bed constituted as mentioned above, said glutathione-containing liquid as the raw material and 0.01-0.5N acid or alkali aqueous solution as the desorbing liquid are introduced and the purified glutathione aqueous solution and the impurity amino acid aqueous solution are taken out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はグルタチオンとともにグルタミン酸等のアミノ
酸を含有する、例えば酵母菌体抽出液、植物細胞抽出液
、合成法により取得されるグルタチオン含有液等から、
グルタチオンを分離する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to extracts from yeast cell extracts, plant cell extracts, glutathione-containing liquids obtained by synthetic methods, etc. that contain amino acids such as glutamic acid together with glutathione. ,
The present invention relates to a method for separating glutathione.

[従来技術] グルタチオンは、酵母および動物の肝臓などに広く分布
しており、生体内の酸化還元系に関与し、諸酵素の賦活
作用および解毒作用などの重要な役割をはたす生理活性
トリペプチドで、医薬上きわめて有用な物質である。
[Prior art] Glutathione is a physiologically active tripeptide that is widely distributed in yeast and animal livers, and is involved in the redox system in living organisms and plays important roles such as activation of various enzymes and detoxification. , is an extremely useful substance medicinally.

酵母抽出液等、不純物を含むグルタチオン含有液からグ
ルタチオンを単離する場合、一般的に晶析操作等によっ
て回収されているが、グルタミン酸等のアミノ酸はグル
タチオンの結晶純度および収率を大きく低下させる要因
となっている。従って、最終的な晶析操作以前にグルタ
ミン酸等のアミノ酸を除去しておくことが高純度製品を
得る為に不可欠であるが、グルタチオンはグルタミン酸
等のアミノ酸と同じく分子内にアミノ基並びにカルボキ
シル基を有し、その物理化学的性質が類似しているとい
う点から、グルタチオンとアミノ酸との相互分離は極め
て困難である。
When glutathione is isolated from a glutathione-containing liquid containing impurities, such as a yeast extract, it is generally recovered by crystallization, but amino acids such as glutamic acid are a factor that greatly reduces the crystal purity and yield of glutathione. It becomes. Therefore, it is essential to remove amino acids such as glutamic acid before the final crystallization operation in order to obtain a highly pure product, but glutathione, like amino acids such as glutamic acid, has an amino group and a carboxyl group in its molecule. It is extremely difficult to separate glutathione and amino acids from each other because they have similar physicochemical properties.

従来、グルタチオン含有液からグルタチオンを単離精製
する方法としては銅塩法が広く知られているが、銅塩法
の一般的なプロセスは銅塩生成反応、銅塩洗浄、銅塩分
解反応の3段階からなり、操作が繁雑であり、しかも、
グルタチオンの回収率も低いという欠点を有している。
Conventionally, the copper salt method is widely known as a method for isolating and purifying glutathione from glutathione-containing solutions, but the general process of the copper salt method involves three steps: copper salt production reaction, copper salt washing, and copper salt decomposition reaction. It consists of stages, the operation is complicated, and
It also has the disadvantage of a low recovery rate of glutathione.

また、イオン交換樹脂を用いて、酵母菌体抽出液から高
濃度グルタチオン含有液を得る方法が、特公昭44−2
39、同46−4755、同46−2838等に開示さ
れているが、これらの方法では高濃度の塩類、酸、水酸
化アルカリ水溶液を用いてグルタチオンとグルタミン酸
等のアミノ酸とを同時に溶出させるため、グルタチオン
とアミノ酸との分離は不完全で、高純度のグルタチオン
水溶液を得ることは不可能となり、さらに他の工程を要
する。従って、グルタチオンを容易に高純度に精製でき
るプロセスの開発が工業化を企てる上で強く望まれてい
た。
In addition, a method for obtaining a liquid containing high concentration of glutathione from a yeast cell extract using an ion exchange resin was published in Japanese Patent Publication No. 44-2.
39, 46-4755, 46-2838, etc., these methods simultaneously elute glutathione and amino acids such as glutamic acid using highly concentrated salts, acids, and aqueous alkali hydroxide solutions. Separation of glutathione and amino acids is incomplete, making it impossible to obtain a highly pure aqueous glutathione solution and requiring additional steps. Therefore, the development of a process that can easily purify glutathione to a high degree of purity has been strongly desired for industrialization.

[発明の構成] 本発明者らは、グルタミン酸等の不純物の共存するグル
タチオン含有液からグルタチオンを高収率で単離する方
法について種々研究を重ねた結果、多孔型強酸性イオン
交換樹脂を吸着剤として用い、低濃度の酸水溶液または
アルカリ水溶液を脱離液として用いれば、擬似移動床に
より、グルタチオンと不純物質との分離が可能であるこ
を見い出し、本発明の完成に至った。
[Structure of the Invention] As a result of various studies conducted by the present inventors on a method for isolating glutathione in high yield from a glutathione-containing liquid in which impurities such as glutamic acid coexist, the present inventors found that a porous strongly acidic ion exchange resin was used as an adsorbent. The present inventors have discovered that it is possible to separate glutathione from impurities using a simulated moving bed by using a low-concentration acid aqueous solution or alkali aqueous solution as a desorption liquid, leading to the completion of the present invention.

即ち、本発明は、内部に多孔型強酸性イオン交換樹脂が
収容されており、かつ前端と後端とが液体通路で結合さ
れて無端状になっていて液体が一方向に循環している充
填床に、アミノ酸の共存するグルタチオン含有液および
脱離液として0.01〜0.5規定の酸あるいはアルカ
リ水溶液を導入し、同時に充填床からグルタチオン水溶
液およびアミノ酸水溶液を抜き出すことから成り、充填
床には、アミノ酸を含むグルタチオン含有液導入口、グ
ルタチオン水溶液抜出口、酸あるいはアルカリ水溶液導
入口およびアミノ酸水溶液抜出口を流体の流れの方向に
沿ってこの順序で配置し、かつこれらを床内の流体の流
れの方向にそれらの位置を間けつ的に逐次移動させるこ
とによりなる擬似移動床を用いることを特徴とするグル
タチオンの精製方法を内容とするものである。
That is, the present invention provides a packing system in which a porous strongly acidic ion exchange resin is housed inside, and the front end and the rear end are connected by a liquid passage to form an endless shape, and the liquid circulates in one direction. The method consists of introducing a glutathione-containing solution in which amino acids coexist and a 0.01 to 0.5 N acid or alkali aqueous solution as a desorption solution into the bed, and simultaneously extracting the glutathione aqueous solution and the amino acid aqueous solution from the packed bed. A glutathione-containing liquid inlet containing an amino acid, a glutathione aqueous solution outlet, an acid or alkali aqueous solution inlet, and an amino acid aqueous solution outlet are arranged in this order along the direction of fluid flow, and these are connected to the flow of fluid in the bed. The present invention is directed to a method for purifying glutathione, which is characterized by using a simulated moving bed in which the positions thereof are moved intermittently and sequentially in the direction of flow.

すなわち、本発明は酵母菌体抽出液、植物細胞抽出液、
合成法により得られるグルタチオン含有液等から、多孔
型強酸性イオン交換樹脂を吸着剤とし、酸あるいはアル
カリ水溶液を脱離液として用いる擲債ル動床により一高
肺げのグルタチオン含有液を取得する方法に関するもの
である。
That is, the present invention provides yeast cell extract, plant cell extract,
From a glutathione-containing liquid etc. obtained by a synthetic method, a high-quality glutathione-containing liquid is obtained using a rotary bed using a porous strongly acidic ion exchange resin as an adsorbent and an acid or alkaline aqueous solution as a desorption liquid. It is about the method.

固体吸着剤が収容されており、かつ前端と後端との間が
流体通路で結合されていて、床内を流体が循環し得るよ
うになっている充填床に、床内の流体の流れの方向に沿
って脱離液流体導入口、吸着質流体抜出口、原料流体導
入口、非吸着質流体抜出口を設け、各導入口および抜出
口からそれぞれの流体を連続的に導入または抜出し、一
定時間毎に各導入口および抜出口を順次下流のそれと切
換えることにより、原料流体を固体吸着剤に相対的に吸
着されやすい成分(吸着質成分)および相対的に吸着さ
れ難い成分(非吸着質成分)に分離する、いわゆる擬似
移動床は公知であり(特公昭42−15681)、この
ような技術を利用した例としては、果糖の製造法(特開
昭53−88335)やマルトースの分離法(特開昭6
O−67000)等が挙げられる。しかしながら、擬似
移動床を用いてグルタチオンやアミノ酸類を含む系から
高純度グルタチオンを分離する方法に関する応用例は未
だ全く報告されておらず、適用が困難とされてい以下、
本発明についてさらに詳細に説明する。
A packed bed containing a solid adsorbent and having a leading end and a trailing end connected by a fluid passageway to allow fluid to circulate through the bed. A desorbed liquid fluid inlet, an adsorbate fluid outlet, a raw material fluid inlet, and a non-adsorbent fluid outlet are provided along the direction, and the respective fluids are continuously introduced or extracted from each inlet and outlet to maintain a constant flow rate. By sequentially switching each inlet and outlet with those downstream, the feed fluid can be divided into components that are relatively easily adsorbed by the solid adsorbent (adsorbate components) and components that are relatively difficult to adsorb (non-adsorbate components). ) is known (Japanese Patent Publication No. 42-15681), and examples using such technology include a method for producing fructose (Japanese Patent Application Publication No. 88335-1988) and a method for separating maltose ( Tokukai Showa 6
O-67000), etc. However, no application example has been reported yet regarding the method of separating high-purity glutathione from a system containing glutathione and amino acids using a simulated moving bed, and it is considered difficult to apply it.
The present invention will be explained in more detail.

本発明において使用される多孔型強酸性イオン交換樹脂
には、SOs基を交換基として持ちスチレンとジビニル
ベンゼンの共重合体を骨格とする、例えばローム&ハー
ス(株)製アンバーライトIR200C,三菱化成(株
)製ダイヤイオンPk22g等の他、各種の製品がある
が、これらに限定されない。また、イオン交換樹脂の粒
径は特に限定されないが、床内の偏流を防止するために
は300〜600μmのものが望ましい。さらにイオン
交換樹脂の細孔径についても50〜゛150人のものが
選択性の点で望ましいが、特にこれに限定されない。
Porous strongly acidic ion exchange resins used in the present invention include those having an SOs group as an exchange group and a copolymer of styrene and divinylbenzene as a backbone, such as Amberlite IR200C manufactured by Rohm & Haas Co., Ltd., Mitsubishi Kasei Co., Ltd. There are various products such as Diaion Pk22g manufactured by Co., Ltd., but the product is not limited to these. Further, the particle size of the ion exchange resin is not particularly limited, but it is preferably 300 to 600 μm in order to prevent uneven flow within the bed. Further, the pore diameter of the ion exchange resin is preferably 50 to 150 pores from the viewpoint of selectivity, but is not particularly limited thereto.

イオン交換樹脂の型は使用する脱離液が酸の場合には、
[H″″″コ型ルカリ水溶液の場合には、そのアルカリ
と同種の金属(例えば脱離液がNaOH水溶液の時には
[Na”]型)とする必要があるが、前者の方が後者に
比べて高い分離能が得られる。
If the desorption liquid used is an acid, the type of ion exchange resin is
[H'''''' In the case of a U-type aqueous alkali solution, it is necessary to use the same type of metal as the alkali (for example, [Na''] type when the desorbing liquid is a NaOH aqueous solution), but the former is better than the latter. high resolution can be obtained.

また、グルタチオン含有液はそのまま用いてもよいが、
脱離液と同種の酸あるいはアルカリを脱離液と等しい濃
度に調整しておくことにより分離能が向上する。
In addition, the glutathione-containing liquid may be used as is, but
The separation ability can be improved by adjusting the concentration of the same type of acid or alkali as that of the desorbing liquid to be equal to that of the desorbing liquid.

一方、通液時の温度は高い程高分離能が得られるが、5
0℃以上ではグルタチオンの分解が顕著になるので10
〜40℃が望ましい。
On the other hand, the higher the temperature during liquid passage, the higher the resolution can be obtained.
At temperatures above 0°C, the decomposition of glutathione becomes significant, so 10
~40°C is desirable.

また、脱離液として用いる酸としては、塩酸、硫酸等が
、またアルカリとしては水酸化ナトリウム、水酸化バリ
ウム等が例示されるが、特にこれらに限定されない。た
だし、用いる脱離液の濃度により、グルタチオン、およ
びグルタミン酸等のアミノ酸の吸着剤充填床中での移動
速度が異なるので、高い分離能を得るには、両者の移動
速度の差が大きい0.01〜0.5規定の濃度の脱離液
を用いることが好ましい。
Further, examples of acids used as the desorption liquid include hydrochloric acid, sulfuric acid, etc., and examples of alkalis include sodium hydroxide, barium hydroxide, etc., but the invention is not particularly limited to these. However, the migration speed of amino acids such as glutathione and glutamic acid in the adsorbent packed bed differs depending on the concentration of the desorbing solution used, so in order to obtain high separation power, the difference in migration speed between the two must be 0.01. It is preferable to use a desorption solution with a concentration of ~0.5N.

以下、図面に基づいて、本発明の方法をより詳細に説明
する。
Hereinafter, the method of the present invention will be explained in more detail based on the drawings.

第1図は本発明方法で使用する擬似移動床の一例の模式
図である。第1図においては、擬似移動床の主要部であ
る充填床の内部は16個の単位充填床に区分されている
が、その数は、グルタチオン含有液の組成、濃度及び装
置の大きさ等の要因に従って適切に決定できる。第1図
において、各単位充填床には、多孔型強酸性イオン交換
樹脂が充填されており、各単位充填床間には空間部が設
けられている。各空間部には充填床へのグルタミン酸等
のアミノ酸を含むグルタチオン含有液の導入口および酸
あるいはアルカリ水溶液の導入口並びに充填床からのグ
ルタチオン精製液抜出口およびグルタミン酸等のアミノ
酸含有液抜出口の4種類が開口している(ただし、第1
図ではその大部分は省略されている。)。この空間部の
設置は不可欠ではないが、充填床に導入されるグルタミ
ン酸等のアミノ酸を含むグルタチオン含有液及び脱離液
をこの空間部に導入すると、床内を流下循環している流
体中にすみやかに拡散混合させることができるので好ま
しい。
FIG. 1 is a schematic diagram of an example of a simulated moving bed used in the method of the present invention. In Figure 1, the inside of the packed bed, which is the main part of the simulated moving bed, is divided into 16 unit packed beds, but the number varies depending on the composition and concentration of the glutathione-containing liquid, the size of the equipment, etc. Can be appropriately determined according to the factors. In FIG. 1, each unit packed bed is filled with a porous strongly acidic ion exchange resin, and a space is provided between each unit packed bed. Each space has an inlet for introducing a glutathione-containing liquid containing amino acids such as glutamic acid into the packed bed, an inlet for an acid or aqueous alkali solution, an outlet for extracting a purified glutathione liquid from the packed bed, and an outlet for extracting an amino acid-containing liquid such as glutamic acid from the packed bed. The type is open (however, the first
Most of them are omitted in the figure. ). Although the installation of this space is not essential, when the glutathione-containing liquid containing amino acids such as glutamic acid and the desorbed liquid are introduced into this space, they are quickly absorbed into the fluid flowing down and circulating in the bed. This is preferable because it allows for diffusion mixing.

第1図では空間部19にグルタミン酸等のアミノ酸を含
むグルタチオン含有液が導入され、空間部11に脱離液
として酸あるいはアルカリ水溶液が導入されている。ま
た、空間部15からグルタチオン酸専のアミノ酸含有液
が抜出され、空間部23からグルタチオン精製液が抜出
されている。従って、充填床は109〜112の4個の
単位充填床からなる吸着帯域、113〜116の4個の
単位充填床からなる一次精製帯域、101−104の4
個の単位充填床からなる脱着帯域および105〜108
の4個の単位充填床からなる二次精製帯域の4個の帯域
よりなっている。各帯域の作用は、グルタミン酸等のア
ミノ酸を吸着質成分とし、グルタチオンを非吸着質成分
とした場合の公知の擬似移動床のそれに等しい。
In FIG. 1, a glutathione-containing liquid containing an amino acid such as glutamic acid is introduced into the space 19, and an acid or alkaline aqueous solution is introduced into the space 11 as a desorption liquid. Further, an amino acid-containing liquid exclusively for glutathionic acid is extracted from the space 15, and a purified glutathione liquid is extracted from the space 23. Therefore, the packed beds include an adsorption zone consisting of four unit packed beds 109 to 112, a primary purification zone consisting of four unit packed beds 113 to 116, and a four unit packed bed 101 to 104.
a desorption zone consisting of unit packed beds of 105 to 108
The secondary purification zone consists of four unit packed beds. The action of each zone is equivalent to that of a known simulated moving bed in which the adsorbate component is an amino acid such as glutamic acid and the non-adsorbate component is glutathione.

充填床内の液中には、グルタチオンおよびグルタミン酸
等のアミノ酸の濃度分布が形成されており、この濃度分
布はその形状を保持しつつ下流方向に移動する。この移
動に追随するように充填床へのグルタミン酸等のアミノ
酸を含むグルタチオン含有液および酸あるいはアルカリ
水溶液の導入口並びに充填床からのグルタチオン精製液
およびグルタミン酸等のアミノ酸含有液の抜出口が順次
下方のそれに切替えられる。切換えは4種類の開口につ
いて同時に行ってもよく、また各開口毎に時間的にずら
して行ってもよい。同一の開口から液の導入または抜出
しを継続する時間は、単位充填床の大きさ、用いる酸あ
るいはアルカリ水溶液の濃度、床内を流下する流速等に
よりことなるが、通常、数分ないし数十分である。この
切換えにより、上述の4個の帯域は逐次その充填床に占
める位置を移動する。しかし、各帯域の長さは常にほぼ
一定であり、その大きさおよび相対的位置を保持したま
ま充填床を循環する。
A concentration distribution of amino acids such as glutathione and glutamic acid is formed in the liquid in the packed bed, and this concentration distribution moves downstream while maintaining its shape. Following this movement, the inlet for the glutathione-containing liquid containing amino acids such as glutamic acid and the acid or alkaline aqueous solution to the packed bed, and the outlet for the extraction of the purified glutathione liquid and the amino acid-containing liquid such as glutamic acid from the packed bed are sequentially opened downward. It can be switched to that. The switching may be performed simultaneously for the four types of openings, or may be performed at different times for each opening. The time to continue introducing or withdrawing liquid from the same opening varies depending on the size of the unit packed bed, the concentration of the acid or alkaline aqueous solution used, the flow rate within the bed, etc., but it is usually several minutes to several tens of minutes. It is. By this switching, the four zones described above sequentially move their positions in the packed bed. However, the length of each zone is always approximately constant and maintains its size and relative position as it circulates through the packed bed.

多孔型強酸性イオン交換樹脂を吸着剤とする擬似移動床
におけるグルタチオンとグルタミン酸等のアミノ酸の分
離の程度は、種々の要因により影響されるが、特に大き
な要因は床内の液の流下速度、同一の開口から液の導入
または抜出しを継続する時間並びに脱離液とする酸ある
いはアルカリ水溶液の濃度である。このことは、液の導
入口および抜出し口の下流の開口へ切換えは、見方を換
えれば導入口および抜出口の位置を一定にして多孔型強
酸性イオン交換樹脂を上流方向に移動させることに等し
いものであり、床内の各成分の濃度分布は、この上流方
向に移動する液との相互作用により形成されることから
も推測される。また、この移動速度は各単位充填床の長
さく12)を同一の開口から液の導入または抜出しを継
続する時間(T)で除したもの(Q/T)に相当する。
The degree of separation of amino acids such as glutathione and glutamic acid in a simulated moving bed using a porous strongly acidic ion exchange resin as an adsorbent is affected by various factors, but the most important factor is the flow rate of the liquid in the bed, the same The time period during which liquid is continued to be introduced or withdrawn from the opening, and the concentration of the acid or alkaline aqueous solution used as the desorption liquid. This means that switching to the openings downstream of the liquid inlet and outlet is equivalent to moving the porous strong acidic ion exchange resin upstream while keeping the inlet and outlet at a constant position. It is also inferred from the fact that the concentration distribution of each component in the bed is formed by this interaction with the liquid moving in the upstream direction. Further, this moving speed corresponds to the length (12) of each unit packed bed divided by the time (T) for which liquid is continued to be introduced or extracted from the same opening (Q/T).

周知のように2成分以上の成分を擬似移動床により分離
するには、非吸着質成分の充填床内の移動速度V、を吸
着帯域においてはv、>(1/T、1次精製帯域におい
てはv I< 121 T s脱着帯域においてはVl
>12/T%2次精製帯域においてはVt>Q/Tとし
、吸着質成分の充填床内の移動速度V、を吸着帯域にお
いてはVt < Q/ T 、  1−吹精製帯域にお
いてはv2 < Q/ T。
As is well known, in order to separate two or more components using a simulated moving bed, the moving velocity V of the non-adsorbate component in the packed bed is set to v in the adsorption zone, >(1/T in the primary purification zone), is v I < 121 T s In the desorption band, Vl
>12/T% In the secondary purification zone, Vt > Q/T, and the moving velocity V of the adsorbate component in the packed bed is Vt < Q/T in the adsorption zone, and v2 < in the 1-blowing purification zone. Q/T.

脱離帯域においてはv、>Q/T、2次精製帯域におい
てはv*<Q/Tとすればよい。従って、上記の要因の
うち液の流下速度および同一の開口から液の導入または
抜出しを継続する時間は、これらの関係から必然的に求
まる。一方、非吸着質成分の充填床内の移動速度V、お
よび吸着質成分の充填床内の移動速度V、は、脱離液と
して用いる酸あるいはアルカリ水溶液、の濃度および充
填床内の液流速により決定されるが、これらは回分式の
充填床を用いて容易に実測することができるのは言うま
でもない。
In the desorption zone, v>Q/T, and in the secondary purification zone, v*<Q/T. Therefore, among the above factors, the flow rate of the liquid and the time for which the liquid is continuously introduced or extracted from the same opening are necessarily determined from these relationships. On the other hand, the moving speed V of non-adsorbable components within the packed bed and the moving speed V of adsorptive components within the packed bed depend on the concentration of the acid or alkaline aqueous solution used as the desorption liquid and the liquid flow rate within the packed bed. However, it goes without saying that these can be easily measured using a batch-type packed bed.

つぎに、実施例を用いて本発明を具体的に説明するが、
本発明はこれらに限定されない。
Next, the present invention will be specifically explained using examples.
The present invention is not limited thereto.

[実施例1] 内径1 am、長さ20cmのカラム16本からなる擬
似移動床を用いてグルタミン酸を含むグルタチオン含有
液からのグルタチオンの単離を行った。
[Example 1] Glutathione was isolated from a glutathione-containing liquid containing glutamic acid using a simulated moving bed consisting of 16 columns each having an inner diameter of 1 am and a length of 20 cm.

原料液中のグルタチオンおよびグルタミン酸濃度はそれ
ぞれ10p/(1,5v/Iであり、0.05規定の塩
酸を含有させた。吸着剤としてはH”型の多孔型強酸性
イオン交換樹脂(ロームアンドハース(株)製lR20
0C)を用い、脱離液としては0.05規定の塩酸を使
用した。原料液供給速度は2.83x(2/分、脱離液
供給速度LtlO,83z&/分、さらにグルタチオン
精製液の抜出しは5゜65m<2/分、グルタミン酸含
有液の抜出しは8゜01x(1/分の流量で行い、原料
液および脱離液供給口並びにグルタチオン精製液および
グルタミン酸含有液の抜出口の移動は20分毎に行った
The concentrations of glutathione and glutamic acid in the raw material solution were 10 p/(1.5 v/I), and 0.05 N hydrochloric acid was contained. 1R20 manufactured by Haas Co., Ltd.
0C), and 0.05N hydrochloric acid was used as the desorption liquid. The raw material liquid supply rate is 2.83x (2/min, the desorption liquid supply rate LtlO,83z&/min, the extraction of the glutathione purified liquid is 5゜65m<2/min, and the withdrawal of the glutamic acid-containing liquid is 8゜01x (1 The flow rate of the raw material liquid and the desorbed liquid was changed every 20 minutes.

第2図にグルタチオン精製液中に含まれるグルタチオン
並びにグルタミン酸の濃度の時間的変化を示す。第2図
に示されるように、グルタチオン精製液中にはグルタミ
ン酸は全く含まれず、約250分で定常状態となり、定
常状態では原料液中に含まれるグルタチオンの99%が
回収された。
FIG. 2 shows temporal changes in the concentrations of glutathione and glutamic acid contained in the purified glutathione solution. As shown in FIG. 2, the purified glutathione solution contained no glutamic acid and reached a steady state in about 250 minutes, and in the steady state, 99% of the glutathione contained in the raw material solution was recovered.

なお、脱離液として1規定の塩酸を用いて上記のグルタ
チオン含有液からのグルタチオンの分離を行ったが、こ
の場合には、定常状態におけるグルタチオン精製液中の
グルタチオン純度は75%であり、収率は60%であっ
た。
In addition, glutathione was separated from the glutathione-containing solution using 1N hydrochloric acid as a desorption solution, but in this case, the glutathione purity in the glutathione purified solution in a steady state was 75%, and the yield was low. The rate was 60%.

[実施例2] 実施例!で用いたものと同一のグルタチオン含有液から
のグルタチオンの単離を、Na“型の多孔型性イオン交
換樹脂アンバーライトlR200Cを吸着剤とし、0.
01規定の水酸化ナトリウムを脱離液として、擬似移動
床により行った。ただし、原料液中には塩酸ではなく 
0.01規定の水酸化ナトリウムを含何させた。原料液
および脱離液の供給並びにグルタチオン精製液およびグ
ルタミン酸含有液の抜出しはそれぞれ2.83πQ/分
、9.49xQ/分、4.25zlJ/分、8.07酎
/分の流速で行い、また、原料液および脱離液供給口並
びにグルタチオン精製液およびグルタミン酸含有液抜出
口の移動は1分毎に行った。第3図にグルタチオン精製
液中のグルタチオンおよびグルタミン酸濃度の時間変化
を示す。
[Example 2] Example! Glutathione was isolated from the same glutathione-containing solution as that used in the above using Na'-type porous ion exchange resin Amberlite 1R200C as an adsorbent.
The reaction was carried out using a simulated moving bed using 01N sodium hydroxide as a desorption liquid. However, there is no hydrochloric acid in the raw material liquid.
It contained 0.01 normal sodium hydroxide. The supply of the raw material liquid and the desorbed liquid and the withdrawal of the purified glutathione liquid and the glutamic acid-containing liquid were performed at flow rates of 2.83πQ/min, 9.49xQ/min, 4.25zlJ/min, and 8.07ml/min, respectively. The raw material liquid and desorbed liquid supply ports and the glutathione purified liquid and glutamic acid-containing liquid outlet were moved every minute. FIG. 3 shows the time changes in the glutathione and glutamic acid concentrations in the glutathione purified solution.

第3図に示されているように、ゲルタデオン精製液中の
グルタチオン濃度は約30分で定常状態となり、定常状
態では純度78%のゲルタデオン精製液がグルタチオン
回収率70%で得られた。
As shown in FIG. 3, the glutathione concentration in the purified geltadeone solution reached a steady state in about 30 minutes, and in the steady state, a purified geltadeone solution with a purity of 78% was obtained with a glutathione recovery rate of 70%.

なお、脱離液として!規定の水酸化ナトリウムを用いて
、上記のグルタチオン含有液からのグルタチオンの単離
をおこなったが、この場合には定常状態におけるグルタ
チオン精製液中のグルタチオン純度は66%であり、収
率は58%であった。
In addition, as a desorption liquid! Glutathione was isolated from the glutathione-containing solution using the specified sodium hydroxide, but in this case, the glutathione purity in the glutathione purified solution in steady state was 66%, and the yield was 58%. Met.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法で使用する擬似移動床の一例の模
式図、 第2図および第3図は、グルタチオン精製液中に含まれ
るグルタチオン並びにグルタミン酸の濃度の時間的変化
を示すグラフである。 特許出願人 鐘淵化学工業株式会社 代 理 人 弁理士 青白 葆 ほか2名4度(9/R
) 濃度[a/JP]
FIG. 1 is a schematic diagram of an example of a simulated moving bed used in the method of the present invention, and FIGS. 2 and 3 are graphs showing temporal changes in the concentrations of glutathione and glutamic acid contained in the purified glutathione solution. . Patent applicant Kanebuchi Kagaku Kogyo Co., Ltd. Agent Patent attorney Aohaku Ao and 2 others 4 degrees (9/R)
) Concentration [a/JP]

Claims (3)

【特許請求の範囲】[Claims] (1)内部に多孔型強酸性イオン交換樹脂が収容されて
おり、かつ前端と後端とが液体通路で結合されて無端状
になっていて液体が一方向に循環している充填床に、ア
ミノ酸の共存するグルタチオン含有液および脱離液とし
て0.01〜0.5規定の酸あるいはアルカリ水溶液を
導入し、同時に充填床からグルタチオン水溶液およびア
ミノ酸水溶液を抜き出すことから成り、充填床には、ア
ミノ酸を含むグルタチオン含有液導入口、グルタチオン
水溶液抜出口、酸あるいはアルカリ水溶液導入口および
アミノ酸水溶液抜出口を流体の流れの方向に沿ってこの
順序で配置し、かつこれらを床内の流体の流れの方向に
それらの位置を間けつ的に逐次移動させることによりな
る擬似移動床を用いることを特徴とするグルタチオンの
精製方法。
(1) A packed bed in which a porous strong acidic ion exchange resin is housed, the front end and the rear end are connected by a liquid passage to form an endless structure, and the liquid circulates in one direction. The method consists of introducing a glutathione-containing solution in which amino acids coexist and a 0.01 to 0.5 N acid or alkaline aqueous solution as a desorption solution, and simultaneously extracting a glutathione aqueous solution and an amino acid aqueous solution from a packed bed. A glutathione-containing liquid inlet, a glutathione aqueous solution outlet, an acid or alkali aqueous solution inlet, and an amino acid aqueous solution outlet are arranged in this order along the direction of fluid flow, and these are arranged in the direction of fluid flow in the bed. 1. A method for purifying glutathione, which comprises using a pseudo moving bed in which the positions of the glutathione are sequentially moved intermittently.
(2)イオン交換樹脂としてH^+型の多孔型強酸性イ
オン交換樹脂を用い、脱離液として0.01〜0.5規
定の酸水溶液を用いる特許請求の範囲第1項記載の方法
(2) The method according to claim 1, in which an H^+ type porous strongly acidic ion exchange resin is used as the ion exchange resin, and a 0.01 to 0.5 N acid aqueous solution is used as the desorption liquid.
(3)イオン交換樹脂として塩型の多孔型強酸性イオン
交換樹脂を用い、脱離液として0.01〜0.5規定の
アルカリ水溶液を用いる特許請求の範囲第1項記載の方
法。
(3) The method according to claim 1, in which a salt-type porous strongly acidic ion-exchange resin is used as the ion-exchange resin, and a 0.01-0.5N aqueous alkaline solution is used as the desorption liquid.
JP8849586A 1986-04-16 1986-04-16 Method for purifying glutathione Expired - Lifetime JPH0662667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8849586A JPH0662667B2 (en) 1986-04-16 1986-04-16 Method for purifying glutathione

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8849586A JPH0662667B2 (en) 1986-04-16 1986-04-16 Method for purifying glutathione

Publications (2)

Publication Number Publication Date
JPS62246594A true JPS62246594A (en) 1987-10-27
JPH0662667B2 JPH0662667B2 (en) 1994-08-17

Family

ID=13944394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8849586A Expired - Lifetime JPH0662667B2 (en) 1986-04-16 1986-04-16 Method for purifying glutathione

Country Status (1)

Country Link
JP (1) JPH0662667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335594A (en) * 2011-06-16 2012-02-01 中国科学院长春应用化学研究所 Preparation method and application of affinity chromatography porous medium with glutathione ligand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335594A (en) * 2011-06-16 2012-02-01 中国科学院长春应用化学研究所 Preparation method and application of affinity chromatography porous medium with glutathione ligand

Also Published As

Publication number Publication date
JPH0662667B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US5630923A (en) Separation system for preparing high α-glycosyl-L-ascorbic acid
JPH04211021A (en) Separation of optical isomer
US5817238A (en) Process for producing purified L-ascorbic acid
RU2124496C1 (en) Method of preparing alkali metal citrate
US6576446B2 (en) Process for producing high 2-O-α-D-glucopyranosyl-L-ascorbic acid
JPS62246594A (en) Purification of glutathione
CN107827977A (en) A kind of method based on ion-exchange resin purification UTI
JPH0662669B2 (en) Method for purifying glutathione
JP3315158B2 (en) Glutathione purification method
JPS62246575A (en) Method for purifying pyrroloquinolinequinone
JP3382297B2 (en) Method for producing high purity deferoxamine salt
JPS6127999A (en) Method for purifying glutathione
US3173949A (en) Recovery of glutamic acid from a fermentation broth using cation exchange resins
CN109400606B (en) Method for refining apixaban from apixaban crude product
JPS61249961A (en) Purification of triptophane
JPS6328061B2 (en)
US3461113A (en) Process for recovering flavin-adenine dinucleotide
JP2012007907A (en) Separation method of 1,5-d-anhydroglucitol
KR20170116678A (en) Purification method for ascorbic acid glycoside
RU2047620C1 (en) Method of flavine-adenine dinucleotide purification
JPH01175991A (en) Purifying method of dideoxyinosine
CN117964672A (en) Macroporous adsorption resin separation and purification method for beta-nicotinamide mononucleotide
JPH0774233B2 (en) Glutathione purification method
JPH0283394A (en) Purification of s-adenosyl-l-homocystein
JPS61178952A (en) Method for purifying valine